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ABSTRACT. We prove the existence of local solutions of the delayed stochastic inclusion dX(t) ∈

F (Xt)dt + G(Xt)dW (t), X0 = ξ, with upper separated set-valued functions F and G.
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1. INTRODUCTION

Stochastic ordinary differential inclusions were investigated in early 90’s of the

last century among others by N. U. Ahmed in [1], [2], J. P. Aubin and G. Da Prato in

[4], G. Da Prato and H. Frankowska in [7], M. Kisielewicz in [10], [11] and the author in

[20], [21]. In the papers [16] and [22] stochastic inclusions driven by semimartingales

have been studied. All the papers mentioned above refer mainly to strong solutions

of stochastic inclusions with Lipschitz continuous or dissipative set-valued operators.

We refer the reader to the survey works [12] and [13] for results on this topic. From

the other side, stochastic functional equations with delay were investigated by many

authors during last decades (see e.g.: [14], [15], [19] and references therein). Stochas-

tic functional inclusions with delay have been considered by P. Balasubramanian,

S. K. Ntouyas and D. Vinayagam in [5], [6].

In this work we prove the existence of local strong solutions for delay stochastic

inclusion with upper separated set-valued drift and diffusion terms. Let us mention

that such set-valued functions introduced in [17] need not be continuous in any sense.

2. MAIN RESULT

Let r > 0 be given. By C([−r, 0], Rd) we denote the Banach space of continuous

Rd-valued functions defined on [−r, 0] and endowed with the supremum norm ‖·‖. Let

W = (W (t))t≥0 be an Rm-valued Brownian motion defined on a complete probability

space (Ω,F , P ) endowed with the standard Brownian filtration (FW
t )t≥0. Let ξ : Ω →
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C([−r, 0], Rd) be an (FW
t )-independent C([−r, 0], Rd)-valued random variable. By Ft

we denote a σ-algebra FW
t ∨ σ(ξ).

For a stochastic proces X defined at least on [t−r, t] we denote Xt(s) = X(t+s),

s ∈ [−r, 0], t ≥ 0.

Let T be a predictable (Ft)-stopping time and let X : (Ω× [−r, 0])∪ [0, T ) → Rd.

A pair (X, T ) is called a local (Ft)-semimartingale up to time T starting from ξ if

X0 = ξ P -almost surely and for any sequence of predictable stopping times Tn ր T ,

the process X(t ∧ Tn) is an (Ft)-adapted semimartingale.

Let ClConv(Rd) denote the family of all closed, convex and nonempty subsets of

Rd.

Definition 2.1. Let F : C([−r, 0], Rd) → ClConv(Rd) and G : C([−r, 0], Rd) →

ClConv(Rd×m) be given set-valued functions. Consider the stochastic functional

inclusion (SFI):

dX(t) ∈ F (Xt)dt + G(Xt)dW (t),

X0 = ξ.

A local (Ft)-semimartingale (X, T ) up to a predictable stopping time T is called a

local strong solution of inclusion (SFI) if X0 = ξ and for any stopping time Tn < T

and 0 ≤ s ≤ t < ∞

X(t ∧ Tn) − X(s ∧ Tn) ∈

∫ t∧Tn

s∧Tn

F (Xu)du +

∫ t∧Tn

s∧Tn

G(Xu)dW (u).

Set-valued Lebesgue and Itô integrals are meant in the sense of Aumann. For detailed

definitions and properies of such integrals see e.g.: [12].

The pair (X, T ) is called a maximal local solution if

P ({∃ compact K ⊂ C([−r, 0], Rd) ∃ ti ր T : Xti ∈ K} ∩ {T < ∞}) = 0.

It means that (Xt) leaves any compact set K ⊂ C([−r, 0], Rd) for t → T , P -almost

surely on {T < ∞}.

Assume (Y,�) is an order complete Banach lattice with an order generated by a

positive cone K+ (i.e.: x � y iff y − x ∈ K+).

