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ABSTRACT. In this article, we establish the existence and uniqueness results for the positive

solutions to Sturm-Liouville boundary value problems of the nonlinear fractional differential equation

on the infinite interval. Our analysis rely on the well known fixed point theorems. Some known

results are generalized.
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1. INTRODUCTION

Recently there has been a large number of papers concerning with the solvability

of the boundary value problems for the fractional differential equations, see the text

books [11,17,19] and the papers [1,3,7,10,12,13,15,18,21,23].

This paper is motivated by [23]. Zhao and Ge studied the following boundary

value problem for the fractional differential equations

(1.1)











Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < ∞, 1 < α < 2,

u(0) = 0,

limt→∞ Dα−1
0+ u′(t) = 0 ,

by using the properties of the Green’s function of the corresponding BVP, together

with the Schauder fixed point theorem. It was proved that BVP (1.1) has at least

one positive solution.

Recently, Agarwal Benchohra, Hamani and Pinelas [1], Arara, Benchohra, Hamidi,

and Nieto [3] studied the existence of solutions of the following boundary value prob-

lem for fractional differential equation

(1.2)











Dα
0+u(t) = f(t, u(t)), 0 < t < ∞, 1 < α < 2,

u(0) = u0,

u is bounded on [0,∞).
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Here Dα
0+ is the Caputo fractional derivative of order α in [3] and the Riemann-

Liouville fractional derivative in [1].

One notes that the well known Sturm-Liouville BVP of the the ordinary differ-

ential equations is as follows:

(1.3)











u′′(t) + f(t, u(t)) = 0, t ∈ (0,∞),

au(t) − bu′(0) = 0,

cu′(1) + du(1) = 0,

where f(t, u) is continuous and nonnegative on [0, 1] × [0,∞), a ≥ 0, b ≥ 0, c ≥ 0

and d ≥ 0 with ab + cd + ab > 0. Such a problem was studied in [2,4-6,8,20,22]. This

problem has been generalized to the case of BVP on the half line see [14,15,16].

Motivated by above papers, in this paper, we discuss the existence and unique-

ness of the positive solutions to the Sturm-Liouville boundary value problems of the

nonlinear fractional differential equation of the form

(1.4)











Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0,∞), 1 < α < 2,

a limt→0 t2−αu(t) − b limt→0 Dα−1
0+ u(t) = 0,

c limt→∞ Dα−1
0 u(t) + d limt→∞

1
1+tα−1 u(t) = 0,

where a, b, c, d ∈ [0,∞), Dα
0+ ( Dα for short ) is the Riemann-Liouville fractional

derivative of order α, and f
(

t, 1
δ(t)

x
)

defined on [0,∞) × [0,∞) is nonnegative and

continuous and satisfies that for each r > 0 there exists φr ∈ L1[0,∞) such that

f
(

t, 1
δ(t)

x
)

≤ φr(t) for every x ∈ [0, r], where δ(t) = min
{

t2−α, 1
1+tα−1

}

. We ob-

tain the results on the existence and uniqueness of the positive solutions about this

boundary-value problem by using the fixed point theorems.

2. PRELIMINARY RESULTS

For the convenience of the readers, we present here the necessary definitions from

the fractional calculus theory. These definitions and results can be found in the

literatures [11,17,19].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a func-

tion f : (0,∞) → R is given by

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t − s)α−1f(s)ds,

provided that the right-hand side exists.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a

continuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n − α)

dn+1

dtn+1

∫ t

0

f(s)

(t − s)α−n+1
ds,
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where n − 1 < α ≤ n, provided that the right-hand side is point-wise defined on

(0,∞).

Definition 2.3. The Riemann-Liouville fractional integral of order α > 0 of a func-

tion f : (0,∞) → R is given by

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t − s)α−1f(s)ds,

provided that the right-hand side exists.

Definition 2.4. The Riemann-Liouville fractional derivative of order α > 0 of a

continuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n − α)

dn+1

dtn+1

∫ t

0

f(s)

(t − s)α−n+1
ds,

where n − 1 < α ≤ n, provided that the right-hand side is point-wise defined on

(0,∞).

