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ABSTRACT. We deal with a class of abstract second order evolution inclusions involving a non-

linear history-dependent operator. For this class we prove an existence and uniqueness result. The

proof is based on arguments of evolution inclusions with monotone operators and the Banach fixed

point theorem. We apply this result to prove the solvability of a class of second order hemivariational

inequalities with nonlinear memory term and, under an additional assumption, its unique solvability.

AMS (MOS) Subject Classification. 47J20, 49J40, 74M15, 74M10, 74H20

1. INTRODUCTION

In this paper we study a class of evolution inclusions of second order in Banach

spaces. Our goal is to provide a new result of the existence and uniqueness of solutions.

The main feature of the inclusion under consideration is the presence of a memory

term (sometimes called a history-dependent operator) which allow for the applications

to hemivariational inequalities. The novelty consists in the fact that the memory term

in the inclusion is nonlinear.

The study is motivated by mechanical problems with multivalued boundary con-

tact conditions which can be described by the Clarke generalized gradients of non-

convex and nonsmooth energy functionals. These mechanical problems can be for-

mulated as hemivariational inequalities. They were introduced by Panagiotopoulos

in the early eighties (cf. Panagiotopoulos [16, 17]) as generalizations of variational

inequalities. For motivation and mathematical results on hemivariational inequali-

ties we refer to Panagiotopoulos [16, 17], Naniewicz and Panagiotopoulos [15] and

Migorski et al. [14]. We remark that today the theory of hemivariational inequalities

plays an important role in the analysis of nonlinear boundary value problems arising

in mechanics, physics and engineering sciences. For this reason the mathematical lit-

erature in this field is extensive, see for instance [2, 3, 15, 17, 9, 14] and the references

therein. A part of the progress in hemivariational inequalities was motivated by new

models involving nonconvex energy functions arising in contact mechanics.
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The present paper represents a continuation and an extension of [11] where an

abstract evolution inclusion of second order involving a linear Volterra-type integral

term was considered. The extension and introduction of a nonlinear memory term

is essential since in the applications to problems of mechanics one can study non-

linear constitutive laws which can be introduced to model the nonlinear viscoelastic

materials.

2. PRELIMINARIES

In this paper we use standard notation for the Lebesque and Sobolev spaces of

functions defined on a time interval [0, T ], T > 0 with values in a Banach space E

with a norm ‖ · ‖E . The dual space to E is denoted by E∗ and 〈·, ·〉E∗×E is the duality

pairing of E and E∗. For a set U ⊂ E we define ‖U‖E = sup{‖u‖E | u ∈ U}. The

notation L(E, F ) stands for the space of linear bounded operators defined on the

Banach space E with values in the Banach space F .

Let Ω ⊂ R
d be a bounded domain with a Lipschitz continuous boundary Γ and

let ΓC be a measurable part of Γ such that ΓC ⊆ Γ. Let V be a closed subspace of

H1(Ω; Rd), Z = Hδ(Ω; Rd) where δ ∈ (1/2, 1) and let H = L2(Ω; Rd). We denote by

〈·, ·〉 the duality pairing of V and V ∗, by ‖·‖, ‖·‖H and ‖·‖V ∗ the norms on the spaces

V , H and V ∗, respectively. It is well known that V ⊂ Z ⊂ H ⊂ Z∗ ⊂ V ∗ continuously

and V ⊂ Z compactly. We introduce the trace operator γ : Z → L2(Γ; Rd) and its

adjoint γ∗ : L2(Γ; R d) → Z∗. We also consider the spaces

V = L2(0, T ; V ), Z = L2(0, T ; Z), W = {v ∈ V | v′ ∈ V∗},

where v′ denotes the time derivative in the sense of vector-valued distributions.