We adjoin to Y the greatest element +∞ together with the lowest element −∞

and extend the vector space operations in a natural way. Let Ȳ = Y ∪ {±∞}.

Let Z be a Banach space. For a set-valued function F : Z → ClConv(Y ) we

define functions V, W : Z → Ȳ by formulas

V (x) = sup{a : a ∈ F (x)} and W (x) = inf{b : b ∈ F (x)}.



STOCHASTIC DELAY INCLUSION 333

Let ΠF (x)(a) denote the metric projection of a point a ∈ Y onto the set F (x). We

define

V̄ (x) :=

{

ΠF (x)(V (x)) for x ∈ DomV

+∞ for x /∈ DomV

W̄ (x) :=

{

ΠF (x)(W (x)) for x ∈ DomW

−∞ for x /∈ DomW

where Domf = {x ∈ Z : f(x) 6= ±∞}.

Definition 2.2. A set-valued function F : Z → ClConv(Y ) is upper separated if each

point (x, W̄ (x)−ǫ) can be separated from the set EpiV̄ = {(x, a) ∈ Z×Y : V̄ (x) � a}

in the following sense:

for every x ∈ Z and each ǫ ∈ K+\{0} there exist A ∈ L(Z, Y ), a ∈ R1 and

δ ∈ K+\{0} such that for every y ∈ DomV̄ and each b ∈ K+ the condition

A(x) − A(y) + a(W̄ (x) − V̄ (y) − ǫ − b) − δ ∈ K+

holds where L(Z, Y ) denotes the space of all linear and norm-continuous operators

from Z to Y .

In an equivalent form the above condition means

A(x) + a(W̄ (x) − ǫ) � A(y) + a(V̄ (y) + b) + δ.

Example 2.3. Let Z = C([a, b], Rd) and let Y be an arbitrary order-complete Banach

lattice with a positive cone K+. Let Var(x) denote a total Jordan variation of the

function x on the interval [a, b]. Let z ∈ K+\{0} be arbitrary fixed. We define a

set-valued function F : C([a, b], Rd) → ClConv(Y ) by the formula:

F (x) =

{

[ 0, z ] for x such that Var(x) < ∞

[ −z, 0 ] for x such that Var(x) = ∞

where [ 0, z ] and [ −z, 0 ] are order intervals in Y . Observe that V (y) is equal to

z for finite variation functions x ∈ C([a, b], Rd) and takes on the value 0 otherwise.

Similarly W (x) takes on 0 or −z as its values. Therefore, taking A ≡ 0, a = −1 ,

δ = ǫ in Definition 2.2, and noting that W̄ (x) = W (x), V̄ (y) = V (y) we obtain the

inequality

∀x,y∈C([a,b],Rd)∀b∈K+ V (y) + b � W (x),

which is clearly fulfiled because of

V (y) + b � 0 � max{0,−z} � W (x).

This means that F is upper separated. Moreover, the above defined F is neither

upper nor lower semicontinuous in any point x ∈ C([a, b], Rd) because families of

finite variation functions as well as infinite variation functions are dense subsets of

C([a, b], Rd).
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Upper separated set-valued functions need not satisfy any type of Lipschitz nor

monotone-dissipative conditions. For other examples of upper separated set-valued

functions see [18].

A set A ⊂ Y is called order bounded if it is contained in some order interval

[a, b] = {y ∈ Y : a � y � b}. A set A is order convex if for each x, y ∈ A the order

interval [x, y] ⊂ A.

A set-valued function F : Z → 2Y is majorized in the neighbourhood of x0 if

there exists an open neighbourhood Ux0
and y ∈ Y such that for each x ∈ Ux0

and

every a ∈ F (x) the inequality a � y holds.

Definition 2.4. A function f : Z → Y is locally Lipschitz if and only if for every

z ∈ Z there exist an open neighbourhood Uz and a constant Lz > 0 such that

‖f(x) − f(y‖ ≤ Lz‖x − y‖ for every x, y ∈ Uz.

