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ABSTRACT. In this paper, we first establish a new fixed point theorem for mixed monotone

operators in a cone, and then apply it to prove the existence of asymptotically almost automorphic

solutions to a nonlinear delay integral equation.
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1. INTRODUCTION

The existence of periodic, almost periodic and pseudo almost periodic solutions

for integral equations is an interesting topic, see such as [1, 2, 4] and the references

therein. The concept of almost automorphy introduced by Bochner [3], which is an

important generalization of the classical almost periodicity, has received lots of atten-

tion recently, see the books by N’Guérékata [12, 13]. The concept of asymptotically

almost automorphic functions treated here was introduced in the literature in 1981

by N’Guérékata [14]. See also [8, 10, 11] for recent developments and applications to

abstract differential equations.

The starting point of this paper is the works in papers [6, 7, 9, 15]. Specifically,

Fink and Gatica in [9] considered the existence of a positive almost periodic solution

for the following delay integral equation:

(1.1) x(t) =

∫ t

t−τ

f(s, x(s))ds,
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which is a model for the spread of a disease (for more detail [2, 5]). Torrejón [15]

studied positive almost periodic solution to the following equation:

(1.2) x(t) =

∫ t

t−τ(t)

f(s, x(s))ds.

In [6], Ding et al studied positive almost automorphic solutions for the following

equation:

(1.3) x(t) = γx(t− τ) + (1 − γ)

∫ t

t−τ

n∑
i=1

fi(s, x(s))gi(s, x(s))ds.

And recently, Ding et al [7] considered positive almost automorphic solutions and

asymptotically almost automorphic solutions for Eq (1.2).

Motivated by the above-mentioned works, in this paper we investigate the exis-

tence of asymptotically almost automorphic solutions to the following more general

equations:

(1.4) x(t) = γx(t− τ(t)) + (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, x(s))gi(s, x(s))ds,

where fi(t, ·), gi(t, ·), i = 1, . . . , n are nonincreasing, γ ∈ (0, 1). To the best of our

knowledge, there are no results available in the literature on asymptotically almost

automorphic solutions for Eq (1.4). In this work, we first establish a new fixed point

theorem for mixed monotone operators in a cone, and then apply it to prove the

existence of asymptotically almost automorphic solutions to Eq (1.4).

The rest of this paper is organized as follows. In Section 2, we present some

basic definitions, lemmas, and preliminary results which will be used throughout this

paper. In Section 3, we present our main result and their proofs.

2. PRELIMINARIES

Throughout the paper, we denote by N the set of positive integers, by R the set

of real numbers, by R
+ the set of nonnegative real numbers, and by X a real Banach

space with the norm ‖ · ‖, by Ω a subset of R. First, let us recall some definitions,

notations and basic results which are main from [12, 13].

Definition 2.1 ([13] (Bochner)). A continuous function f : R → R is called almost

automorphic if for every sequence of real numbers (sm) there exists a subsequence

(sn) such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(R).
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Definition 2.2 ([13]). A continuous function f : R × Ω → R is called almost auto-

morphic in t uniformly for x in compact subset of Ω if for every compact subset K of

Ω and every real sequence (sm), there exist a subsequence (sn) such that

g(t, x) := lim
n→∞

f(t+ sn, x)

for each t ∈ R, x ∈ K, and

lim
n→∞

g(t− sn, x) = f(t, x)

for each t ∈ R, x ∈ K. Denote AA(R × Ω) the set of all such functions.

Denote by C0(R
+) the space of all continuous functions h : R

+ → R such that

limt→+∞ h(t) = 0, and by C0(R
+ × Ω) the space of all continuous functions h :

R
+ ×Ω → R such that limt→+∞ h(t, x) = 0 uniformly for x in any compact subset of

Ω.

Definition 2.3 ([13]). A continuous function f : R
+ → R (R+ × Ω → R) is called

asymptotically almost automorphic (asymptotically almost automorphic in t uni-

formly for x in compact subsets of Ω ) if it admits a decomposition

f = g + h, t ∈ R
+,

where g ∈ AA(R) (AA(R × Ω) and h ∈ C0(R
+) (C0(R

+ × Ω)). Denote by AAA(R+)

(AAA(R+ × Ω)) the set of all such functions.