Endowed with the norm ‖v‖W = ‖v‖V + ‖v′‖V∗, the space W becomes a sepa-

rable, reflexive Banach space. We have W ⊂ V ⊂ Z ⊂ Ĥ ⊂ Z∗ ⊂ V∗, where

Ĥ = L2(0, T ; H), Z∗ = L2(0, T ; Z∗) and V∗ = L2(0, T ; V ∗). Finally, for t ∈ [0, T ],

we denote by C(0, t; E) the space of continuous functions from [0, t] to E, with the

norm ‖v‖C(0,t;E) = maxs∈[0,t] ‖v(s)‖E. It is well known (cf. e.g. [21, 3]) that the space

W is embedded continuously in C(0, T ; H), i.e. every element of W, after a possi-

ble modification on a set of measure zero, has a unique continuous representative in

C(0, T ; H).

Let h : E → R be a locally Lipschitz function. Then the generalized directional

derivative of h at x ∈ E in the direction v ∈ E, denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)

λ
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and the generalized gradient of h at x, denoted by ∂h(x), is a subset of a dual space

E∗ given by

∂h(x) = {ζ ∈ E∗ | h0(x; v) ≥ 〈ζ, v〉E∗×E for all v ∈ E}.

A locally Lipschitz function h is called regular (in the sense of Clarke) at x ∈ E if for

all v ∈ E the one-sided directional derivative h′(x; v) exists and satisfies h0(x; v) =

h′(x; v) for all v ∈ E. For properties of the generalized directional derivative and the

generalized gradient we refer to [1, 2, 14].

The following properties related to the generalized directional derivative and the

generalized gradient can be found in Theorem 2.3.10 of [1].

Proposition 2.1. Let X and Y be Banach spaces, A ∈ L(Y, X) and let f : X → R

be a locally Lipschitz function. Then

(i) (f ◦ A)0(x; z) ≤ f 0(Ax; Az) for x, z ∈ Y ,

(ii) ∂(f ◦ A)(x) ⊆ A∗∂f(Ax) for x ∈ Y ,

where A∗ ∈ L(X∗, Y ∗) denotes the adjoint operator to A. If in addition either f or

−f is regular, then (i) and (ii) are replaced by the corresponding equalities.

3. EVOLUTION INCLUSION

In this section we state and prove a result on the existence and uniqueness of the

solution to an abstract second order evolution inclusion.

We consider the following evolution inclusion of second order of the following

form

(3.1)






find u ∈ V with u′ ∈ W such that

u′′(t) + A(t, u′(t)) + Bu(t) + Su(t) + γ ∗ ∂J(t, γu′(t)) ∋ f(t)

a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

In the study of problem (3.1) we need the following definition.

Definition 3.1. A function u ∈ V is called a solution of (3.1) if and only if u′ ∈ W
and there exists ζ ∈ Z∗ such that





u′′(t) + A(t, u′(t)) + Bu(t) + Su(t) + ζ(t) = f(t) a.e. t ∈ (0, T ),

ζ(t) ∈ γ ∗ (∂J(t, γu′(t))) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

We consider the following hypotheses on the data.

H(A) : A : (0, T ) × V → V ∗ is such that
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(i) A(·, v) is measurable on (0, T ) for all v ∈ V ;

(ii) A(t, ·) is strongly monotone i.e. 〈A(t, u) − A(t, v), u − v〉 ≥ m1‖u − v‖2 for all

u, v ∈ V , a.e. t ∈ (0, T ) with m1 > 0;

(iii) ||A(t, v)||V ∗ ≤ a(t) + b||v|| for all v ∈ V , a.e. t ∈ (0, T ) with a ∈ L2(0, T ), a ≥ 0,

b > 0;

(iv) 〈A(t, v), v〉 ≥ α||v||2 for all v ∈ V , a.e. t ∈ (0, T ) with α > 0.

H(B) : B : V → V ∗ is a bounded, linear, monotone and symmetric operator, i.e.

B ∈ L(V, V ∗), 〈Bv, v〉 ≥ 0 for all v ∈ V , 〈Bv, w〉 = 〈Bw, v〉 for all v, w ∈ V .

H(S) : S : V → V∗ is such that

‖Su1(t) − Su2(t)‖V ∗ ≤ LS

∫ t

0

‖u1(s) − u2(s)‖V ds

for all u1, u2 ∈ V, a.e. t ∈ (0, T ) with LS > 0.

