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ABSTRACT. In this paper we formulate, for the first time in the literature, an optimal control

problem for self-adjoint ordinary differential operator equations in Hilbert spaces and derive neces-

sary conditions for optimal controls to this problem in an appropriate extended form the Pontryagin

Maximum Principle.

1. INTRODUCTION

This paper addresses the following controlled system governed by singular differ-

ential operator equations in Hilbert spaces:

(1.1) L̃x = f(x, u, t), u(t) ∈ U a.e. t ∈ I = (a, b), −∞ ≤ a < b ≤ ∞,

where L̃ is a self-adjoint extension of the minimal operator L0 (see Section 2) generated

by a formally self-adjoint differential expression l and a positive weight function w

satisfying the equation

(1.2) lx = λwx on I

in the Hilbert space H = L2(I, w) of real-valued square integrable functions, where

u(·) is a measurable control action taking values from the given control set U , and

where the function f is real-valued. The inner product 〈·, ·〉 and the norm ‖ · ‖ on H
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are defined, respectively, by

〈x1, x2〉 :=

∫

I

x1(t)x2(t)w(t)dt,

‖x‖2 :=

∫

I

|x(t)|2w(t)dt.

In what follows we assume (cf. [5]) that the expression l in (1.2) is of even order 2n

given in the form

l(x) =

n
∑

i=0

(−1)i(rix
(i))(i)

with real-valued coefficients ri ∈ Ci[I] for all i = 0, . . . , n. Recall that the expression

l is regular if the I is finite and

r−1
n , rn−1, . . . , r0 ∈ L(I, w),

i.e., these functions are integrable on the whole interval I. Otherwise l is called

singular. Furthermore, the endpoint a is regular if a > −∞ and if r−1
n , rn−1, . . . , r0 ∈

L((a, β), w) for all β < b; otherwise a is singular. The regularity and singularity of

the other endpoint b is defined similarly. Observe that the expression l is regular if

and only if both endpoints a and b have this property.

We now fix a point c such that a < c < b and consider the following optimal

control problem of the Mayer type for controlled equation (1.1):

(1.3) minimize J [u, x] = φ(x(c)) over (u, x) ∈ A.

Here the cost function φ is real-valued and the set A is the collections of admissible

pairs (u(·), x(·)) with measurable controls u(·) satisfying the pointwise constraint

u(t) ∈ U a.e. t ∈ I and the corresponding solutions x(·) to (1.1) described by

(1.4) x(t) =

∫

I

K(t, τ)f(x(τ), u(τ), τ)dτ , t ∈ I;

see Section 2 for more details. If b is regular, we may take c = b. Although any state

variable x must satisfy boundary conditions; being an element of D̃; see Section 2,

particularly Theorem 2.1). Since no additional constraints are imposed on x(·) at

t = b, problem (1.3) is labeled a free-endpoint problem of optimal control. Any

admissible pair (u, x) ∈ A are called feasible solution to the control problem (1.3). A

feasible solution (ū, x̄) is (globally) optimal for this problem if

J [ū, x̄] ≤ J [u, x] whenever (u, x) ∈ A.

Optimal control theory is a remarkable area of Applied Mathematics, which has

been developed for various classes of controlled systems governed by ordinary differ-

ential, functional differential, and partial differential equations and inclusions; see,
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e.g., [3, 4] with the vast bibliographies therein. However, we are not familiar with

any developments on optimal control of differential operator equations of type (1.1).

To proceed further, take an arbitrary admissible control u(·) and define the op-

erator Fu on H by

(1.5) Fu(x) := f(x(·), u(·), ·).

The main goal of this paper is deriving necessary optimality conditions for a fixed

optimal solution (ū(·), x̄(·)) to problem (P ). Involving this optimal pair and operator

(1.5), we impose the following standing assumptions:

(H1) Fu maps H in to H and there exists an open set O ⊂ H containing x̄ such that

the functions (x, u) 7→ Fu(x) and (x, u) 7→ F ′
u(x) are continuous on A and the

operators F ′
u(x̄) are uniformly bounded for all admissible controls u.

(H2) For each admissible control u the operator Fu is weakly continuous.