Lemma 2.5. Let n − 1 < α ≤ n, u ∈ C0(0,∞)
⋂

L1(0,∞). Then

Iα
0+Dα

0+u(t) = u(t) + C1t
α−1 + C2t

α−2 + · · ·+ Cnt
α−n,

where Ci ∈ R, i = 1, 2, . . . n.

Lemma 2.6. The relations

Iα
0+I

β
0+ϕ = I

α+β
0+ ϕ, Dα

0+Iα
0+ = ϕ

are valid in following case

Reβ > 0, Re(α + β) > 0, ϕ ∈ L1(0,∞).

Lemma 2.7. Let n − 1 < α ≤ n, u ∈ C0(0,∞)
⋂

L1(0,∞). Then

Iα
0+Dα

0+u(t) = u(t) + C1t
α−1 + C2t

α−2 + · · ·+ Cnt
α−n,

where Ci ∈ R, i = 1, 2, . . . n.

Lemma 2.8. The relations

Iα
0+I

β
0+ϕ = I

α+β
0+ ϕ, Dα

0+Iα
0+ = ϕ

are valid in following case

Reβ > 0, Re(α + β) > 0, ϕ ∈ L1(0,∞).

Lemma 2.9. Suppose that a 6= 0, c+d 6= 0. Given h ∈ C[0, 1], the unique solution of

(2.1)











Dα
0+u(t) + h(t) = 0, 0 < t < ∞,

a limt→0 t2−αu(t) − b limt→0 Dα−1u(t) = 0,

c limt→∞ Dα−1
0 u(t) + d limt→∞

1
1+tα−1 u(t) = 0,
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is

(2.2) u(t) =

∫ 1

0

G(t, s)h(s)ds,

where

(2.3) G(t, s) =

{

−a(t−s)α−1+atα−1+bΓ(α)tα−2

aΓ(α)
, s ≤ t,

atα−1+bΓ(α)tα−2

aΓ(α)
, t ≤ s.

Proof. We may apply Lemma 2.7 to reduce BVP (2.1) to an equivalent integral equa-

tion

u(t) = −

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds + c1t

α−1 + c2t
α−2, t ∈ (0, 1)

for some ci ∈ R, i = 1, 2. Note that Γ(0) = ∞. We get

1

1 + tα−1
u(t) = −

∫ t

0

(t − s)α−1

Γ(α)(1 + tα−1)
h(s)ds + c1

tα−1

1 + tα−1
+ c2

tα−2

1 + tα−1

t2−αu(t) = −t2−α

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds + c1t + c2

and

Dα−1u(t) = −

∫ t

0

h(s)ds + c1Γ(α).

Since
∣

∣

∣

∣

∫ t

0

(t − s)α−1

1 + tα−1
h(s)ds

∣

∣

∣

∣

≤

∫

∞

0

h(s)ds < ∞,

we get

lim
t→∞

∫ t

0

(t − s)α−1

1 + tα−1
h(s)ds =

∫

∞

0

h(s)ds.

From the boundary conditions in (2.1), since lims→0 Γ(s) = ∞, we get

ac2 − bc1Γ(α) = 0,

c

(

−

∫

∞

0

h(s)ds + c1Γ(α)

)

+ d

(

−

∫

∞

0

1

Γ(α)
h(s)ds + c1

)

= 0.

It follows that

c1 =
1

Γ(α)

∫

∞

0

h(s)ds,

and

c2 =
b

a

∫

∞

0

h(s)ds.

Therefore, the unique solution of BVP (1.3) is

u(t) = −

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds +

tα−1

Γ(α)

∫

∞

0

h(s)ds +
btα−2

a

∫

∞

0

h(s)ds

=

∫

∞

0

G(t, s)h(s)ds.

