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ABSTRACT. Geometric fractional Brownian motion (GFBM) is an extended dynamic model of the

traditional geometric Brownian motion, and has been used in characterizing the long term memory

dynamic behavior of financial time series and in pricing long-memory options. A crucial problem

in its applications is how the unknown parameters in the model are to be estimated. In this paper,

we study the problem of estimating the unknown parameters, which are the drift µ, volatility σ and

Hurst index H , involved in the GFBM, based on discrete-time observations. We propose a complete

maximum likelihood estimation approach, which enables us not only to derive the estimators of µ

and σ2, but also the estimate of the long memory parameter, H , simultaneously, for risky assets

in the dynamic fractional Black-Scholes market governed by GFBM. Simulation outcomes illustrate

that our methodology is statistically efficient and reliable. Empirical application to stock exchange

index with European option pricing under GFBM is also demonstrated.

AMS (MOS) Subject Classification. 35K60, 35K57

1. INTRODUCTION

The dynamic behavior of financial markets has always intrigued researchers for

many decades. Many financial models have been developed, where the underlying

dynamic processes are driven by Brownian motion or its extensions. Bachelier (1900)’s

famous thesis, for example, considered application of the arithmetic Brownian motion

(BM) to stock exchange index for the first time. Samuelson (1965) made further

development on Bachelier’s fundamental theory by modelling stock prices according to

geometric Brownian motions (GBM) so as to better capture the real market dynamic

behavior. Black and Scholes (1973) and Merton (1973) are no doubt the two most well

known fundamental papers, where BM and GBM are so successfully applied in option

pricing theory. In this paper, we are concerned with the estimation and application

of dynamic geometric fractional Brownian motion (GFBM) in long-memory option

pricing. This model covers the traditional GBM model as a special case.

GFBM is a geometric version of the Fractional Brownian motion (FBM), denoted

by BH(t), which was first studied by Kolmogorov as early as in 1940. However, the
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terminology was suggested in Mandelbrot and Van Ness (1968), where its statistical

properties are established and reported. Since then, many works have been carried

out in a variety of fields, ranging from network traffic (see, for example, Abry et al..

(2000)) to dynamic system (see, for example, Ahmed and Charalambous (2002) and

Misiran et al.. (2010)) and to economics and finance (see, for example, Mandelbrot

and Van Ness (1968), Shiryaev (1999), Cajueiro and Barbachan (2005)). The main

emphasis is on the dealing with self-similarity. One of the favorite problems, which

is still being debated, in the literature, is to find a good method to estimate the

index of self-similarity, i.e., the Hurst parameter H , which is named after the English

hydrologist H.E. Hurst, who introduced the index of self-similarity when studying the

Nile River in 1951.

Application of FBM and GFBM to dynamic financial option pricing is a nat-

ural way of extending the famous Black-Scholes option theory which was based on

BM and GBM. Earlier works on FBM based on the pathwise integration theory

showed that the mathematical models of markets based on BH(t) could have arbi-

trage opportunity and hence are useless in financial modelling (Rogers, 1997). This

drawback has discouraged further investigation in this field for many years. Only

recently have researchers worked on BH(t) using ordinary product pathwise as an

alternative approach. This approach has produced results, where no arbitrage situa-

tion can occur. Consequently, these results have motivated active works, where the

underlying dynamic processes of mathematical markets models are driven by BH(t).

Hu and Øksendal (2003) proved that the white noise calculus based on BH(t) with
1
2

< H < 1, corresponding to Ito type fractional Black Sholes market, has no arbitrage

and the market is complete. Elliott and van der Hoek (2003) extended the range of

H to [0, 1]. They were concerned with option pricing with FBM taken as the driving

noise process. Though there is some criticism regarding this approach1, the option

pricing under GFBM has been well developed based on this new framework, covering

the Black-Scholes option pricing as a special case (H = 0.5). Many researchers have

taken into account long-memory dynamic behavior in the option pricing. See, for

example, Aldabe et. al (1998) for regularized fractional Brownian motion, Bertrand

(2005) for multiscale fractional Brownian motion with European option, Elliott and

Chan (2004) for valuation of perpetual American options, and Jumarie (2005) for

Merton’s optimal portfolio. In this paper, we follow a recent approach reported in

Mishura (2008), where a rigourously derived formula for European option under dy-

namic fractional Black-Scholes market is given.