Lemma 2.4. Assume that f, f1, f2 ∈ AAA(R+), then the following hold true:

(a) f1 + f2, c · f ∈ AAA(R+)(c is a scalar), supt∈R+ ‖fi(t)‖ <∞, i = 1, 2;

(b) If f ∈ AAA(R+) and µ is a scalar function in AAA(R+), then µ · f ∈ AAA(R+);

(c) The decomposition of asymptotically almost automorphic function is unique;

(d) AAA(R+) is a Banach space with the norm

‖f‖ = sup
t∈R

‖g(t)‖ + sup
t∈R+

‖h(t)‖,

where f = g + h with g ∈ AA(R) and h ∈ C0(R
+).

Proof. (a,c,d) are proved in [7, Lemma 2.9]. (b) is easy to prove.

Definition 2.5 ([6]). Let X be a real Banach space, a closed convex set A in X is

called a convex cone if the following conditions are satisfied:

(i) if x ∈ A, then λx ∈ A for any λ > 0;

(ii) if x ∈ A and −x ∈ A, then x = 0.

The cone A induces a partial ordering ≤ in X through

x ≤ y if and only if y − x ∈ A.

The cone A is called normal if there exists a constant k > 0 such that

0 ≤ x ≤ y if and only if ‖x‖ ≤ k‖y‖,
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where ‖ · ‖ is the norm on X. We denote by A0 the interior set of A. The cone A is

called a solid cone if A0 6= ∅.

Definition 2.6 ([6]). Let X be a real Banach space and E ⊂ X. An operator

T : E ×E → X is called a mixed monotone operator if T (x, y) is nondecreasing in x

and nonincreasing in y, i.e. xi, yi ∈ E (i = 1, 2), x1 ≤ x2 and y1 ≥ y2 implies that

T (x1, y1) ≤ T (x2, y2). An element x∗ ∈ E is called a fixed point of T if T (x∗, x∗) = x∗.

3. MAIN RESULT

In the proof of our main result, we will need the following fixed point theorem

which is slight different from [6] by Ding.

Theorem 3.1. Let A be a normal and solid cone in a real Banach space X, suppose

that the operator T = B +D∗ : A0 × A0 → A0 satisfies:

(c1) B : A0 × A0 → A0 is a mixed monotone operator and there exist a constant

α ∈ (0, 1) and a function φ : (0, 1)×A0 ×A0 → (0,+∞) such that for each x, y ∈ A0,

we have

B(αx, α−1y) ≥ φ(α, x, y)B(x, y), inf
x,y∈A0

φ(α, x, y) > α;

(c2) There exists z ∈ A0 such that T (z, z) ≥ z;

(c3) D∗(x, y) := D(x) for any (x, y) ∈ X × X, where D : X → X is a positive linear

operator satisfying D(A0) ⊂ A0 ∪ {θ}.

Then T has a unique fixed point x∗ in A0. Moreover, if we construct the iterative

sequences zn = T (zn−1, zn−1) for any initial z0 ∈ A0, we have ‖zn−x
∗‖ → 0, n→ +∞.

Proof. Because B is a mixed monotone operator and T = B+D∗, so T is also mixed

monotone operator, then exists a constant ε > 0, [x0, y0] ⊂ A0, such that

εT (x, y) ≤ εT (y0, x0) ≤ B(x0, y0) ≤ B(x, y), ∀x, y ∈ [x0, y0].

Then we deduce

T (αx, α−1y) = B(αx, α−1y) +D(αx) = B(αx, α−1y) + αD(x)

≥ φ(α, x, y)B(x, y) + α(T (x, y)− B(x, y))

≥ [(φ(α, x, y) − α)ε+ α]T (x, y)

≥ ψ(α, x, y)T (x, y),(3.1)

for all x, y ∈ [x0, y0] and α ∈ (0, 1), where

ψ(α, x, y) := [(φ(α, x, y)− α)ε+ α] > α.

Moreover, by (c1), we have

infx,y∈A0 ψ(α, x, y) > α, for all α ∈ (0, 1).
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On the other hand, choose α ∈ (0, 1) and N ∈ N, such that

T (z, z) ≤ α−1z, ψN(α, z, z) ≥ αN−1

Let

xn = T (xn−1, yn−1), yn = T (yn−1, xn−1), n ∈ N

x0 = αNz, y0 = α−Nz, N ∈ N;

then x1 = T (x0, y0), y1 = T (y0, x0).