Here G is defined by (2.3). Reciprocally, let u satisfy (2.2). Then

a lim
t→0

t2−αu(t) − b lim
t→0

Dα−1u(t) = 0, c lim
t→∞

Dα−1
0 u(t) + d lim

t→∞

1

1 + tα−1
u(t) = 0,
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furthermore, we have Dα
0 u(t) = −h(t). The proof is complete.

Lemma 2.10. Suppose that a > 0, c + d 6= 0. Then

G(t, s) ≤
atα−1 + bΓ(α)tα−2

aΓ(α)
, for all s, t ∈ (0,∞),

and

G(t, s) ≥ 0 for all s, t ∈ (0,∞).

Proof. One sees from (2.3) that

G(t, s) ≤
atα−1 + bΓ(α)tα−2

aΓ(α)
.

On the other hand, we have from (2.3) that

G(t, s) ≥

{

−atα−1+atα−1+bΓ(α)tα−2

aΓ(α)
, s ≤ t,

atα−1+bΓ(α)tα−2

aΓ(α)
, t ≤ s.

=

{

bΓ(α)tα−2

aΓ(α)
, s ≤ t,

atα−1+bΓ(α)tα−2

aΓ(α)
, t ≤ s.

≥ 0.

The proof is completed.

For our construction, we let

X =

{

x ∈ C(0,∞) : there exist the limits lim
t→0

t2−αu(t) and lim
t→∞

1

1 + tα−1
x(t)

}

.

Let δ(t) = min
{

t2−α, 1
1+tα−1

}

. One sees that δ is continuous on [0,∞) and limt→0 δ(t) =

0, limt→∞ δ(t) = 0. For x ∈ X, let

‖x‖ = sup
0<t<∞

δ(t)|u(t)|.

Then X is a Banach space. We seek solutions of BVP (1.3) that lie in the cone

P = {u ∈ X : u(t) ≥ 0, 0 < t < ∞} .

Suppose that δ = bdΓ(α) + ad + acΓ(α) > 0. Define the operator T : P → P , by

Tu(t) =

∫

∞

0

G(t, s)f(s, u(s))ds .

Lemma 2.11. Let V = {x ∈ X : ||x|| < l}, l > 0, and V1 = {δ(t)x(t) : x ∈ V }. If

V1 is equicontinuous on any compact interval of (0,∞) and equicontinuous at infinity

and zero point, then V is relative compact on X [16].



152 Y. LIU

Remark 2.12. V1 is equicontinuous at infinity if and only if for all ǫ > 0, there exists

v = v(ǫ) > 0 such that for all x ∈ V , t1, t2 ≥ v, it holds
∣

∣

∣

∣

x(t1)

1 + tα−1
1

−
x(t2)

1 + tα−1
2

∣

∣

∣

∣

< ǫ.

V1 is equicontinuous at zero if and only if for all ǫ > 0, there exists v = v(ǫ) > 0 such

that for all x ∈ V , 0 ≤ t1, t2 ≤ v, it holds

∣

∣t2−α
1 x(t1) − t2−α

2 x(t2)
∣

∣ < ǫ.

Lemma 2.13. Suppose that a > 0, c + d 6= 0, f
(

t, 1
δ(t)

u
)

is continuous. Then T is

completely continuous.

Proof. We divide the proof into three steps.

Step 1. We prove that T is continuous.

Let {yn} be a sequence such that yn → y in X. Let

r = max

{

sup
n∈N

||yn||, ||y||

}

.

One sees that
∫

∞

0

∣

∣

∣

∣

(

t,
1

δ(t)
yn(s)

)

−

(

t,
1

δ(t)
y(s)

)
∣

∣

∣

∣

ds ≤ 2

∫

∞

0

φr(s)ds.