H(J) : J : (0, T ) × L2(ΓC ; R d) → R is a functional such that

(i) J(·, v) is measurable for all v ∈ L2(ΓC ; R d) and J(·, 0) ∈ L1(0, T );

(ii) J(t, ·) is locally Lipschitz for a.e. t ∈ (0, T );

(iii) ‖∂J(t, v)‖L2(ΓC ;R d) ≤ c0

(
1 + ‖v‖L2(ΓC ;R d)

)
for all v ∈ L2(ΓC ; R d), a.e. t ∈ (0, T )

with c0 > 0;

(iv) J0(t, v;−v) ≤ d0

(
1 + ‖v‖L2(ΓC ;R d)

)
for all v ∈ L2(ΓC ; R d), a.e. t ∈ (0, T ) with

d0 ≥ 0;

(v) (z1 − z2, w1 − w2)L2(ΓC ;R d) ≥ −m2‖w1 − w2‖2
L2(ΓC ;R d)

for all zi ∈ ∂J(t, wi), wi ∈
L2(ΓC ; R d), i = 1, 2, a.e. t ∈ (0, T ) with m2 ≥ 0.

(H0) : f ∈ V∗, u0 ∈ V , v0 ∈ H .

(H1) : m1 > m2 ‖γ‖2, where ‖γ‖ = ‖γ‖L(Z,L2(Γ;Rd)).

We note that the condition stated in H(S) is satisfied for the operator S : V → V∗

defined by

(3.2) (Sv)(t) = R
(
t,

∫ t

0

v(s) ds + v0

)
for all v ∈ V, a.e. t ∈ (0, T ),

where R : (0, T ) × V → V ∗ is such that R(·, v) is measurable on (0, T ) for all v ∈ V ,

R(t, ·) is a Lipschitz continuous operator for a.e. t ∈ (0, T ) and v0 ∈ V . Moreover,

H(S) holds for the Volterra operator S : V → V∗ given by

(3.3) (Sv)(t) =

∫ t

0

C(t − s) v(s) ds for all v ∈ V, a.e. t ∈ (0, T ),

where C ∈ L∞(0, T ;L(V, V ∗)). Since for the operators (3.2) and (3.3), the current

value (Sv)(t) at t ∈ (0, T ) depends on the history of the values of v at the moments

s ∈ (0, t), we refer to the operators of the form (3.2) or (3.3) as history–dependent

operators. In what follows, we extend this definition to all the operators S : V → V∗

which satisfy condition H(S).
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Furthermore, let us observe that if the functional J is such that J(t, ·) is convex

for a.e. t ∈ (0, T ), then its Clarke subdifferential coincides with the subdifferential in

the sense of convex analysis, in this case the hypotheses H(J)(v) holds with m2 = 0,

and, in consequence, (H1) is trivially satisfied.

The result on the problem (3.1) is given by the following existence and uniqueness

theorem.

Theorem 3.2. Under hypotheses H(A), H(B), H(S), H(J), (H0) and (H1), the

problem (3.1) admits a unique solution.

Proof. The proof consists of two steps. First, given η ∈ V∗, we consider the following

evolution inclusion of second order without memory term

(3.4)






find uη ∈ V with u′
η ∈ W such that

u′′
η(t) + A(t, u′

η(t)) + Buη(t) + γ ∗ ∂J(t, γu′
η(t)) ∋ f(t) − η(t)

a.e. t ∈ (0, T )

uη(0) = u0, u′
η(0) = v0.

Applying Proposition 15 in [8], it follows that the problem (3.4) has a unique solution.

Furthermore, by Proposition 9 of [8], the unique solution uη ∈ V satisfies the estimate

(3.5) ‖uη‖C(0,T ;V ) + ‖u′
η‖W ≤ c̄ (1 + ‖u0‖ + ‖u1‖H + ‖f‖V∗ + ‖η‖V∗)

with a positive constant c̄.