We have

x1 = T (αNz, α−Nz) ≥ ψ(α, αN−1z, α−(N−1)z)T (α(N−1)z, α−(N−1)z)

≥ αT (αN−1z, α−(N−1)z) ≥ · · · ≥ αNT (z, z)

≥ αNz = x0,

and

y1 = T (α−Nz, αNz) ≤
1

ψ(α, α−Nz, αNz)
T (α−(N−1)z, αN−1z)

≤
1

ψN (α, z, z)
T (z, z)

≤ α(1−N) · α−1z

= α−Nz = y0.

Since T is a mixed monotone operator, we deduce

x0 ≤ x1 = T (x0, y0) ≤ x2 ≤ · · · ≤ xn = T (xn−1, yn−1) ≤ · · · ,

y0 ≥ y1 = T (y0, x0) ≥ y2 ≥ · · · ≥ yn = T (yn−1, xn−1) ≥ · · · ,

So we have

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y0.

Define

(3.2) αn := sup{β > 0 : xn ≥ βyn},

for each n ∈ N, then xn ≥ αnyn and

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ · · · ≤ 1.(3.3)

We claim that

α∞ := lim
n→∞

αn = 1.

If this is not true, then 0 < α∞ < 1, take ξ ∈ (0, 1), we consider the following two

cases:

(a) α∞ = ξ.

There exists P ∈ N such that αn = ξ, for all n > P . Now, for n > P , from above
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definition, we can know xn ≥ ξnyn, yn ≤ ξ−1xn, for xn, yn ∈ [x0, y0], and through

(3.1), we can obtain

xn+1 = T (xn, yn) ≥ T (ξyn, ξ
−1xn) ≥ ψ(ξ, xn, yn)T (yn, xn) = ψ(ξ, xn, yn)yn+1,

by the form of (3.2), we have αn+1 ≥ ψ(ξ, xn, yn) > ξ, this is a contradiction.

(b) α∞ < ξ.

Since ξyn, ξ
−1xn ∈ [ξx0, ξ

−1y0], by the form of (3.1) and (3.2),

xn+1 = T (xn, yn) ≥ T (αnyn, α
−1
n xn) = T (

αn

ξ
· ξyn, (

αn

ξ
)−1 · ξ−1xn)

≥ ψ(
αn

ξ
, ξyn, ξ

−1xn)T (ξyn, ξ
−1xn)

≥
αn

ξ
T (ξyn, ξ

−1xn)

≥
αn

ξ
ψ(ξ, yn, xn)T (yn, xn),

which implies that

αn+1 ≥ αn

ψ(ξ, yn, xn)

ξ
.

Let n→ ∞, then

α∞ ≥ α∞

ψ(ξ, yn, xn)

ξ
≥ α∞

infx,y∈[x0,y0] ψ(ξ, x, y)

ξ
> α∞,

this is a contradiction, so we have α∞ = 1.

Combining the form of (3.2) and (3.3), we can obtain

0 ≤ xn+p − xn ≤ yn − xn ≤ yn − αnyn ≤ (1 − αn)y0,

and

0 ≤ yn − yn+p ≤ yn − xn ≤ yn − αnyn ≤ (1 − αn)y0,

for each n, p ∈ N. Because A is a normal cone, {xn} and {yn} are Cauchy sequences,

therefore there exists u∗, v∗ ∈ [x0, y0] such that

lim
n→∞

xn = u∗, lim
n→∞

yn = v∗,

and

0 ≤ v∗ − u∗ ≤ yn − xn ≤ yn − αnyn ≤ (1 − αn)y0,

so 0 ≤ v∗ − u∗ ≤ 0, which means that v∗ = u∗. Let x∗ = u∗ = v∗, then

T (x∗, x∗) = T (u∗, v∗) ≥ T (xn, yn) = xn+1,

T (x∗, x∗) = T (u∗, v∗) ≤ T (yn, xn) = yn+1,

which means that u∗ ≤ T (x∗, x∗) ≤ v∗. Hence, T (x∗, x∗) = x∗, that is x∗ is a fixed

point of T .

It remains to show that x∗ is the unique fixed point of T . Suppose y∗ ∈ [x0, y0] is

another fixed point of T , it follows from the definition of xn and yn, that xn ≤ y∗ ≤ yn.
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Let r := sup{k > 0 : k−1y∗ ≥ x∗ ≥ ky∗}, then r−1y∗ ≥ x∗ ≥ ry∗ and 0 < r ≤ 1. If

0 < r < 1, then

w := min{ψ(r, v∗, v∗), ψ(r, r−1v∗, rv∗)} > r.