Then for t ∈ [0,∞), we have

δ(t)|(Tyn)(t) − (Ty)(t)|

=

∣

∣

∣

∣

∫

∞

0

δ(t)G(t, s)f(s, yn(s))ds −

∫

∞

0

δ(t)G(t, s)f(s, y(s))ds

∣

∣

∣

∣

≤

∫

∞

0

δ(t)G(t, s)|f(s, yn(s)) − f(s, y(s))|ds

≤

∫

∞

0

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∣

∣

∣

∣

(

t,
1

δ(t)
yn(s)

)

−

(

t,
1

δ(t)
y(s)

)
∣

∣

∣

∣

ds

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

∣

∣

∣

∣

(

t,
1

δ(t)
yn(s)

)

−

(

t,
1

δ(t)
y(s)

)
∣

∣

∣

∣

ds.

By the definitions of f , we have ||Tyn − Ty|| → 0 as n → ∞.

Step 2. We prove that T maps bounded sets into bounded sets in X.

It suffices to show that for each l > 0, there exists a positive number L > 0 such

that for each x ∈ M = {y ∈ X : ||y|| ≤ l}, we have ||Ty|| ≤ L. By the definition of

T , we get

δ(t)|(Ty)(t)| =

∫

∞

0

δ(t)G(t, s)f(s, y(s))ds

≤

∫

∞

0

δ(t)G(t, s)f

(

s,
1

δ(s)
δ(s)y(s)

)

ds
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≤

∫

∞

0

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
f

(

s,
1

δ(s)
δ(s)y(s)

)

ds

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φl(s)ds.

It follows that

||Ty|| ≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φl(s)ds

for each y ∈ {y ∈ X : ||y|| ≤ l}. Then T maps bounded sets into bounded sets in X.

Step 3. We prove that T maps bounded sets into equicontinuous sets in X.

Firstly, we prove that T is equicontinuous on each compact interval of (0,∞).

Let t1, t2 ∈ [m, n] ⊂ (0,∞) with t1 < t2 and y ∈ M = {y ∈ X : ||y|| ≤ l}. We have

|δ(t1)(Ty)(t1) − δ(t2)(Ty)(t2)|

=

∣

∣

∣

∣

∫

∞

0

δ(t1)G(t1, s)f(s, y(s))ds−

∫

∞

0

δ(t2)G(t2, s)f(s, y(s))ds

∣

∣

∣

∣

≤

∫

∞

0

|δ(t1)G(t1, s) − δ(t2)G(t2, s)| f

(

s,
1

δ(s)
δ(s)y(s)

)

ds

≤

∫ t1

0

|δ(t1)G(t1, s) − δ(t2)G(t2, s)|φl(s)ds

+

∫ t2

t1

|δ(t1)G(t1, s) − δ(t2)G(t2, s)|φl(s)ds

+

∫

∞

t2

|δ(t1)G(t1, s) − δ(t2)G(t2, s)|φl(s)ds

=

∫ t1

0

∣

∣

∣

∣

−a[δ(t1)(t1 − s)α−1 − δ(t2)(t2 − s)α−1]

aΓ(α)

∣

∣

∣

∣

φl(s)ds

+

∫ t1

0

∣

∣

∣

∣

a[δ(t1)t
α−1
1 − δ(t2)t

α−1
2 ]

aΓ(α)

∣

∣

∣

∣

φl(s)ds

+

∫ t1

0

∣

∣

∣

∣

bΓ(α)[δ(t1)t
α−2
1 − δ(t2)t

α−2
2 ]

aΓ(α)

∣

∣

∣

∣

φl(s)ds

+

∫ t2

t1

|δ(t1)G(t1, s) − δ(t2)G(t2, s)|φl(s)ds

+

∫

∞

t2

∣

∣

∣

∣

a[δ(t1)t
α−1
1 − δ(t2)t

α−1
2 ] + bΓ(α)[δ(t1)t

α−2
1 − δ(t2)t

α−2
2 ]

aΓ(α)

∣

∣

∣

∣

φl(s)ds

≤
1

Γ(α)

∫ t1

0

∣

∣δ(t1)(t1 − s)α−1 − δ(t2)(t2 − s)α−1
∣

∣φl(s)ds

+

∣

∣

∣

∣

a[δ(t1)t
α−1
1 − δ(t2)t

α−1
2 ]

aΓ(α)

