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ABSTRACT. In this paper, we provide an existence theorem for a unique fixed point for a class

of increasing operators without continuity and compactness, and apply it to discuss existence and

uniqueness of positive solutions of third order boundary value problems with p-Laplacian.
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1. INTRODUCTION

Third order boundary value problems (BVPs) arise in variety of different areas of

applied mathematics and physics. In recent years, many authors have studied them,

see, for example, [1,2,4-9] and the references therein. In this paper, we consider the

following third order BVPs with p-Laplacian:

(1.1)

{

(φp(u
′))′′ + a(t)f(u) = 0, 0 < t < 1,

u(0) = ξu(η) + λ, u′(0) = u′(1) = 0,

where φp(x) = |x|p−2x, p > 1, ξ ∈ [0, 1), η ∈ [0, 1], λ > 0, and a : (0, 1) → [0, +∞)

and f : (0, +∞) → [0, +∞) are continuous. We call u ∈ C1[0, 1] a positive solution

of BVP (1.1) if u(t) ≥ 0 for t ∈ [0, 1] but u(t) is not identically vanishing in [0, 1],

and u(t) satisfies (1.1). In Eq. (1.1), the function a(t) may be singular at t = 0 and

t = 1, and our nonlinear term f(u) may be singular at u = 0.

When the nonlinearity f(x) is regular at x = 0, [7] discuss the uniqueness of

positive solutions and the dependence of positive solutions on the parameter λ for

BVP (1.1). However, to the best of our knowledge, for the nonlocal BVPs with

nonhomogeneous BCs, results on the uniqueness of positive solutions are rare in the

literature when nonlinearities involved in the associated problems are singular in the

phase variable.

In this paper, we first present an existence theorem for a unique fixed point for

a class of increasing operators without continuity and compactness, and apply it to
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investigate the existence and uniqueness of positive solutions for the nonlocal singular

BVP (1.1).

Here we briefly recall various basic definitions and facts.

Let E be a real Banach space and P a nonempty convex closed subset of E. We

say P is a cone in E if P satisfies the following two conditions:

(i) λx ∈ P for any x ∈ P and λ ≥ 0;

(ii) x,−x ∈ P implies x = θ, where θ is the zero element of E.

The Banach space E can be partially ordered by a cone P , that is, x ≤ y if and

only if y−x ∈ P . Recall that a cone P in E is normal if there exists a constant N > 0

such that ‖x‖ ≤ N‖y‖ when θ ≤ x ≤ y. The smallest N satisfying the condition is

said to the normality constant of P .

Given h > θ, that is, h ≥ θ and h 6= θ, we let

Ph = {x|x ∈ E and there exist λ(x), µ(x) > 0 such that λ(x)h ≤ x ≤ µ(x)h}.

It is easy to see that Ph ⊂ P . It is clear that for any x, y ∈ Ph and k > 0, we have

x + y ∈ Ph, kx ∈ Ph and there exist λ, µ > 0 such that λx ≤ y ≤ µx.

Consider the linear space C[a, b] of all real-valued continuous functions x(t) de-

fined on [a, b]. C[a, b] is a Banach space when given the norm

‖x‖ = max
t∈[a,b]

|x(t)|.

Set P = {x|x ∈ C[a, b], x(t) ≥ 0, t ∈ [a, b]}. Then P is a normal cone in C[a, b]

whose normality constant is 1.

Let E be a real Banach space, P a cone in E, D a subset of E. We say an

operator A : D −→ E is increasing on D if x1 ≤ x2 implies that Ax1 ≤ Ax2 for any

x1, x2 ∈ D.

See [3] for a detailed exposition.

2. FIXED POINT THEOREMS FOR INCREASING OPERATORS

In this section, we give a fixed point theorem for increasing operators.