(H3) For each admissible control u the operator Fu is monotone, i.e.,

〈Fu(x1) − Fu(x2), x1 − x2〉 ≤ η‖x1 − x2‖
2, for all x1, x2 ∈ H,

where η ∈ R independent of u.

(H4) There exists a real number γ > η, assumed to be positive without loss of gener-

ality, such that

〈L̃x, x〉 ≥ γ‖x‖2 for any x ∈ D̃,

where D̃ is the domain of L̃ to be defined in Section 2.

(H5) For every needle variation u (see Section 4) of ū on measurable sets Iǫ ⊂ I of

measure ǫ we have

‖Fu(x̄) − Fū(x̄)‖ = o(ǫ).

(H6) The function φ is Fréchet differentiable at the point x̄(c).

(H7) The control set U in (1.1) is a Souslin subset (i.e., a continuous image of a Borel

subset) of some Banach space.

To formulate the main result of this paper, we introduce the appropriate coun-

terpart of the Hamilton-Pontryagin function for system (1.1) defined by

(1.6) H(x, p, u, t) := (p + P (φ(x(c))K(c, t))) f(x, u, t),

where P is a projection operator onto the range of L0 to be discussed in Section 2;

see particularly Lemma 2.2 therein.

Theorem 1.1 (Maximum Principle). Let (ū(·), x̄(·)) be an optimal solution to prob-

lem (1.3) under the assumptions imposed in (H1)–(H7). Then there exists an adjoint

arc p ∈ D such that

(1.7) H(x̄(t), p(t), ū(t), t) = max
u∈U

H(x̄(t), p(t), u, t) ae t ∈ I,
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(1.8) L(p) = −∇xH(x̄(t), p(t), ū(t), t) a.e.

and the following transversality condition is satisfied:

(1.9) [p, xi]
b

a = −φ′

0(x̄(c))xi(c), i = 1, . . . , d,

where D is the domain of the operator L defined in Section 2), and where the functions

xi, i = 1, . . . , d determine the domain D̃ in the sense of Theorem 2.1.

The rest of the paper is organized as follows. In Section 2 we give a brief intro-

duction to the theory of self-adjoint differential operator equations, highlighting the

main landmarks that show remarkable features these systems have, which are largely

used in what follows. This is based is the seminal work by Akhiezer and Glazman [1],

Naimark [5], Weidmann [7], and Zettl [8], [9] among others.

In Section 3 we obtain new existence results for self-adjoint differential opera-

tor equations, which play a crucial role in the prove of the Maximum Principle of

Theorem 1.1 given in Section 4.

2. SELF-ADJOINT DIFFERENTIAL OPERATOR EQUATIONS

The expression l in (1.2) generates various operators on H. Among these op-

erators we single out lie the minimal operator L0, the maximal operator L, and

self-adjoint operators L̃ lying between. The maximal operator L is defined by

D = D(L) : = {x ∈ H : x[0], x[1], . . . , x[2n−1] ∈ ACloc(I) and x[2n] ∈ H},

L(x) : = l(x), x ∈ D,

where x[i] is the ithquasi-derivative related to l and given by

x[i] : =
dix

dti
, i = 0, . . . , n − 1,

x[n] : = rn

dnx

dtn
,

x[n+i] : = rn−i

dn−ix

dtn−i
−

d

dt

(

x[n+i−1]
)

, i = 1, . . . , n.

Denote by ACloc(I) the set of real-valued functions, which are absolutely continuous

on every compact subinterval of I. Let L0 := L∗ with D0 := D(L0), where L∗ is the

adjoint of L uniquely defined due to the fact that D is dense in H. It is shown in [5]

that D0 ⊂ D, that D0 is dense in H, and that L∗
0 = L, which implies in turn that L0

is a symmetric closed operator.

Pick an arbitrary complex number ν with Im(ν) 6= 0 and denote the range of

(L0−νE) by Rν , where E is the identity operator on H. The orthogonal complement

of cl Rν in H is called the deficiency space of L0 corresponding to ν and is denoted by

Nν . It is shown in [5] that Nν is the eigenspace of L corresponding to the eigenvalue
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ν̄ and that D is decomposed as

D = D0 ∔ Nν ∔ Nν̄ .