∣

∣

∣

∣

∫

∞

0

φl(s)ds

+

∣

∣

∣

∣

bΓ(α)[δ(t1)t
α−2
1 − δ(t2)t

α−2
2 ]

aΓ(α)

∣

∣

∣

∣

∫

∞

0

φl(s)ds
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+2 sup
t∈(0,∞)

δ(t)G(t, s)

∫

∞

0

φl(s)ds|t1 − t2|

+
a + bΓ(α)

aΓ(α)

∣

∣δ(t1)t
α−1
1 − δ(t2)t

α−1
2

∣

∣

∫

∞

0

φl(s)ds.

Since δ(t)G(t, s) is continuous on (0,∞) × [0,∞) and there exist the limits

lim
t→0

δ(t)G(t, s) and lim
t→∞

δ(t)G(t, s),

we get that the right-hand side of the above inequality tends to zero as t1 → t2.

Secondly, we prove that T is equicontinuous at infinity. For y ∈ M = {y ∈ X :

||y|| ≤ l}, since

δ(t)(Ty)(t) =

∫

∞

0

δ(t)G(t, s)f(s, y(s))ds ≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φl(s)ds,

we get

lim
t→∞

δ(t)(Ty)(t) = lim
t→∞

∫

∞

0

1

1 + tα−1
G(t, s)f(s, y(s))ds = 0

uniformly. Then for each ǫ > 0 there is H > 0 such that
∣

∣

∣

∣

1

1 + tα−1
1

(Ty)(t1) −
1

1 + tα−1
2

(Ty)(t2)

∣

∣

∣

∣

< ǫ, t1, t2 > H, y ∈ M.

Hence T is equicontinuous at infinity.

Lastly, we prove that T is equicontinuous at zero point. For y ∈ M = {y ∈ X :

||y|| ≤ l}, since

δ(t)(Ty)(t) =

∫

∞

0

δ(t)G(t, s)f(s, y(s))ds ≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φl(s)ds,

we get

lim
t→0

δ(t)(Ty)(t) = lim
t→∞

∫

∞

0

t2−αG(t, s)f(s, y(s))ds =
b

a

∫

∞

0

f(s, y(s))ds

uniformly. Then for each ǫ > 0 there is H > 0 such that

|t2−α
1 (Ty)(t1) − t2−α

2 (Ty)(t2)| < ǫ, t1, t2 > H, y ∈ M.

Hence T is equicontinuous at zero point.

From above discussion, we see from Lemma 2.7 that T is completely continuous.

3. MAIN RESULTS

In this section, we prove the main results. It is supposed that f
(

t, 1
δ(t)

x
)

defined

on [0,∞)×[0,∞) is nonnegative and continuous and satisfies that for each r > 0 there

exists φr ∈ L1[0,∞) such that f
(

t, 1
δ(t)

x
)

≤ φr(t) for all t ∈ [0,∞) and x ∈ [0, r].
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Theorem 3.1. Suppose that a > 0, c + d 6= 0, f satisfies

(3.1)

∣

∣

∣

∣

f

(

t,
1

δ(t)
u

)

− f

(

t,
1

δ(t)
v

)
∣

∣

∣

∣

≤ α(t)|u − v|, t ∈ [0,∞), u, v ∈ [0,∞).

Then BVP (1.3) has an unique positive solution if

(3.2)

∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)
ds < 1.

Proof. We shall prove that under the assumptions (3.1) and (3.2), T n is a contraction

operator for n sufficiently large. Indeed, by the definition of G(t, s) for u, v ∈ P , from

Lemma 2.10 and (3.1), we have the estimate

δ(t)|(Tu)(t) − (Tv)(t)|

=

∫

∞

0

δ(t)G(t, s)

∣

∣

∣

∣

f

(

s,
1

δ(s)
δ(s)u(s)

)

− f

(

s,
1

δ(s)
δ(s)v(s)

)
∣

∣

∣

∣

ds

≤ δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

α(s)δ(s)|u(s)− v(s)|ds

≤ δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

α(s)ds||u− v||.