A crucial problem associated with the real applications of these option pricing

formulae in the dynamic fractional Black-Scholes markets is how do we obtain the

1Hult and Bjork (2005) criticized on the meaning of self-financing in this framework, but agreed

that the method used does not admit arbitrage.
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unknown values of the parameters in GFBM. In particular, there are two key pa-

rameters, the volatility σ and the long memory parameter H . They play a crucially

important role in valuing, say, European option (see Mishura (2008)). See Section

4 for detail. However, in the literature, to the best of our knowledge, it appears

that there are very few work devoted to this problem. An exception is the paper by

Kukush et al. (2005), who developed an incomplete maximum likelihood estimation

(IMLE) of the volatility σ, while the long memory parameter H is estimated a priori

independently by some estimation methods specially designed for estimating H , such

as the R/S analysis, variation analysis, etc. Differently from Kukush et al. (2005), in

this paper, we will study the problem of estimating the unknown parameters, con-

sisting of the drift µ, volatility σ and Hurst index H in the range of 0 < H < 1,

involved in the GFBM, simultaneously, based on the discrete-time observations. We

propose an approach of complete maximum likelihood estimation (CMLE), which en-

ables us not only to derive the estimators of µ and σ2, but also the estimate of the

long memory parameter, H . Our simulation study clearly indicates that our CMLE

approach is statistically efficient and reliable for the model of GFBM, while the sep-

arating method of estimating σ2 and H by IMLE together with the widely used R/S

analysis may lead to poor estimates of them. Empirical studies using stock exchange

indices with long-memory option pricing under GFBM also show that our proposed

method gives rise to reasonable outcomes of the European option prices. The tradi-

tional Black-Scholes formula tends to undervalue the option, while the IMLE method

with R/S analysis for GFBM may lead to overvaluation of the option.

The rest of the paper is organized as follows. A brief background introduction to

dynamic FBM and GFBM is given in Section 2. We propose and derive the complete

maximum likelihood approach to the estimation problem of GFBM in Section 3.

Section 4 presents the simulation results obtained by using the CMLE in estimating

GFBM against those obtained by using the separating method. Some empirical work

on pricing European call option is reported in Section 5. Finally, we make some

concluding remarks in Section 6. Detailed derivation is relegated to Appendix A.

2. DYNAMIC MODEL OF GEOMETRIC

FRACTIONAL BROWNIAN MOTION

2.1. Fractional Brownian motion, BH(t). The FBM first came to limelight in

the financial world due to Mandelbrot and van Ness (1968), who generalized the

traditional Brownian motion with H = 1
2

to FBM with BH(t) for 0 < H < 1. BH(t)

is a self-similar Gaussian process, with index 0 < H < 1 and stationary increments,

defined on a probability space. It posses the properties that BH(0) = 0, E[BH(t)] = 0



52 M. MISIRAN, Z. LU, K. L. TEO, AND G. AW

for every t ≥ 0, and its covariance is given by

CH(t) = E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t − s|2H).

The self-similarity means that for any α > 0, BH(αt) has the same law as αHBH(t).

Clearly, when H = 1
2
, BH(t) reduces to a standard Brownian motion B(t). For further

details, the reader is referred to Biagini, Hu, Øksendal and Zhang (2008).

We need the following property on the increment of the FBM. Set

ej = BH(j + 1) − BH(j)

for j ∈ Z, where Z is the set of all integers. Then the covariance of ej can be expressed

as

(2.1) r(k) = Eej+kej =
1

2
(|k + 1|2H + |k − 1|2H − 2|k|2H)

for k ∈ Z. Note that when H < 1
2
, the increments are negatively correlated whereas

H > 1
2

shows the positive correlation. This increment is a stationary process, which

is often referred to as fractional Gaussian noise. It is easily showed that

r(k) ∼ H(2H − 1)k2H−2, as k → ∞,

which implies that if H > 1
2

then the summation of correlations diverges, i.e.
∑

∞

k=0 r(k) =

∞, often referred to as long memory or long range dependence property.

2.1.1. Geometric fractional Brownian motion. We are concerned with dynamic frac-

tional Black-Scholes markets, in which the dynamic risky asset price process, S(t),

driven by FBM is modelled by GFBM, in the form

dS(t) = µS(t)dt + σS(t)dBH(t),

where S(0) = s > 0, and µ and σ > 0 are the drift and volatility, respectively. The

solution to this fractional differential equation (Hu and Øksendal, 2000) is given by

(2.2) S(t) = s exp

{
σBH(t) + µt −

1

2
σ2t2H

}
.