It is also shown in [5] that the equality

Dim (Nν) = Dim (Nν̄)

holds, where the dimension of Nν , Dim (Nν), is called the deficiency index of L0 on I

and is denoted by d. We have in fact that 0 ≤ d ≤ 2n.

A self-adjoint realization of the the equation (1.2) in H is any linear bounded

operator L̃ satisfying the relationships

L0 ⊂ L̃ = L̃∗ ⊂ L.

These self-adjoint realizations are distinguished from one another by their domains.

Naimark [5] established the following decomposition

(2.1) D̃ = D0 ∔ span {φ1, φ2, . . . , φd}

of the domain of L̃ via an arbitrary orthonormal basis

φ1, φ2, . . . , φd

in the deficiency space Nν of L0. Observe that D is always a 2d−dimensional extension

of D0 and that D̃ is a d−dimensional extension of D0. It follows furthermore that D

is a d−dimensional extension of D̃.

The fundamental Glazman-Krein-Naimark (GKN) Theorem [2] characterizes these

domains as follows.

Theorem 2.1 (GKN characterization of domains). Let d ∈ N be the deficiency index

of L0. A linear submanifold D̃ of D is the domain of a self-adjoint extension L̃ of L0

with deficiency index d if and only if there exist functions x1, x2, . . . , xd in D satisfying

the following conditions:

(i) x1, x2, . . . , xd are linearly independent modulo D0;

(ii) [xi, xj]
b
a = 0, i, j = 1, 2, . . . , d;

(iii) D̃ = {x ∈ D : [x, xi]
b
a = 0, i = 1, 2, . . . , d}.

The bracket [·, ·]ba in Theorem 2.1 is called the Lagrange bracket and is defined for

any x, z ∈ D and t ∈ I by

(2.2) [x, z] (t) :=
n

∑

i=1

{

x[i−1](t)z[2n−i](t) − x[2n−i](t)z[i−1](t)
}

.
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It is worth mentioning that the limits in (2.2) as t → a+ and as t → b− exist and are

denoted, respectively, by

lim
t→a+

[x, z] (t) = [x, z] (a), lim
t→b−

[x, z] (t) = [x, z] (b).

We can also write the expression

[x, z]t1t0 = [x, z] (t1) − [x, z] (t0)

and observe the validity of the Lagrange identity

(2.3)

∫ b

a

l(x)zdt −

∫ b

a

xl(z)dt = [x, z]ba for any x, z ∈ D.

Recall that the operator Rν :=
(

L̃ − νE
)−1

is known as the resolvent operator

of L̃ with respect to the complex number ν. It follows from assumption (H4) that the

mapping L̃ is one-to-one and equals zero is a regular point of L̃. This implies that

the resolvent R0 = L̃−1 exists as a bounded operator defined on the whole space H.

Furthermore, it is an integral operator with the kernel K satisfying
∫

I

|K(τ, t)|2 w(τ)dτ < ∞ and

∫

I

|K(τ, t)|2 w(t)dt < ∞.

Thus for any function y ∈ D̃ we can be write

(2.4) y = R0f =

∫

I

K(τ, t)f(τ)w(τ)dτ a.e. t ∈ I,

where f is some element of H.

Next we define the projection operator P onto the range R0 of L0. First observe

from the domain decomposition (2.1) that

H = R̃ = R0 ⊕R⊥

0 ,

where R̃ is the range of L̃, and where R⊥
0 is the corresponding d−dimensional subspace

of H . Let {zi}d
i=1 be an orthonormal basis of R⊥

0 , and let {xi}d
i=1 ⊂ D̃ be such that

L̃xi = zi for i = 1, . . . , d. It is clear that {xi}d
i=1 is linearly independent modulo D0.

Finally, define P on H as

(2.5) P (y) := (E − Q)y, y ∈ H,

where Q is the projection onto R⊥
0 given by

(2.6) Q(y) =
d

∑

i=1

〈y, zi〉zi, y ∈ H.