In the second step we use a fixed point theorem. To this end, we consider the

operator Λ: V∗ → V∗ defined by

(3.6) (Λη)(t) = (Suη)(t) for η ∈ V∗, t ∈ (0, T ),

where uη ∈ V is the unique solution to (3.4). We check that the operator Λ is well

defined and it has a unique fixed point. Indeed, for η ∈ V∗, by using H(S), we have

‖(Suη)(t)‖V ∗ ≤ ‖(Suη)(t) − (S0)(t)‖V ∗ + ‖(S0)(t)‖V ∗ ≤

≤ LS

∫ t

0

‖uη(s)‖V ds + ‖(S0)(t)‖V ∗ ≤

≤ LS

√
T‖uη‖L2(0,t;V ) + ‖(S0)(t)‖V ∗

for a.e. t ∈ (0, T ). Hence

‖Λη‖2
V∗ =

∫ T

0

‖(Λη)(t)‖2
V ∗ dt =

∫ T

0

‖(Suη)(t)‖2
V ∗ dt ≤

≤ 2

∫ T

0

(
L2
ST‖uη‖2

L2(0,t;V ) + ‖(S0)(t)‖2
V ∗

)
dt ≤

≤ c1(1 + ‖uη‖2
V)

with c1 > 0. It is clear from (3.5) that the operator Λ takes vales in V∗.
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In order to prove that the operator Λ has a unique fixed point, let η1, η2 ∈ V∗,

and let u1 = uη1
and u2 = uη2

be the corresponding solutions to (3.4) such that ui ∈ V
and u′

i ∈ W for i = 1, 2. Thus, we have

(3.7) u′′
1(t) + A(t, u′

1(t)) + Bu1(t) + ζ1(t) = f(t) − η1(t) a.e. t ∈ (0, T ),

(3.8) u′′
2(t) + A(t, u′

2(t)) + Bu2(t) + ζ2(t) = f(t) − η2(t) a.e. t ∈ (0, T ),

(3.9) ζ1(t) ∈ γ ∗∂J(t, γu′
1(t)), ζ2(t) ∈ γ ∗∂J(t, γu′

2(t)) a.e. t ∈ (0, T ),

(3.10) u1(0) = u2(0) = u0, u′
1(0) = u′

2(0) = v0.

Subtracting (3.8) from (3.7), multiplying the result by u′
1(t) − u′

2(t) and integrating

by parts with the initial conditions (3.10) we obtain, for all t ∈ [0, T ]

(3.11)
1

2
‖u′

1(t) − u′
2(t)‖2

H +

∫ t

0

〈A(s, u′
1(s)) − A(s, u′

2(s)), u
′
1(s) − u′

2(s)〉 ds+

+

∫ t

0

〈Bu1(s) − Bu2(s), u
′
1(s) − u′

2(s)〉 ds +

∫ t

0

〈ζ1(s) − ζ2(s), u
′
1(s) − u′

2(s)〉 ds =

=

∫ t

0

〈η2(s) − η1(s), u
′
1(s) − u′

2(s)〉 ds.

Next, from (3.9) we infer that ζi(t) = γ ∗zi(t) with zi(t) ∈ ∂J(t, γu′
i(t)) for a.e.

t ∈ (0, T ) and i = 1, 2. Therefore, by using H(J)(v), we have
∫ t

0

〈ζ1(s) − ζ2(s), u
′
1(s) − u′

2(s)〉 ds =

=

∫ t

0

(z1(s) − z2(s), γu′
1(s) − γu′

2(s))L2(ΓC ;Rd) ds ≥

≥ −m2

∫ t

0

‖γu′
1(s) − γu′

2(s)‖2
L2(ΓC ;Rd) ds ≥ −m2 ‖γ‖2

∫ t

0

‖u′
1(s) − u′

2(s)‖2 ds

for all t ∈ [0, T ]. Employing in (3.11) the previous inequality, H(A)(ii) and the