Theorem 2.1. Let E be a real Banach space, P a normal cone in E, h > θ, w ∈ Ph,

where θ is the zero element of E. Assume that A : P −→ P is an increasing operator

satisfying A(tx) ≥ tαAx for any x ∈ P and t ∈ (0, 1) (α > 1). The operator C is

given by Cu = Au + w, u ∈ P . If there exists v0 ∈ Ph such that

(i) Cv0 ≤ v0;

(ii) Av0 ≤ βw, where β ∈ (0, 1
α−1

);

then
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(a) C has a unique fixed point x∗ in [θ, v0], and x∗ ∈ Ph; and there exists v′

0 ∈ Ph

with v′

0 > v0 such that C has no fixed points in [θ, v′

0]\[θ, v0];

(b) for any x0 ∈ [θ, v0], writing xn+1 = Cxn, n = 0, 1, 2, . . . , we have lim
n→∞

xn =

x∗. Moreover, there exist l̄, γ ∈ (0, 1) such that ‖xn − x∗‖ ≤ 2N(1 − l̄γ
n

)‖v0‖, n =

1, 2, . . . , where N is the normality constant of P .

Proof. We have

Cu ∈ Ph for any u ∈ [θ, v0].

For, by w ∈ Ph, there exist λ, µ > 0 such that λh ≤ w ≤ µh. Hence for any u ∈ [θ, v0],

since Au ∈ P , we obtain, relating to the increasing property of A, that

λh ≤ w ≤ Au + w = Cu ≤ Av0 + w ≤ βw + w = (β + 1)w ≤ (β + 1)µh.

We also have there exists γ ∈ (0, 1) such that

C(lu) ≥ lγCu for any l ∈ (0, 1) and u ∈ [θ, v0].

In fact, since the function ϕ(s) = s
α−s

is continuous on [0, 1] and β ∈ (0, 1
α−1

), there

exists γ ∈ (0, 1) such that γ

α−γ
> β. It is easily verified that

lγ − 1

lα − lγ
>

γ

α − γ
for any l ∈ (0, 1),

hence lγ−1
lα−lγ

> β, so Av0 ≤ βw ≤ lγ−1
lα−lγ

w. In virtue of the increasing property of A, we

have for any u ∈ [θ, v0], Au ≤ Av0 ≤
lγ−1
lα−lγ

w, that is, lαAu + w ≥ lγ(Au + w), hence

C(lu) = A(lu) + w ≥ lαAu + w ≥ lγ(Au + w) = lγCu.

Set vn+1 = Cvn, n = 0, 1, 2, . . . . By (i), it follows that v1 = Cv0 ≤ v0. Since

A is increasing, C is also increasing, hence vn+1 ≤ vn, n = 0, 1, 2, . . . . Thus vn ∈

[θ, v0], n = 0, 1, 2, . . . .

Next we shall prove (a).

Existence. There exists c > 0 such that Cv0 ≥ cv0 since Cv0, v0 ∈ Ph. Taking

a sufficiently small number l0 ∈ (0, 1) such that l
γ−1
0 c > 1 and setting u0 = l0v0, we

have Cu0 = C(l0v0) ≥ l
γ
0Cv0 ≥ l

γ
0cv0 = l

γ−1
0 cl0v0 ≥ l0v0 = u0. Set un+1 = Cun, n =

0, 1, 2, . . . . Since u0 ≤ Cu0 = u1, v1 ≤ v0, u0 = l0v0 ≤ v0 and C is increasing, by

induction, we have un ≤ un+1, vn+1 ≤ vn, un ≤ vn, n = 0, 1, 2, . . . , that is,

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

We also have

u1 = Cu0 = C(l0v0) ≥ l
γ
0Cv0 = l

γ
0v1,

u2 = Cu1 ≥ C(lγ0v1) ≥ (lγ0 )γCv1 = l
γ2

0 v2,

and so on and so forth, un ≥ l
γn

0 vn, n = 3, 4, 5, . . . .
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Therefore

l
γn

0 vn ≤ un ≤ un+p ≤ vn+p ≤ vn

for any positive integers n and p. So we have

θ ≤ un+p − un ≤ vn − l
γn

0 vn ≤ (1 − l
γn

0 )v0,

hence

‖un+p − un‖ ≤ N‖(1 − l
γn

0 )v0‖ = N(1 − l
γn

0 )‖v0‖ → 0 as n → ∞,

which indicates that {un} is a Cauchy sequence. And we have

θ ≤ vn − vn+p ≤ vn − l
γn

0 vn ≤ (1 − l
γn

0 )v0,

hence

‖vn+p − vn‖ = ‖vn − vn+p‖ ≤ N(1 − l
γn

0 )‖v0‖ → 0 as n → ∞,

which indicates that {vn} is also a Cauchy sequence. Set ū = lim
n→∞

un and v̄ = lim
n→∞

vn.