By the fundamental Theorem 2.1, we may assume that

(2.7) D̃ = D0 ∔ span({x1, x2, . . . , xd}).
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Take further g ∈ H with L̃x = g. Then we have the equalities

L̃x = L̃x0 +
n

∑

i=1

αiL̃xi = L̃x0 +
n

∑

i=1

ξizi,

L̃x = g = P (g) + Q(g).

Both elements L̃x0 and P (g) belong to R0, while
∑n

i=1 αizi and Q(g) belong to R⊥
0 .

Since the sum in (2.1) is in fact a direct sum, it gives us therefore that

L̃x0 = P (g) and

n
∑

i=1

αizi = Q(g).

We summarize our discussions in the following lemma, which justifies the well-posedness

of the projection operator P that appears in the construction of the Hamilton-

Pontryagin function (1.6) used in our main result.

Lemma 2.2. Let L̃x = g with g ∈ H, and let

x = x0 +
n

∑

i=1

αixi with x0 ∈ D0.

Then we have the representation of x0 via the projection operator:

x0 = R0(P (g)).

3. EXISTENCE OF SOLUTIONS TO OPERATOR EQUATIONS

In this section we derive new results on the existence of solutions of the primal

operator equation (1.1) in the domain D̃ and of the adjoint equation (1.8) in the do-

main D. Besides of their own independent interest, the results obtained are important

for the proof of our main Theorem 1.1 on the Maximum Principle.

We begin with the following lemma, which can be also seen as a consequence of

the existence result from [6, Theorem 15]. Although throughout the paper all the

assumptions (H1)–(H7) are imposed to hold, the reader can see from the proofs that

only parts of these assumptions are used in the results below.

Lemma 3.1. Equation (1.1) has at least one solution in D̃ for any feasible control

u(·).

Proof. By assumption (H2) the proof is complete if we show that there exists a ρ > 0

such that the inequality

〈L̃(y) − Fu(y), y〉 > 0

holds for all y ∈ D̃ with ‖y‖ = ρ. To proceed, take y ∈ D̃ and then compute

〈L̃(y) − Fu(y), y〉 = 〈L̃(y), y〉 − 〈Fu(y) − Fu(0), y〉 − 〈Fu(0), y〉.
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Using assumption (H4) on L̃, assumption (H3) on Fu, and the classical Cauchy-

Schwartz inequality give us

〈L̃(y) − Fu(y), y〉 ≥ γ‖y‖2 − η‖y‖2 − ‖Fu(0)‖‖y‖

= (γ − η)‖y‖2 − ‖Fu(0)‖‖y‖.

Now choosing ρ > ‖Fu(0)‖/(γ − η) and taking into account that γ > η, we get

〈L̃(y) − Fu(y), y〉 > 0 for all y ∈ D̃,

which completes the proof of the lemma.

The result of Lemma 3.1 can be treated as the justification of controllability of

the primal differential operator system (1.1) with measurable controls.

The next lemma plays a crucial role in justifying the existence of solutions to

boundary value problem for the adjoint system (1.8), which is the main result of this

section; see Theorem 3.3 below.

Lemma 3.2. Let h1 ∈ H be such that

〈h1z, z〉 ≤ η‖z‖2 for all z ∈ H,

where η is taken from assumption (H3). Let d ∈ N be the deficiency index of L0,

and let the functions x1, . . . , xd are taken from (2.7). Then for any h2 ∈ H and for

arbitrary real numbers αi, i = 1, . . . , d, the equation

(3.1)
(Lx)(t) = h1(t)x(t) + h2(t), t ∈ (a, b)

[x, xi]
b

a = αi, i = 1, . . . , d

}

admits a solution in the domain D̃.

Proof. Let {ξ1, . . . , ξd} be a linearly independent set in D modulo D̃. Construct the

following quadratic matrix

A :=













[ξ1, x1]
b

a [ξ2, x1]
b

a . . . [ξd, x1]
b

a

[ξ1, x2]
b

a [ξ2, x2]
b

a . . . [ξd, x2]
b

a
...

...
. . .

...