Let us remark, that for an infinite dimensional space Z, e.g.: Z = C([−r, 0], Rd),

the above property is essentially weaker than the inequality ‖f(x)−f(y)‖ ≤ Ln‖x−y‖

for every x, y ∈ Z with ‖x‖ < n, ‖y‖ < n, or ‖f(x) − f(y)‖ ≤ Ln,ǫ‖x − y‖ with

‖x‖ < n, ‖y‖ < n, ‖x − y‖ ≤ ǫ, and called also ”a local Lipschitz property” by many

authors investigating existence of solutions of stochastic delay equations (see e.g.: [3],

[9], [15], [19]).

The following result from [17] will be useful in the sequel:

Theorem 2.5. Let F : Z → ClConv(Y ) takes on order bounded and order convex

values. Assume that there exists x1 ∈ Z such that F is majorized in a neighborhood

of x1. If F is upper separated then there exists a locally Lipschitz and order convex

function f such that f(x) ∈ F (x) for each x ∈ Z.

Remark 2.6. Let us note, that if a set-valued function F admits an order-convex

selection satisfying W̄ (x) � f(x) � V̄ (x), then F should be upper separated (see:

[17]). Therefore, the ”upper separating property” gives the necessary and sufficient

conditions for the existence of order-convex selections.

Consider Rd with the Euclidean norm | · | (resp.: Rd×m with the norm |M | =
√

tr(MM∗) ) and the canonical order defined by the positive cone K+ := {a ∈ Rd :

ai ≥ 0, i = 1, 2, ..., d} (resp.: ai,j ≥ 0, i = 1, 2, ..., d, j = 1, 2, ..., m). Then (Rd,�)

(resp.: (Rd×m,�) is an order complete Banach lattice.

Now, we are ready to prove the main result of the paper.

Theorem 2.7. Let F : C([−r, 0], Rd) → ClConv(Rd) and G : C([−r, 0], Rd) →

ClConv(Rd×m) be upper separated set-valued functions with order bounded and or-

der convex values. Assume that F is majorized in the neighbourhood of some point
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x1 ∈ C([−r, 0], Rd) and G is majorized in the neighbourhood of some point x2 ∈

C([−r, 0], Rd). Then the inclusion (SFI) admits a maximal local strong solution

(X, T ).

Proof. Since F and G satisfy assumptions of Theorem 2.5 with Z = C([−r, 0], Rd),

Y = (Rd,�) (resp.: Y = (Rd×m,�), then there exist selections f : C([−r, 0], Rd) →

Rd of F and g : C([−r, 0], Rd) → Rd×m of G being locally Lipschitz in the sense of

Definition 2.4. Observe first that f and g are Lipschitz continuous on every compact

set K ⊂ C([−r, 0], Rd) with Lipschitz constants LK and MK depending only on the

set K. Indeed, let K be an arbitrary fixed compact subset of C([−r, 0], Rd). For

every z ∈ C([−r, 0], Rd) let B(z; ǫz) denote an open ball centered in z with radius

ǫz on which f is Lipschitz with a constant Lz. A family {B(z; ǫz)}z∈C([−r,0],Rd) is

an open covering of C([−r, 0], Rd). From this covering we take the finite subcovering

A = {B(zi; ǫzi
)}i=1,2,...n of a compact set K. There exists δ > 0 such that {B(z; δ)}z∈K

covers K and each B(z; δ) is contained in some B(zi; ǫzi
) (see e.g.: [8] Th. 4.3.20).

Let x, y ∈ K be such that ‖x − y‖ < δ. Then there exists some i, i = 1, 2, ...n, such

that x, y ∈ B(y; δ) ⊂ B(zi; ǫzi
).

Let

N = sup{|f(x)| : x ∈ K} = max
1≤i≤n

sup{|f(x)| : x ∈ B(zi; ǫzi
)}.