The two unknown parameters, i.e., the Hurst index H and the volatility σ, in this

model are particularly important in financial asset pricing (see Section 4 below). How

to estimate them is what we aim at in next section.

3. METHODOLOGY OF ESTIMATION

3.1. Model simplification. We begin with a review of the idea of incomplete like-

lihood estimation given by Kukush et al. (2005) and then put forward a different

discrete-time model of GFBM for our proposed complete likelihood estimation.
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Let X(t) = ln(S(t)
s

). Then it follows from (2.2) that X(t) = σBH(t)+µt−(σ2

2
)t2H ,

t ≥ 0. As in Kukush et al. (2005), we assume that the historical data are observed at

discrete times

tk =
kT

n
, k = 0, 1, . . . , n,

over the time interval [0, T ]. By setting Xk = X(tk) and BHk = BH(tk) and consid-

ering k = 1, . . . , n, we have

(3.1) ∆Xk = σ∆BHk + µ∆tk −
σ2

2
∆(t2H)k,

where ∆Xk = Xk − Xk−1, ∆BHk and ∆tk are defined similarly, and ∆(t2H)k =

t2H
k − t2H

k−1.

Kukush et al. (2005) develop an incomplete maximum likelihood estimation (IMLE)

procedure, which is briefly described as follows. First, they assume that H can be

estimated in advance by some existing estimation methods, such as the R/S analysis,

variation analysis, etc. Then they define Yk = nH∆Xk

T H and write (3.1) as

(3.2) Yk = σεk +
nHµ∆tk

TH
−

1

2
σ2THnH∆τ 2H

k

for k = 1, . . . , n, where ∆τ 2H
k = ( k

n
)2H−(k−1

n
)2H , and εk = nH∆BHk

T H . Simple calculation

shows that εk is normally distributed with Eεk = 0, Eε2
k = 1 and the covariance of

εk the same as in (2.1). Using (3.2), Kukush et al. (2005) then suggest an IMLE of

the volatility σ, based on Yk, with

σ̂2
IMLE =

1

n

n∑

k=1

(Yk − Ȳ )2,

where Ȳ = 1
n

∑n

k=1 Yk. This estimation method was applied to option pricing by

Cajueiro and Barbachan (2005). Note that σ̂2
IMLE is just the usual sample variance of

Yk. It is essentially assumed that the Yk in the model (3.2) is stationary. However,

this is obviously not true in general in the model (3.2) in view of the fact that

∆τ 2H
k will depend on k if H 6= 0.5. Under some restrictive conditions imposed on

n = n(T ), such as n/T 2H → ∞ as T → ∞ for 0.5 < H < 0.75, which demands a

sufficiently larger number of observations to be available over a large time interval

[0, T ], Theorem 7.1 of Kukush et al. (2005, Page 88) showed that σ̂2
IMLE is consistent.

However, this requirement of a sufficiently larger number of observations may be

violated in practice, especially when the sample size n does not converge to ∞ faster

than T in applications. Furthermore, a bad advance estimate of H may lead to a

very poor estimate of σ2. Therefore, it is noticed that this IMLE is not statistically

efficient in general.

In this paper, we study the problem of estimating the unknown parameters,

including the drift µ, volatility σ and Hurst index H , involved in the GFBM based on

discrete observations. Unlike Kukush et al. (2005), we propose a complete maximum
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likelihood estimation (CMLE) approach, which enables us to estimate µ, σ2 and H ,

simultaneously. We will follow an alternative approach and consider the returns series

Zk = ∆Xk, rather than Yk, as follows (following from (3.2)):

Zk = ∆Xk = (
T

n
)HYk

= (
T

n
)Hσεk + µ

T

n
−

1

2

{
(
T

n
)Hσ

}2

n2H∆τ 2H
k

≡ σ1εk + µ1 −
1

2
σ2

1n
2H∆τ 2H

k ,(3.3)

where σ1 = (T
n
)Hσ and µ1 = µT

n
. We construct our complete maximum likelihood

estimation based on (3.3).

3.2. Complete maximum likelihood estimation. In this subsection, we are con-

cerned with the estimation of ϑ = (σ2, µ, H)′ by using the method of CMLE through

the likelihood function of θ = (σ2
1, µ1, H)′. Here A′ stands for the transpose of a

vector or matrix A.