[ξ1, xd]
b

a [ξ2, xd]
b

a . . . [ξd, xd]
b

a













and check that this matrix is invertible. Indeed, otherwise there exists a nonzero

vector u such that Au = 0. This gives

d
∑

j=1

(

[ξj, xi]
b

a

)d

i=1
uj =





[

d
∑

j=1

ujξj, xi

]b

a





d

i=1

= 0,
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and thus we arrive at the equality
[

d
∑

j=1

ujξj, xi

]b

a

= 0 for all i = 1, . . . , d

implying by Theorem 2.1 that
∑d

j=1 ujξj ∈ D̃. The latter contradicts the fact that

the functions ξj, j = 1, . . . , d, are linearly independent modulo D̃.

Using the invertibility of A−1, define β = (β1, . . . , βd) by

β := A−1α,

with α = (α1, . . . , αd)
T and choose x̃ ∈ D̃ to be a solution of

(3.2) L̃x̃ = h1x̃ +

d
∑

i=1

βi (h1ξi − Lξi) + h2.

Then we see that the element

x := x̃ +

d
∑

i=1

βiξi

is certainly a solution to (3.1). It remains to show that equation (3.2) admits a

solution in D̃. To proceed, we define the function

F (z) := h1z + h3 for any z ∈ D̃,

where h3 :=
∑d

i=1 βi (h1xi − Lxi)+h2. The function F is obviously weakly continuous,

and furthermore we have

〈L̃z − F (z), z〉 = 〈L̃z − h1z − h3, z〉 = 〈L̃z, z〉 − 〈h1z, z〉 − 〈h3, z〉

> γ‖z‖2 − η‖z‖2 − ‖h3‖‖z‖ = (γ − η) ‖z‖2 − ‖h3‖‖z‖.

This ensures the existence of a solution to (3.1) in D̃ by [6, Theorem 15] with

ρ >
‖h3‖

γ − η
,

which completes the proof of this theorem.

Now we are ready to establish the existence of solutions to the adjoint system

(1.8), (1.9) in the required domain D.

Theorem 3.3 (existence of solutions to the adjoint system). The adjoint equation

(1.8) with the boundary conditions (1.9) admits a solution in D.

Proof. Let r ∈ R, and let Ω be a neighborhood of x̄ from (H1). Taken any x ∈ O and

observe from (H3) that

〈Fū(x̄ + rx) − Fū(x̄), rx〉 ≤ ηr2‖x‖2.
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Dividing by r2 both sides of this inequality and taking the limit as r → 0 give us
〈

lim
r→0

Fū(x̄ + rx) − Fū(x)

r
, x

〉

≤ η‖x‖2,

which yields, by the Fréchet differentiability of Fu at x̄, that

〈F ′

ū(x̄)x, x〉 ≤ η‖x‖2.

The latter estimate allows us to complete the proof of the theorem by putting there

h1 := F ′

ū(x̄) and h2 := P (φ(x(c))K(c, ·))F ′

ū(x̄)

and applying finally Lemma 3.2.

4. PROOF OF THE MAXIMUM PRINCIPLE

This section is devoted to the proof of our main result on the Maximum Principle

for optimal solutions to problem (1.3) under the standing assumption formulated in

Theorem 1.1. The proof is based on the results on the primal and adjoint opera-

tor equation presented in the previous sections and the optimal control techniques

developed below. We split the proof into several steps.

Given two feasible controls ū(t), u(t) ∈ U a.e. and taking the corresponding

solutions x̄(·), x(·) of system (1.1) defined by (2.4), we write the increments

∆ū(t) : = u(t) − ū(t),

∆x̄(t) : = x(t) − x̄(t),

∆J [ū] : = φ(x(c)) − φ(x̄(c)).

The first lemma in this section justifies the increment formula for the cost functional

J needed in what follows.

Lemma 4.1. In the notation above we have the increment formula

∆J [ū] = −〈p + P (Ǩc(·)), ∆uF
′
ū(x̄)∆x̄〉 − 〈p + P (Ǩc(·)), ∆uFū(x̄)〉

+o(‖∆x̄‖) + o(|∆x̄(c)|),
(4.1)

where K is the kernel of the resolvent operator R0, Ǩc := φo(c)K(c, ·), P is the

projection onto the range of L0 defined in (2.5), and

∆uFū(x̄) := Fu(x̄) − Fū(x̄).