Since

θ ≤ vn − un ≤ vn − l
γn

0 vn ≤ (1 − l
γn

0 )v0,

‖vn − un‖ ≤ N(1 − l
γn

0 )‖v0‖ → 0 as n → ∞.

Thus ‖ū− v̄‖ = lim
n→∞

‖un − vn‖ = 0, that is, ū = v̄. Write x∗ = ū = v̄. Since um ≤ vn

for any positive integers m and n, x∗ ≤ vn as m → ∞ and um ≤ x∗ as n → ∞. Hence

un ≤ x∗ ≤ vn for any positive integer n. By the increasing property of C, we have

un+1 ≤ Cx∗ ≤ vn+1. So x∗ ≤ Cx∗ ≤ x∗, that is, Cx∗ = x∗. Thus x∗ is a fixed point

of C. It is clear that x∗ ∈ [θ, v0] and x∗ = Cx∗ ∈ Ph.

Uniqueness. Suppose that y∗ ∈ [θ, v0] is also a fixed point of C. Since x∗, y∗ ∈ Ph,

there exists q > 0 such that x∗ ≥ qy∗. Write q0 = sup{q|q > 0, x∗ ≥ qy∗}. It is clear

that q0 > 0 and x∗ ≥ q0y
∗. If q0 < 1, then x∗ = Cx∗ ≥ C(q0y

∗) ≥ q
γ
0Cy∗ = q

γ
0y∗,

which is contrary to the definition of q0 since q
γ
0 > q0. Therefore q0 ≥ 1. So we have

x∗ ≥ y∗. Similarly it follows that y∗ ≥ x∗. Thus x∗ = y∗.

We can also obtain that there exists v′

0 ∈ Ph with v′

0 > v0 such that C has a

unique fixed point in [θ, v′

0]. Since lim
s→1+

s−1
sα−s

= 1
α−1

, there exists s0 > 1 such that

sα
0β <

1

α − 1
and

s0 − 1

sα
0 − s0

> β.

Write v′

0 = s0v0. It is clear that v′

0 > v0. By (ii), we have Av0 ≤ βw ≤ s0−1
sα

0
−s0

w, hence

sα
0Av0 + w ≤ s0(Av0 + w). Again by (i) and the property of A, it follows that

Cv′

0 = C(s0v0) = A(s0v0) + w = sα
0 ·

1

sα
0

A(s0v0) + w ≤ sα
0A(

1

s0
· s0v0) + w

= sα
0Av0 + w ≤ s0(Av0 + w) = s0Cv0 ≤ s0v0 = v′

0.

We also have Av′

0 = A(s0v0) = sα
0 · 1

sα

0

A(s0v0) ≤ sα
0 A( 1

s0

· s0v0) = sα
0Av0 ≤ (sα

0β)w.

Therefore v′

0 satisfies (i) and (ii) which v0 satisfies. As the above proof, C has a
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unique fixed point z∗ in [θ, v′

0]. Since x∗ ∈ [θ, v0] ⊂ [θ, v′

0] is a fixed point of C, we

must have z∗ = x∗. Thus C has no fixed points in [θ, v′

0]\[θ, v0].

At last, we shall prove (b).

For any x0 ∈ [θ, v0], since x1 = Cx0 ∈ Ph, v1 = Cv0 ∈ Ph and x∗ ∈ Ph, there

exists l̄ ∈ (0, 1) such that l̄γv1 ≤ x1 = Cx0 ≤ Cv0 = v1 and l̄γv1 ≤ x∗ = Cx∗ ≤ Cv0 =

v1. By induction, it easily follows that

l̄γ
n

vn ≤ xn ≤ vn and l̄γ
n

vn ≤ x∗ ≤ vn, n = 1, 2, . . . .