For every x ∈ B(zi; ǫzi
) we have

|f(x)| ≤ |f(x) − f(zi)| + |f(zi)| ≤ Lzi
‖x − zi‖ + |f(zi)| ≤ Lzi

ǫzi
+ |f(zi)|.

Therefore,

N ≤ max
1≤i≤n

{Lzi
ǫzi

+ |f(zi)|} < ∞.

Let LK = max1≤i≤n{Lzi
; 2N/δ} and let x, y ∈ K be arbitrary chosen. Two cases can

occur:

(a) ‖x − y‖ < δ

(b) ‖x − y‖ ≥ δ.

In the case (a) there exists some i, i = 1, 2, ...n, such that x, y ∈ B(zi; ǫzi
). Then

|f(x) − f(y)| ≤ Lzi
‖x − y‖ ≤ LK‖x − y‖.

In the case (b) we have

|f(x) − f(y)| ≤ 2N = 2Nδ/δ ≤ LKδ ≤ LK‖x − y‖,

and therefore, f is Lipschitz on K with a Lipschitz constant LK . The same holds for

g with some Lipschitz constant MK .

By the above Lipschitz property we get

2〈f(x) − f(y); x(0) − y(0)〉 ≤ 2|f(x) − f(y)| · |x(0) − y(0)|
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≤ 2LK‖x − y‖ · |x(0) − y(0)| ≤ 2LK‖x − y‖2

for all x, y ∈ K, where 〈 ·, ·〉 denots the inner product in Rd.

Therefore,

2〈f(x) − f(y); x(0) − y(0)〉 + |g(x) − g(y)|2 ≤ (2LK + M2
K)‖x − y‖2.

Now we are in position to use the following result of M.-K von Renesse and M.

Scheutzow from [23]:

Assume that for each compact set K ⊂ C([−r, 0], Rd) there exists a number NK

such that for all x, y ∈ K

2〈f(x) − f(y); x(0) − y(0)〉 + |g(x) − g(y)|2 ≤ NK‖x − y‖2.

Then the stochastic equation

dX(t) = f(Xt)dt + g(Xt)dW (t), X0 = ξ

admits a unique maximal local strong solution (X, T ) up to a predictable stopping time

T .

It means that X0 = ξ and for any stopping time Tn < T and 0 ≤ t < ∞

X(t ∧ Tn) = X(0) +

∫ t∧Tn

0

f(Xu)du +

∫ t∧Tn

0

g(Xu)dW (u) P-a.s.

Therefore,

X(t ∧ Tn) − X(s ∧ Tn) =

∫ t∧Tn

s∧Tn

f(Xu)du +

∫ t∧Tn

s∧Tn

g(Xu)dW (u)

∈

∫ t∧Tn

s∧Tn

F (Xu)du +

∫ t∧Tn

s∧Tn

G(Xu)dW (u),

because f and g are selections of F and G respectively. This proves the Theorem.

Remark 2.8. Assume additionally that F and G satisfy the following global growth

conditions with convex functions on their right sides:

there exists c > 0 such that for every x ∈ C([−r, 0], Rd)

|F (x)| = sup{|a| : a ∈ F (x)} ≤ (c(1 + ‖x‖2))1/2; |G(x)| ≤ (c(1 + ‖x‖2))1/2.

Then the solution (X, T ) from Theorem 2.7 exists globally, i.e.: T = +∞ P -almost

surely.

Indeed, it suffices to observe that selections f and g used in the proof of Theorem

2.7 satisfy

2〈f(x); x(0)〉 + |g(x)|2 ≤ 2(c(1 + ‖x‖2))1/2 · ‖x‖ + c(1 + ‖x‖2)

≤ 2(c1/2 + 1)(1 + ‖x‖2) = ρ(‖x‖2),

where the convex function ρ(u) = 2(c1/2+1)(1+u) is non-decreasing with
∫ ∞

0
1/ρ(u)du =

+∞.
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Now, the remark follows by Theorem 2.3 of [23].
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