Proof. By (H6), the cost function φ is Fréchet differentiable at x̄(c); thus we have

(4.2) ∆J [ū] = φ(x(c)) − φ(x̄(c)) = φ′

0(x̄(c))∆x̄(c) + o(|∆x̄(c)|).
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If xi ∈ D, i = 1, . . . , d, are the functions that determine L̃ by Theorem 2.1), then

every x ∈ D̃ can be written as

x = x0 +

d
∑

i=1

βivi

with some x0 in D0. For any arcs x ∈ D̃ and any p ∈ D satisfy the primal and adjoint

systems (these solutions exist due to Lemma 3.1 and Theorem 3.3, respectively) we

have

[p, x]ba = [p, x0]
b
a +

d
∑

i=1

βi[p, xi]
b
a

= φ′

0(x̄(c))x0(c) − φ′

0(x̄(c))

[

x0(c) +

d
∑

i=1

βixi(c)

]

= φ′

0(x̄(c))x0(c) − φ′

0(x̄(c))x(c).

This gives there the representation

(4.3) φ′

0(x̄(c))∆x̄(c) = φ′

0(x̄(c))∆x̄0(c) − [p, ∆x̄]ba.

Now using the Lagrange identity (2.3) and elementary transformations implies that

[p, ∆x̄]ba = 〈Lp, ∆x̄〉 − 〈p, L̃∆x̄〉

= 〈Lp, ∆x̄〉 − 〈p, Fu(x) − Fū(x̄)〉

= 〈Lp, ∆x̄〉 − 〈p, Fu(x) − Fū(x)〉 − 〈p, Fū(x) − Fū(x̄)〉

= 〈Lp, ∆x̄〉 − 〈p, ∆uFū(x)〉 − 〈p, F ′

ū(x̄)∆x̄〉 + o(‖∆x̄‖)

= 〈Lp, ∆x̄〉 − 〈p, F ′

ū(x̄)∆x̄〉 − 〈p, ∆uFū(x) − ∆uFū(x̄)〉

− 〈p, ∆uFū(x̄)〉 + o(‖∆x̄‖)

= 〈Lp, ∆x̄〉 − 〈p, F ′

ū(x̄)∆x̄〉 − 〈p, ∆uFū(x̄)〉 − 〈p, ∆uF
′

ū(x̄)∆x̄〉 + o(‖∆x̄‖)

= 〈(L − F ′

ū(x̄))p, ∆x̄〉 − 〈p, ∆uFū(x̄)〉 − 〈p, ∆uF
′

ū(x̄)∆x̄〉 + o(‖∆x̄‖).

Employing further the solution representation (2.4), we get

φ′

0(x̄(c))∆x̄0(c) = φ′

0(x̄(c))(x0(c) − x̄0(c))

= φ′

0(x̄(c))

[∫ b

a

Kc(s)P (Fu(x) − Fū(x̄))(s)w(s)ds

]

=

∫ b

a

Ǩc(s)P (Fu(x) − Fū(x) + Fū(x) − Fū(x̄))(s)w(s)ds

=

∫ b

a

Ǩc(s)P (∆uFū(x) + F ′

ū(x̄)∆x̄)(s)w(s)ds + o(‖∆x̄‖)

=

∫ b

a

Ǩc(s)P (F ′

ū(x̄)∆x̄ + ∆uFū(x) − ∆uFū(x̄)
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+ ∆uFū(x̄))(s)w(s)ds + o(‖∆x̄‖)

=

∫ b

a

Ǩc(s)P (F ′

ū(x̄)∆x̄ + ∆uF
′

ū(x̄)∆x̄ + ∆uFū(x̄))(s)w(s)ds + o(‖∆x̄‖)

= 〈Ǩc(·), P (F ′ū(x̄)∆x̄)〉

+ 〈Ǩc(·), P (∆uF
′

ū(x̄)∆x̄)〉 + 〈Ǩc(·), P (∆uFū(x̄))〉 + o(‖∆x̄‖)

= 〈F ′

ū(x̄)P (Ǩc(·)), ∆x̄)〉

+ 〈P (Ǩc(·)), ∆uF
′

ū(x̄)∆x̄〉 + 〈P (Ǩc(·)), ∆uFū(x̄)〉 + o(‖∆x̄‖).