Because P is normal and lim
n→∞

vn = lim
n→∞

l̄γ
n

vn = x∗, it follows that lim
n→∞

xn = x∗ by

the property of normal cones. We also have for any positive integer n,

θ ≤ vn − xn ≤ vn − l̄γ
n

vn ≤ (1 − l̄γ
n

)v0 and θ ≤ vn − x∗ ≤ vn − l̄γ
n

vn ≤ (1 − l̄γ
n

)v0,

hence

‖xn−x∗‖ ≤ ‖vn−xn‖+‖vn−x∗‖ ≤ N‖(1− l̄γ
n

)v0‖+N‖(1− l̄γ
n

)v0‖ = 2N(1− l̄γ
n

)‖v0‖.

Remark 2.2. In Theorem 2.1, if E = C[a, b] and P = {x|x ∈ E, x(t) ≥ 0, t ∈ [a, b]},

then “‖xn − x∗‖ ≤ 2N(1 − l̄γ
n

)‖v0‖” in (b) can be changed into “‖xn − x∗‖ ≤

(1 − l̄γ
n

)‖v0‖”. In fact, we have

l̄γ
n

vn ≤ xn ≤ vn and l̄γ
n

vn ≤ xn ≤ vn, n = 1, 2, . . . .

For all n = 1, 2, . . . ,

xn − x∗ ≤ vn − l̄γ
n

vn ≤ (1 − l̄γ
n

)v0,

that is,

xn(t) − x∗(t) ≤ (1 − l̄γ
n

)v0(t), t ∈ [a, b].

Similarly we have

x∗(t) − xn(t) ≤ (1 − l̄γ
n

)v0(t), t ∈ [a, b].

Hence

|xn(t) − x∗(t)| ≤ (1 − l̄γ
n

)v0(t), t ∈ [a, b].

So

‖xn−x∗‖ = sup
t∈[a,b]

|xn(t)−x∗(t)| ≤ (1−l̄γ
n

) sup
t∈[a,b]

v0(t) = (1−l̄γ
n

) sup
t∈[a,b]

‖v0‖, n = 1, 2, . . . .
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3. THIRD ORDER BOUNDARY VALUE PROBLEMS WITH

p-LAPLACIAN

Now we shall discuss a class of third order boundary value problems using the

conclusions in Section 2.

Let E = C[0, 1], P = {x|x ∈ E, x(t) ≥ 0, t ∈ [0, 1]} and h(t) = 1, t ∈ [0, 1]. We

have h > θ, where θ is the zero element of E. And let

G(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1

and m = sup
r∈[0,1]

∫ 1

0
G(r, s)a(s)ds > 0.

Now we shall discuss a class of third order boundary value problems using the

conclusions in Section 2.

Let E = C[0, 1], P = {x|x ∈ E, x(t) ≥ 0, t ∈ [0, 1]} and h(t) = 1, t ∈ [0, 1]. We

have h > θ, where θ is the zero element of E. And let

G(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1

and m = sup
r∈[0,1]

∫ 1

0
G(r, s)a(s)ds > 0.

Theorem 3.1. Suppose that f : (0, +∞) → [0, +∞) is an increasing function satisfy-

ing that f(ku) ≥ k
α

q−1 f(u) for any k ∈ (0, 1) and u ∈ (0, +∞) (α > 1). If there exists

K ≥ αλ
(α−1)(1−ξ)

such that f(K) < 1
m

[ λ
(α−1)(1−ξ+ξη)

]
1

q−1 , writing v0(t) = K, t ∈ [0, 1],

then BVP (1) has a unique solution x∗ in [θ, v0], and x∗ ∈ Ph. And there exists

v̄0 ∈ Ph with v̄0 > v0 such that BVP (1) has no solutions in [θ, v̄0]\[θ, v0]. Moreover,

for any x0 ∈ [θ, v0], setting

xn+1(t) = −

∫ t

0

φq

(
∫ 1

0

G(r, s)a(s)f(xn(s))ds

)

dr

+
ξ

1 − ξ

∫ η

0

φq

(
∫ 1

0

G(r, s)a(s)f(xn(s))ds

)

dr +
λ

1 − ξ
,

t ∈ [0, 1], n = 0, 1, 2, . . . , we have the sequence {xn(t)} converges uniformly to x∗(t)

in [0, 1], and there exist l, γ ∈ (0, 1) such that max
t∈[0,1]

|xn(t) − x∗(t)| ≤ (1 − lγ
n

)K.