following relation
∫ t

0

〈Bu1(s) − Bu2(s), u
′
1(s) − u′

2(s)〉 ds =

=
1

2

∫ t

0

d

ds
〈B(u1(s) − u2(s)), u1(s) − u2(s)〉 ds =

=
1

2
〈B(u1(t) − u2(t)), u1(t) − u2(t)〉 ≥ 0

for all t ∈ [0, T ], we get

1

2
‖u′

1(t) − u′
2(t)‖2

H + c

∫ t

0

‖u′
1(s) − u′

2(s)‖2 ds ≤

≤
∫ t

0

‖η1(s) − η1(s)‖V ∗‖u′
1(s) − u′

2(s)‖ ds
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for all t ∈ [0, T ] with c = m1 − m2‖γ‖2 > 0. Hence

c ‖u′
1 − u′

2‖2
L2(0,t;V ) ≤ ‖η1 − η1‖L2(0,t;V ∗) ‖u′

1 − u′
2‖L2(0,t;V )

for all t ∈ [0, T ], which implies that

(3.12) ‖u′
1 − u′

2‖L2(0,t;V ) ≤
1

c
‖η1 − η1‖L2(0,t;V ∗)

for all t ∈ [0, T ]. Since u1, u2 ∈ H1(0, T ; V ) and V is reflexive, by Theorem 3.4.11

and Remark 3.4.9 of [3], we know that u1, u2 ∈ AC1,2(0, T ; V ) and, using (3.10), we

have

ui(t) = u0 +

∫ t

0

u′
i(s) ds for i = 1, 2.

Thus

(3.13) ‖u1(t) − u2(t)‖ ≤
∫ t

0

‖u′
1(s) − u′

2(s)‖ ds ≤
√

T‖u′
1 − u′

2‖L2(0,t;V )

for all t ∈ [0, T ]. From (3.12) and (3.13) we obtain

(3.14) ‖u1(t) − u2(t)‖ ≤
√

T

c
‖η1 − η2‖L2(0,t;V ∗) for all t ∈ [0, T ].

On the other hand, from H(S) and (3.13), we deduce

‖(Λη1)(t) − (Λη2)(t)‖2
V ∗ ≤ L2

S

(∫ t

0

‖u1(s) − u2(s)‖V ∗ ds

)2

≤ L2
ST 2

c2
t ‖η1 − η2‖L2(0,t;V ∗)

and

‖(Λ2η1)(t) − (Λ2η2)(t)‖2
V ∗ = ‖Λ(Λη1)(t) − Λ(Λη2)(t)‖2

V ∗

≤ L2
ST 2

c2
t

∫ t

0

‖(Λη1)(s) − (Λη2)(s)‖2
V ∗ ds

≤ L4
ST 5

c4

t2

2
‖η1 − η2‖2

V∗

for all t ∈ [0, T ]. Reiterating this inequality k times, we obtain

‖(Λkη1)(t) − (Λkη2)(t)‖2
V ∗ ≤ L2k

S T 2k+1

c2k

tk

k!
‖η1 − η2‖2

V∗

≤ L2k
S T 3k+1

c2k

1

k!
‖η1 − η2‖2

V∗

for all t ∈ [0, T ]. Hence

‖Λkη1 − Λkη2‖V∗ ≤ Lk
ST

3k

2
+1

ck

1√
k!
‖η1 − η2‖2

V∗.

Therefore, we deduce that for k sufficiently large, the operator Λk is a contraction

on V∗. Hence, there exists a unique η∗ ∈ V∗ such that η∗ = Λkη∗. It is clear that

Λk(Λη∗) = Λ(Λkη∗) = Λη∗, so Λη∗ is also a fixed point of Λk. By the uniqueness of

fixed point of Λk, we have η∗ = Λη∗. Thus η∗ ∈ V∗ is the unique fixed point of the
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operator Λ. Finally, it is clear that uη∗ is a solution to (3.1), which concludes the

existence part of the theorem.

The uniqueness part is a consequence of the fixed point of Λ. Namely, let u ∈ V∗

with u′ ∈ W be a solution to (3.1) and define the element η ∈ V∗ by

η(t) = (Su)(t) for all t ∈ [0, T ].

It follows that u is the solution to the problem (3.4) and by the uniqueness of solutions

to (3.4), we obtain u = uη. This implies Λη = η and by the uniqueness of the fixed

point of Λ we obtain η = η∗, so u = uη∗ , which concludes the proof.