Substituting the obtained expressions for [p, ∆x̄]ba and φ′
0(x̄(c))∆x̄0(c) into (4.3) yields

φ′

0(x̄(c))∆x̄(c) = 〈F ′

ū(x̄)P (Ǩc(·)), ∆x̄)〉

+ 〈P (Ǩc(·)), ∆uF
′

ū(x̄)∆x̄〉 + 〈P (Ǩc(·)), ∆uFū(x̄)〉

− 〈(L − F ′

ū(x̄))p, ∆x̄〉 + 〈p, ∆uFū(x̄)〉 + 〈p, ∆uF
′

ū(x̄)∆x̄〉 + o(‖∆x̄‖)

= 〈−Lp + F ′

ū(x̄)p + F ′

ū(x̄)P (Ǩc(·)), ∆x̄)〉 + 〈p + P (Ǩc(·)), ∆uF
′

ū(x̄)∆x̄〉

+ 〈p + P (Ǩc(·)), ∆uFū(x̄)〉 + o(‖∆x̄‖)

Taking finally formula (4.2) into account, we arrive at

∆J [ū] = 〈−Lp + F ′
ū(x̄)p + F ′

ū(x̄)P (Ǩc(·)), ∆x̄)〉 + 〈p + P (Ǩc(·)), ∆uF
′
ū(x̄)∆x̄〉

+〈p + P (Ǩc(·)), ∆uFū(x̄)〉 + o(‖∆x̄‖) + o(|∆x̄(c)|)

and thus complete the proof of the lemma.

Note that the derivation of the increment formula in Lemma 4.1 is different from

the usual way know in control theory (compare, i.e., [4, Lemma 6.43]) in the sense that

we take advantage of the well-developed theory of the differential operator equations

under consideration. The next two lemmas are designed to estimate the trajectory

increments in both functional ∆x̄ and pointwise ∆x̄(c) form by building a single

needle variation u(·) of the reference control ū(·).

To proceed, fix a set Iǫ ⊂ I of finite measure ǫ, take a measurable mapping v

such that v(t) ∈ U a.e. t ∈ Iǫ, and define u(t), t ∈ I, as follows:

(4.4) u(t) =

{

v(t), t ∈ Iǫ,

ū(t), t 6∈ Iǫ.

Lemma 4.2. Let ∆x̄ = ∆x̄(·) be the increment of x̄(·) corresponding to the needle

variation (4.4) of ū(·). Then we have the functional trajectory increment estimate

(4.5) ‖∆x̄‖ = o(ǫ).

Proof. The semi-boundedness assumption of the operator L̃ in (H4) and the mono-

tonicity property of Fu in (H3) lead us to the relationships

γ‖∆x̄‖2 ≤ 〈L̃∆x̄, ∆x̄〉
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= 〈Fu(x) − Fū(x̄), ∆x̄〉

= 〈Fu(x) − Fu(x̄) + Fu(x̄) − Fū(x̄), ∆x̄〉

= 〈Fu(x) − Fu(x̄), ∆x̄〉 + 〈∆uFū(x̄), ∆x̄〉

≤ η‖∆x̄‖2 + ‖∆uFū(x̄)‖‖∆x̄‖.

Employing further assumption (H5) ensures that

(γ − η)‖∆x̄‖ ≤ ‖∆uFū(x̄)‖ = o(ǫ),

and thus we arrive at (4.5).

Lemma 4.3. The following pointwise trajectory increment estimate holds:

|∆x̄(c)| = o(ǫ).

Proof. By using the pointwise representation of the trajectory (1.4) corresponding to

the needle variation ū(·), we have

|∆x̄(c)| = |x(c) − x̄(c)|

=

∣

∣

∣

∣

∫

I

Kc(s)(Fu(x) − Fū(x̄))(s)w(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

Kc(s)(∆uFu(x) − ∆xFū(x̄))(s)w(s)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Iǫ

Kc(s)(∆uFu(x))(s)w(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

Kc(s)(∆xFū(x̄))(s)w(s)ds

∣

∣

∣

∣

.