Noticing that

x∗ = T (x∗, x∗) ≥ T (ry∗, r−1y∗) ≥ ψ(r, y∗, y∗)y∗ ≥ wy∗ > ry∗,

and

x∗ = T (x∗, x∗) ≤ T (r−1y∗, ry∗) ≤ [ψ(r, r−1y∗, ry∗)y∗]−1y∗ ≤ wy∗ < r−1y∗,

so we have ry∗ < wy∗ ≤ x∗ ≤ wy∗ < r−1y∗, because r is defined supremum, this is

a contradiction. Therefore r = 1. So y∗ ≥ x∗ ≥ y∗, that is x∗ = y∗. Thus x∗ is a

unique fixed point of T . Moreover, for any initial z0 ∈ A0 and the iterative sequences

zn = T (zn−1, zn−1), we can choose n ∈ N, such that xn ≤ zn ≤ yn. Therefore,

‖zn − x∗‖ → 0, when n→ ∞.

The proof is now complete.

Now we are in position to investigate the existence of asymptotically almost

automorphic solutions to Eq. (1.4). For the sake of convenience, we list all the

hypotheses to be used in this section as follows:

(H1) fi, gi ∈ AAA(R+ × R
+), i = 1, 2, . . . , n, are nonnegative functions and τ ∈

AAA(R+) is a positive function, moreover, t ≥ τ(t) for all t ∈ R
+.

(H2) For every t ∈ R
+, fi(t, ·) are nondecreasing and gi(t, ·) are nonincreasing in R

+,

i = 1, 2, . . . , n.

(H3) For each x ∈ R
+ and each i ∈ {1, 2, . . . , n}, {fi(t, ·)}t∈R+ and {gi(t, ·)}t∈R+ are

equi-continuous in x.

(H4) There exist positive functions ϕi, ψi defined on (0, 1) × (0,+∞) such that

fi(t, αx) ≥ ϕi(α, x)fi(t, x), gi(t, α
−1y) ≥ ψi(α, y)gi(t, y),

ϕi(α, x) > α for all x, y > 0, α ∈ (0, 1), t ∈ R
+ and i ∈ {1, 2, . . . , n}; moreover, for

any 0 < a < b < +∞, infx,y∈[a,b] ϕi(α, x)ψi(α, y) > α, α ∈ (0, 1), i = 1, 2, . . . , n.

(H5) For any d > 0, there exists a constant c with 0 < c ≤ d such that

inf
t∈R+

∫ t

t−τ(t)

n∑
i=1

fi(s, c)gi(s, d)ds ≥ c.

Lemma 3.2 ([7, Lemma 3.9]). If f ∈ AAA(R+), {f(t, ·)}t∈R+ are equi-continuous

everywhere on R
+, x ∈ AAA(R+) and x(t) ≥ 0 for every t ∈ R

+, then f(·, x(·)) ∈

AAA(R+).

Lemma 3.3 ([7, Lemma 3.10]). Let f ∈ AAA(R+), τ ∈ AAA(R+) and t ≥ τ(t) for

all t ∈ R
+, then

F (t) =

∫ t

t−τ(t)

f(s)ds ∈ AAA(R+).
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Theorem 3.4. Assume the conditions (H1)–(H5) are satisfied, then Eq (1.4) has

a unique asymptotically almost automorphic solution x∗. Moreover, for any initial

x0 ∈ AAA(R+) with positive infinimum and the iterative sequences

xk(t) = γxk−1(t− τ(t)) + (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, xk−1(s))gi(s, xk−1(s))ds,

we have

lim
k→+∞

‖xk − x∗‖ = 0.

Proof. Let A be a cone and define in the Banach space AAA(R+) by

A = {x ∈ AAA(R+) : x(t) ≥ 0, ∀t ∈ R
+}

It can be verified that A is a normal and solid cone in AAA(R+), and

A0 = {x ∈ AAA(R+) : ∃ε > 0, such that x(t) > ε, ∀t ∈ R
+},

then A0 is the interior set of A.

For x, y ∈ A0 and t ∈ R
+, we define the operators

B(x, y)(t) = (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, x(s))gi(s, y(s))ds,

D(x)(t) = γx(t− τ(t)).

Then Eq (1.4) is equivalent to the equation x = T (x, x) with T = D + B. We will

verify all the assumptions of Theorem 3.1.