We conclude this section with a remark that existence results on evolution inclu-

sions of the form (3.1) with the multivalued Clarke subdifferential operator depending

on both u and its derivative u′ can be found in [10, 9, 14].

4. HEMIVARIATIONAL INEQUALITY

In this section we apply Theorem 3.2 in the study of a class of second order

hemivariational inequalities. The problem we are interested in is formulated as follows

(4.1)





find u ∈ V with u′ ∈ W such that

〈u′′(t) + A(t, u′(t)) + Bu(t) + Su(t), v〉+

+

∫

ΓC

j0(x, t, u′(t); v) dΓ ≥ 〈f(t), v〉

for all v ∈ V and a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

In the study of (4.1) we need the following hypothesis.

H(j) : j : ΓC × (0, T ) × R
d → R is such that

(i) j(·, ·, ξ) is measurable for all ξ ∈ R and j(·, ·, 0) ∈ L1(ΓC × (0, T ));

(ii) j(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );

(iii) |∂j(x, t, ξ)| ≤ c̃ (1 + ‖ξ‖Rd) for all ξ ∈ R
d, a.e. (x, t) ∈ ΓC × (0, T ) with c̃ > 0;

(iv) j0(x, t, ξ;−ξ) ≤ d̃ (1 + ‖ξ‖Rd) for all ξ ∈ R
d, a.e. (x, t) ∈ ΓC × (0, T ) with d̃ ≥ 0;

(v) (η1 − η2, ξ1 − ξ2)Rd ≥ −m2‖ξ1 − ξ2‖2
Rd for all ηi ∈ ∂j(x, t, ξi), ξi ∈ R

d, a.e.

(x, t) ∈ ΓC × (0, T ), i = 1, 2 with m2 ≥ 0,

where j0 and ∂j denote the directional derivative and the Clarke generalized gradient

of j(x, t, ·), respectively.

We consider the functional J : (0, T ) × L2(ΓC ; R d) → R defined by

(4.2) J(t, v) =

∫

ΓC

j(x, t, v(x)) dΓ for a.e. t ∈ (0, T ) and v ∈ L2(ΓC ; R d).

We have the following result on the properties of the functional (4.2).
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Proposition 4.1. Under the hypothesis H(j), the functional J given by (4.2) satisfies

H(J), and for all u, v ∈ L2(ΓC ; R d), we have

(4.3) J0(t, u; v) ≤
∫

ΓC

j0(x, t, u(x); v(x)) dΓ,

where J0(t, u; v) denotes the directional derivative of J(t, ·) at a point u ∈ L2(ΓC ; R d)

in the direction v ∈ L2(ΓC ; R d).

Proof. The conditions H(J)(i)−−(iii) and (4.3) follow from H(j)(i)−−(iii) (analo-

gously as in Lemma 3 in [8]). The sign condition H(J)(iv) is a consequence of (4.3)

and H(j)(iv). For the proof of H(J)(v), consider zi ∈ ∂J(t, wi) and wi ∈ L2(ΓC ; Rd),

for i = 1, 2. By the formula

∂J(t, v) ⊂
∫

ΓC

∂j(x, t, v(x)) dΓ a.e. t ∈ (0, T ) and v ∈ L2(ΓC ; Rd)

(cf. Theorem 2.7.5 of [1]), we have zi(x) ∈ ∂j(x, t, wi(x)) for a.e. (x, t) ∈ ΓC × (0, T ),

i = 1, 2. Therefore, using H(j)(v), we have

(z1 − z2, w1 − w2)L2(ΓC ;Rd) =

∫

ΓC

(z1(x) − z2(x), w1(x) − w2(x))Rd dΓ ≥

≥ −m2

∫

ΓC

‖w1(x) − w2(x)‖2
Rd dΓ = −m2‖w1 − w2‖2

L2(ΓC ;Rd).

We conclude that assumption H(J)(v) is satisfied, which completes the proof of the

proposition.

Combining Theorem 3.2 and Proposition 4.1 to obtain the following existence

result.