Hence

δ(t)|(T 2u)(t) − (T 2v)(t)|

=

∫

∞

0

δ(t)G(t, s)|f(s, (Tu)(s))− f(s, (Tv)(s))|ds

≤ δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

α(s)δ(s)|(Tu)(s)− (Tv)(s)|ds

≤ δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)

∫

∞

0

α(s)ds||u− v||ds

= δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)
ds

∫

∞

0

α(s)ds||u− v||.

Similarly, one gets

δ(t)|(T 3u)(t) − (T 3v)(t)|

=

∫

∞

0

δ(t)G(t, s)|f(s, (T 2u)(s)) − f(s, (T 2v)(s))|ds

≤ δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
×

(
∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)
ds

)2 ∫ ∞

0

α(s)ds||u− v||.

By induction methods, we get

δ(t)|(T nu)(t) − (T nv)(t)|

≤ δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
×
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(
∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)
ds

)n−1 ∫ ∞

0

α(s)ds||u− v||

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
×

(
∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)
ds

)n−1 ∫ ∞

0

α(s)ds||u− v||.

It follows from (3.2) that for sufficiently large n we have
(
∫

∞

0

α(s)δ(s)
asα−1 + bΓ(α)sα−2

aΓ(α)
ds

)n−1

≤
1

2 supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

∫

∞

0
α(s)ds

.

Therefor, we get for such n that

||T nu − T nv|| ≤
1

2
||u − v||.

Hence the contraction map principle implies that BVP (1.3) has an unique positive

solution. The proof is completed.

Theorem 3.2. Suppose that a > 0, c+d > 0, f(t, u) satisfies f(t, 0) 6≡ 0 for t ∈ (0,∞)

and there exists B ∈ L1[0,∞) such that

(3.3) 0 ≤ lim
x→∞

max
t∈[0,∞)

f
(

t, 1
δ(t)

x
)

xB(t)
<

1

supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

∫

∞

0
B(s)ds

.

Then, BVP (1.3) has at least one positive solution.

Proof. It follows from (3.3) that there is M > 0 and H > 0 such that

0 ≤
f
(

t, 1
δ(t)

x
)

xB(t)
≤ M <

1

supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

∫

∞

0
B(s)ds

, t ∈ [0,∞), x > H.

Let

C(t) = max
x∈[0,H]

f

(

t,
1

δ(t)
x

)

.

It follows that B, C ∈ L1[0,∞) and

0 ≤ f

(

t,
1

δ(t)
x

)

≤ MxB(t) + C(t), t ∈ [0,∞), x ∈ [0,∞).

Choose R > 0 sufficiently large such that

R = sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
×

max







∫

∞

0

C(s)ds,
M
∫

∞

0
B(s)ds

∫

∞

0
C(s)ds supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

1 − M supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

∫

∞

0
B(s)ds







.
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Let

BR =

{

x ∈ P :

∣

∣

∣

∣

∣

∣

∣

∣

x −

∫

∞

0

G(t, s)C(s)ds

∣

∣

∣

∣

∣

∣

∣

∣

≤ R

}

.

It is easy to see that BR is a convex, bounded, and closed subset of the Banach space

X. For x ∈ BR, we have

||x|| ≤

∣

∣

∣

∣

∣

∣

∣

∣

x −

∫

∞

0

G(t, s)C(s)ds

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∫

∞

0

G(t, s)C(s)ds

∣

∣

∣

∣

∣

∣

∣

∣

≤ R +

∣

∣

∣

∣

∣

∣

∣

∣

∫

∞

0

G(t, s)C(s)ds

∣

∣

∣

∣

∣

∣

∣

∣

≤ R + sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

C(s)ds.

One sees that

−C(t) ≤ f

(

t,
1

δ(t)
x

)

− C(t) ≤ MxB(t).