Let x, y ∈ A0, it follows from (H1), (H3) and lemma 3.2 that

fi(·, x(·)), gi(·, y(·)) ∈ AAA(R+), i = 1, 2, . . . , n.

Combining this with Lemma 2.4 (a), we deduce

n∑
i=1

fi(s, x(s))gi(s, x(s)) ∈ AAA(R+).

By Lemma 3.3, B(x, y) ∈ AAA(R+ × R
+). Also there exist ε,M > 0, such that

x(t) ≥ ε and y(t) ≤M for all t ∈ R
+. So by (H5) there exists a > 0, such that

inf
t∈R+

∫ t

t−τ(t)

n∑
i=1

fi(s, a)gi(s,M)ds ≥ a.
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If ε ≤ a, by (H4) and (H5), we have

B(x, y)(t) = (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, x(s))gi(s, y(s))ds

≥ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, ε)gi(s,M)ds

≥ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

ϕi(
ε

a
, a)fi(s, a)gi(s,M)ds

≥ (1 − γ)
ε

a

∫ t

t−τ(t)

n∑
i=1

fi(s, a)gi(s,M)ds

≥ (1 − γ)ε > 0.

If ε > a, by (H5) that

B(x, y)(t) = (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, x(s))gi(s, y(s))ds

≥ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, ε)gi(s,M)ds

≥ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, a)gi(s,M)ds

≥ (1 − γ)a > 0.

Thus B(x, y) ∈ A0, this is, B is from A0 × A0 → A0. On the other hand, it follows

easily from (H2) that B is a mixed monotone operator.

Suppose x, y ∈ A0 and α ∈ (0, 1), we have

B(αx, α−1y)(t) = (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, αx(s))gi(s, α
−1y(s))ds

≥ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

ϕi(α, x(s))ψi(α, y(s))fi(s, x(s))gi(s, y(s))ds

≥ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

φi(α, x, y)fi(s, x(s))gi(s, y(s))ds

≥ φ(α, x, y)B(x, y)(t),

where

φi(α, x, y) = ϕi(α, inf
s∈R+

x(s))ψi(α, inf
s∈R+

y(s)), i = 1, 2, . . . , n.

and

φ(α, x, y) = min
i=1,2,...,n

φi(α, x, y),
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which means thatB(αx, α−1y)(t) ≥ φ(α, x, y)B(x, y)(t), for each x, y ∈ A0, α ∈ (0, 1).

By (H4) that,

inf
x,y∈A0

φ(α, x, y) = min
i=1,2,...,n

inf
x,y∈A0

φi(α, x, y)

= min
i=1,2,...,n

inf ϕi(α, inf
s∈R+

x(s))ψi(α, inf
s∈R+

y(s)) > α,

for each α ∈ (0, 1). Thus, the assumption (c1) in Theorem 3.1 is satisfied.

Next, let us check the assumption (c2) of Theorem 3.1. By (H5), for any d > 0,

there exists a constant c, with 0 < c ≤ d such that

inf
t∈R+

∫ t

t−τ(t)

n∑
i=1

fi(s, c)gi(s, d)ds ≥ c.

Therefore, we have

T (c, d)(t) = γc+ (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, c)gi(s, d)ds ≥ γc+ (1 − γ)c = c.

Let 0 < z = c ≤ d, then

T (z, z)(t) = γz + (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, z)gi(s, z)ds

≥ γz + (1 − γ)

∫ t

t−τ(t)

n∑
i=1

fi(s, z)gi(s, d)ds

≥ γz + (1 − γ)z = z.

So we can claim that there exists a constant z > 0, such that T (z, z) ≥ z. Then the

assumption (c2) of Theorem 3.1 are justified.

Finally, let us check the assumption (c3) of Theorem 3.1. For t ∈ R
+, x(t) ∈ A0

and D is a positive linear operator, we have D(x)(t) = γx(t − τ(t)) ∈ A0 for γ ∈

R
+, t ≥ τ(t), that is D(A0) ⊂ A0∪{θ}. Thus Theorem 3.1 yields that T has a unique

fixed point x∗ in A0, which is just the unique asymptotically almost automorphic

solution with a positive infinimum to Eq (1.4). Moreover, applying Theorem 3.1, we

get that the iterative sequences xk = T (xk−1, xk−1), k = 1, 2, . . . , satisfy

lim
k→+∞

‖xk − x∗‖ = 0.

This completes the proof.
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