Proof. Define the operators A and C on P as follows.

(Au)(t) =

∫ t

0

φq

(
∫ 1

0

G(r, s)a(s)f(u(s))ds

)

dr

+
ξ

1 − ξ

∫ η

0

φq

(
∫ 1

0

G(r, s)a(s)f(u(s))ds

)

dr,

(Cu)(t) = (Au)(t) + w(t),
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t ∈ [0, 1], u ∈ P , where w(t) = λ
1−ξ

, t ∈ [0, 1].

It is obvious that w ∈ Ph.

We have Au ∈ P for any u ∈ P . Since G(r, s) ≥ 0, (r, s) ∈ [0, 1] × [0, 1], A is an

increasing operator. For any u ∈ P , Au ≥ Aθ ≥ θ, that is, Au ∈ P .

It is easily verified that A(ku) ≥ kαAu for any k ∈ (0, 1) any u ∈ P .

We have Cv0 ≤ v0. In fact, for any t ∈ [0, 1],

(Cv0)(t) = (Av0)(t) + w(t)

=

∫ t

0

φq

(
∫ 1

0

G(r, s)a(s)f(v0(s))ds

)

dr

+
ξ

1 − ξ

∫ η

0

φq

(
∫ 1

0

G(r, s)a(s)f(v0(s))ds

)

dr +
λ

1 − ξ

=

∫ t

0

φq

(
∫ 1

0

G(r, s)a(s)f(K)ds

)

dr

+
ξ

1 − ξ

∫ η

0

φq

(
∫ 1

0

G(r, s)a(s)f(K)ds

)

dr +
λ

1 − ξ

= f(K)q−1

∫ t

0

φq(m)dr + f(K)q−1 ·
ξ

1 − ξ

∫ η

0

φq(m)dr +
λ

1 − ξ

≤ [mf(K)]q−1

(

1 +
ξη

1 − ξ

)

+
λ

1 − ξ
<

λ

(α − 1)(1 − ξ + ξη)
·
1 − ξ + ξη

1 − ξ
+

λ

1 − ξ

=
α

α − 1
·

λ

1 − ξ
≤ K = v0(t).

Next we shall prove that there exists β ∈ (0, 1
α−1

) such that Av0 ≤ βw. For any

t ∈ [0, 1],

(Av0)(t) =

∫ t

0

φq

(
∫ 1

0

G(r, s)a(s)f(v0(s))ds

)

dr

+
ξ

1 − ξ

∫ η

0

φq

(
∫ 1

0

G(r, s)a(s)f(v0(s))ds

)

dr <
1

α − 1
·

λ

1 − ξ
.

Since (Av0)(t) is continuous on [0, 1], max
[0,1]

(Av0)(t) < 1
α−1

· λ
1−ξ

, hence there exists

β ∈
(

0, 1
α−1

)

such that max
[0,1]

(Av0)(t) ≤ β · λ
1−ξ

, so (Av0)(t) ≤ β · λ
1−ξ

= βw(t) for any

t ∈ [0, 1], that is, Av0 ≤ βw.

Now all conditions of Theorem 2.1 are satisfied. Thus C has a unique fixed point

x∗ in [θ, v0], and x∗ ∈ Ph; and there exists v̄0 ∈ Ph with v̄0 > v0 such that C has no

fixed points in [θ, v̄0]\[θ, v0]. For any x0 ∈ [θ, v0], writing xn+1 = Cxn, n = 0, 1, 2, . . . ,

we have lim
n→∞

xn = x∗. Relating to Remark 2.2, there exist l, γ ∈ (0, 1) such that

‖xn − x∗‖ ≤ (1 − lγ
n

)‖v0‖ ≤ (1 − lγ
n

)K, n = 1, 2, . . . .

It is easily verified that fixed points of C are identical to solutions of BVP (1).

So we complete the proof.
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Remark 3.2. We may give an example. For the following third order BVP with

p-Laplacian
{

(φ2(u
′))′′ + u2 = 0, 0 < t < 1,

u(0) = 1
2
u(1

2
) + 1

2
, u′(0) = u′(1) = 0,

K = 2 satisfies conditions in Theorem 3.1.
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