It follows that
∣

∣

∣

∣

f

(

t,
1

δ(t)
x

)

− C(t)

∣

∣

∣

∣

≤ max{C(t), M |x|B(t)}.

Hence the definition of R implies that
∣

∣

∣

∣

∣

∣

∣

∣

Tx −

∫ 1

0

G(t, s)C(s)ds

∣

∣

∣

∣

∣

∣

∣

∣

= sup
t∈[0,∞)

δ(t)

∣

∣

∣

∣

∫

∞

0

G(t, s)

(

f

(

s,
1

δ(s)
δ(s)x(s)

)

− C(t)

)

ds

∣

∣

∣

∣

≤ sup
t∈[0,∞)

∫

∞

0

δ(t)G(t, s) max {C(s), MB(s)δ(s)|x(s)|} ds

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

max {C(s), MB(s)δ(s)|x(s)|} ds

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
×

max

{
∫

∞

0

C(s)ds, M

∫

∞

0

B(s)ds||x||

}

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)
max

{
∫

∞

0

C(s)ds,

M

∫

∞

0

B(s)ds

(

R + sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

C(s)ds

)}

≤ R.

So, we have TBR ⊂ BR. Since T is completely continuous, the Schauder fixed point

theorem assures that operator T has at least one fixed point in BR and then BVP

(1.3) has at least one positive solution. The proof is complete.
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Theorem 3.3. Suppose that a > 0, c + d > 0, f satisfies that

(3.4)

∣

∣

∣

∣

f

(

t,
1

δ(t)
x

)
∣

∣

∣

∣

≤ φ(t)w(|x|), t ∈ [0,∞), x ∈ [0,∞)

with φ ∈ L1[0, 1] and w ∈ C([0,∞), [0,∞)) nondecreasing. If there exists a constant

σ > 0 such that

(3.5)
σ

supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

∫

∞

0
φ(s)dsw(σ)

> 1,

then, BVP (1.3) has at least one positive solution such that

(3.6) 0 ≤ δ(t)x(t) ≤ σ, t ∈ [0,∞).

Proof. We consider the BVP of the form

(3.7)











Dαu(t) + λf(t, u(t)) = 0, t ∈ (0,∞), 1 < α < 2,

a limt→0 t2−αu(t) − b limt→0 Dα−1
0+ u(t) = 0,

c limt→∞ Dα−1
0 u(t) + d limt→∞

1
1+tα−1 u(t) = 0,

for 0 < λ < 1. Solving BVP (3.7) is equivalent to solving the fixed point problem

x = λTx.

Let

U = {x ∈ X : ||x|| ≤ σ}.

We claim that x 6= λTx for all ∂U and λ ∈ (0, 1). In fact, if x = λTx for some x ∈ ∂U

and λ ∈ (0, 1), we have

||x|| = sup
t∈[0,∞)

λδ(t)(Tx)(t)

≤ sup
t∈[0,∞)

δ(t)(Tx)(t)

= sup
t∈[0,∞)

∫

∞

0

δ(t)G(t, s)f(s, x(s))ds

= sup
t∈[0,∞)

∫

∞

0

δ(t)G(t, s)f

(

s,
1

δ(s)
δ(s)x(s)

)

ds

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φ(s)w(δ(s)x(s))ds

≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φ(s)dsw(σ).

So

σ ≤ sup
t∈(0,∞)

δ(t)
atα−1 + bΓ(α)tα−2

aΓ(α)

∫

∞

0

φ(s)dsw(σ).

It follows that

σ

supt∈(0,∞) δ(t)atα−1+bΓ(α)tα−2

aΓ(α)

∫

∞

0
φ(s)dsw(σ)

≤ 1,



BVPS FOR FRACTIONAL DIFFERENTIAL EQUATIONS 159

which contradicts with (3.5). Since T is completely continuous, by Schauder’s fixed

point theorem [3], we see that BVP (1.3) has at least one positive solution x such

that (3.6) holds. The proof is complete.
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