Corollary 4.2. Under the hypotheses H(A), H(B), H(C), H(j), (H0) and (H1), the

hemivariational inequality (4.1) has at least a solution.

Proof. Let us denote by u the solution of the problem (3.1) with J given by (4.2).

Note that the existence and uniqueness of this solution is guaranteed by Theorem 3.2

and Proposition 4.1. Therefore, by Definition 3.1 we have u ∈ V, u′ ∈ W,

(4.4) u′′(t) + A(t, u′(t)) + Bu(t) + Su(t) + ζ(t) = f(t),

where ζ(t) = γ∗z(t) ∈ Z∗ and z(t) ∈ ∂J(t, γu′(t)) for a.e. t ∈ (0, T ). The latter is

equivalent to

(4.5) (z(t), w)L2(ΓC ;Rd) ≤ J0(t, γu′(t); w)

for all w ∈ L2(ΓC ; Rd) and a.e. t ∈ (0, T ). We combine now (4.3)–(4.5) to obtain

〈f(t) − u′′(t) − A(t, u′(t)) − Bu(t) − Su(t), v〉 = 〈ζ(t), v〉Z∗×Z =

= (z(t), γv)L2(ΓC ;Rd) ≤ J0(t, γu′(t); γv) ≤
∫

ΓC

j0(x, t, u′(t); v) dΓ.
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for all v ∈ V , a.e. t ∈ (0, T ). It follows from the last inequality that u is a solution

to (4.1), which concludes the proof.

We complete the result of Corollary 4.2 with the following uniqueness result.

Corollary 4.3. Under the hypotheses of Corollary 4.2, if either j(x, t, ·) or −j(x, t, ·)
is regular for a.e. (x, t) ∈ ΓC×(0, T ), then the hemivariational inequality (4.1) admits

a unique solution.

Proof. Let u be a solution to (4.1) obtained in Corollary 4.2. It is well known (cf.

[1, 2]) that if either j(x, t, ·) or −j(x, t, ·) is regular for a.e. (x, t) ∈ ΓC × (0, T ), then

either J(t, ·) or −J(t, ·) is regular for a.e. t ∈ (0, T ), respectively, and (4.3) holds

with equality. Therefore, using the equality in (4.3), we have

〈u′′(t) + A(t, u′(t)) + Bu(t) + Su(t) − f(t), v〉 + J0(t, γu′(t); γv) ≥ 0

for all v ∈ V and a.e. t ∈ (0, T ). From Proposition 2.1(i), we deduce

〈f(t) − u′′(t) − A(t, u′(t)) − Bu(t) − Su(t), v〉 ≤ (J ◦ γ)0(t, u′(t); v)

for all v ∈ V and a.e. t ∈ (0, T ). Now, using the definition of the Clarke subdifferen-

tial, Proposition 2.1(ii) and the previous inequality, we have that

f(t) − u′′(t) − A(t, u′(t)) − Bu(t) − Su(t) ∈ ∂(J ◦ γ)(t, u′(t)) = γ∗∂J(t, γu′(t))

for a.e. t ∈ (0, T ). This means that u is a solution to (3.1). The uniqueness of solution

to (4.1) follows now from the uniqueness part in Theorem 3.2. This concludes the

proof.

We conclude this section with a remark on possible applications of Corollary 4.3

to problems of contact mechanics. Corollary 4.3 can be used to obtain a result on the

unique solvability of a dynamic viscoelastic frictional contact problem with a nonlinear

constitutive law involving a nonlinear memory term. An application of Corollary 4.3

to contact problem of viscoelasticity with a linear memory term can be found in

Migorski et al. [11]. The weak formulation of these mechanical problems leads to a

hemivariational inequality (4.1) for the displacement field. For recent results on the

theory of hemivariational inequalities we refer to [17, 15, 8, 14, 10, 9]. Applications of

evolution hemivariational inequalities to problems of contact mechanics can be found,

for instance, in [12, 13] while the results on modeling and analysis of contact problem

are contained in [5, 4, 6, 7, 18, 19, 20] and references therein.
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