The second term of the above inequality can be split into
∣

∣

∣

∣

∫

I

Kc(s)(∆xFū(x̄))(s)w(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

Kc(s)F
′

ū(x̄)(s)∆x̄(s)w(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

Kc(s)o(ǫ)w(s)ds

∣

∣

∣

∣

.

Using further the assumed continuity of F ′
u(x̄) and Lemma 4.2 ensure the estimates

∣

∣

∣

∣

∫

I

Kc(s)F
′

ū(x̄)(s)∆x̄(s)w(s)ds

∣

∣

∣

∣

≤ ‖Kc‖‖F
′

u(x̄)∆x̄‖ ≤ ‖Kc‖‖F
′

u(x̄)‖‖∆x̄‖ = o(ǫ),

∣

∣

∣

∣

∫

I

Kc(s)o(ǫ)w(s)ds

∣

∣

∣

∣

= o(ǫ),

which show in turn that

|∆x̄(c)| = o(ǫ).

and thus justify our claim.

Lemmas 4.2 and 4.3 enable us to rewrite the increment formula (4.1) of Lemma 4.1

as

(4.6) ∆J [ū] = −〈p + P (Ǩc(·)), ∆uFū(x̄)〉 − 〈p + P (Ǩc(·)), ∆uF
′

ū(x̄)∆x̄〉 + o(ǫ).
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Now all the ingredients required for the justification of the Maximum Principle

in Theorem 1.1 (namely, Lemmas 4.1, 4.2, and 4.3) are ready, and we can proceed

with the completion of the proof.

Completion of the proof of the Maximum Principle. Let (ū, x̄) be an optimal

solution to problem (1.3), and let p be the corresponding solution to the adjoint

system (1.8) satisfying the boundary/transversality conditions (1.9). Let us show

that the maximum condition (1.7) is also satisfied for (ū, x̄). To proceed, we argue

by contradiction and suppose that there exists a set T ⊂ I of positive measure such

that

H(x̄(t), p(t), ū(t) < sup
u∈U

H(x̄(t), p(t), u(t)) > 0, t ∈ T.

Following the proof of [4, Theorem 6.37] by using the theory of measurable selections

and taking into account assumption (H7), we conclude that there is a measurable

mapping v : T → U such that

(4.7) ∆vH(t) := H(x̄(t), p(t), v(t), t) − H(x̄, p(t), ū(t), t) > 0, t ∈ T.

Now let T0 ⊂ I be a set of Lebesgue regular points of the function H on I. It is well

known that the set T0 is of full measure on I. Taking any τ ∈ T0 and ǫ > 0, consider

a needle variation of type (4.4) built by

u(t) :=

{

v(t), t ∈ Iǫ := [τ, τ + ǫ) ∩ T0,

ū(t), t ∈ I \ Iǫ.

The increment formula for the cost functional (4.6) corresponding to ū and u gives

us

∆J [ū] = −
∫ τ+ǫ

τ
∆vH(t)w(t)dt +

∫ τ+ǫ

τ
∆vF

′
ū(x̄(t))∆x̄(t)w(t)dt. + o(ǫ)

Assumption (H1) and Lemma 4.2 ensure that
∫ τ+ǫ

τ

∆vF
′

ū(x̄(t))∆x̄(t)w(t)dt = o(ǫ)

due to the estimate
∫ τ+ǫ

τ

∆vF
′

ū(x̄(t))∆x̄(t)w(t)dt ≤ ‖∆vF
′

ū(x̄)‖∆x̄‖.

Since τ is a Lebesgue regular point of ∆vH , we have

−

∫ τ+ǫ

τ

∆vH(t)w(t)dt = −ǫ [∆vH(τ)] + o(ǫ),

which implies therefore that

∆J [ū] = −ǫ [∆vH(τ)] + o(ǫ).
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This shows by (4.7) that ∆J [ū] < 0 along the above needle variation u(·) for all ǫ > 0

sufficiently small, which contradicts the optimality of the reference control ū(·) for

problem (1.3) and thus completes the proof of Theorem 1.1. 2
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