3.2.1. Likelihood function of θ = (σ2

1
, µ1, H)

′

. The following theorem provides the

complete likelihood function of θ.

Theorem 3.1. Suppose our observations are Z = (Z1, . . . , Zn)
′ based on (3.3). Then

the CMLE of θ = (σ2
1, µ1, H)′ is θ̂ = (σ̂2

1, µ̂1, Ĥ)′ that maximizes the complete loga-

rithmic likelihood function as follows

ℓn(θ) = −
1

2
(n log σ2

1 + log |Σ0|) −
1

2σ2
1

(Z − µ11 +
1

2
σ2

1xH)′Σ−1
0 (Z − µ11 +

1

2
σ2

1xH),

and the estimators of σ2 and µ are
(

n
T

)2Ĥ
σ̂2

1 and n
T
µ̂1 respectively, where 1 is a

n-dimensional vector of components 1’s, Σ0 = Σ0(H) = (γij)n×n is given by

γij = γij(H) = Eεiεj =
1

2
(|i − j + 1|2H − 2|i − j|2H + |i − j − 1|2H),

and xH = n2H(∆τ 2H
1 , . . . , ∆τ 2H

n )′.

Proof. Based on (3.3), our observations are Z = (Z1, . . . , Zn)
′, and set ε = (ε1, · · · , εn)

′.

Then the vector form of (3.3) is as follows

(3.4) Z = σ1ε + µ11 −
1

2
σ2

1xH .

Set

Σ = Var(Z) = σ2
1(Eεε′) = σ2

1Σ0.

Since the process is Gaussian, it follows from (3.4) that the log likelihood for Z (c.f.,

Hamilton, 1994, Chapter 5) is

ℓn(θ) = −
1

2
log |Σ| −

1

2
(Z − µ11 +

1

2
σ2

1xH)′Σ−1(Z − µ11 +
1

2
σ2

1xH)
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= −
1

2
(n log σ2

1 + log |Σ0|) −
1

2σ2
1

(Z − µ11 +
1

2
σ2

1xH)′Σ−1
0 (Z − µ11 +

1

2
σ2

1xH).(3.5)

Therefore the CMLE of θ = (σ2
1, µ1, H)′ is

(3.6) θ̂ = (σ̂2
1, µ̂1, Ĥ)′ = arg max

θ∈Θ
ℓn(θ),

where Θ is a compact subset of R
+ ×R× (0, 1), which contains the actual parameter

vector θ0 = (σ2
10, µ10, H0)

′.

We finally obtain the estimators of σ2 and µ as follows:

(3.7) σ̂2 =
(n

T

)2Ĥ

σ̂2
1 , µ̂ =

n

T
µ̂1.

Hence the proof is finished.

3.2.2. Profile likelihood algorithm. How to calculate θ̂ in (3.6)? Directly maximizing

(3.5) is obviously involved. We here suggest a profile likelihood method to simplify

the calculation in applications.

Given H , we can derive the maximum likelihood estimators for σ2
1 and µ1 by

maximizing (3.5) with respect to σ2
1 and µ1. They are achieved by setting the first

order partial derivatives of ℓn(θ) with respect to σ2
1 and µ1 equal to 0, giving

Theorem 3.2. The profile complete maximum likelihood estimators of σ2
1 and µ1

given H are as follows:

(3.8) σ̂2
1(H) =

2Z ′Σ1Z√
n2 + x′

HΣ1xHZ ′Σ1Z + n

and

(3.9) µ̂1(H) =
1

1
′Σ−1

0 1
(1′Σ−1

0 Z +
1

2
σ̂2

11
′Σ−1

0 xH),

where

Σ1 = Σ1(H) = Σ−1
0

(
I−

11
′Σ−1

0

1
′Σ−1

0 1

)

with I being an n × n identity matrix.

The derivation of this theorem is deferred to Appendix A for details.

Now in order to estimate H, we replace σ2
1 and µ1 in (3.5) by (3.8) and (3.9),

respectively, which leads to

ℓ1n(H) = ℓ(σ̂2
1(H), µ̂1(H), H)

= −
1

2
{n log σ̂2

1(H) + log |Σ0|}

−
1

2σ̂2
1(H)

{Z − µ̂1(H)1 +
1

2
σ̂2

1(H)xH}
′Σ−1

0 {Z − µ̂1(H)1 +
1

2
σ̂2

1(H)xH}.(3.10)

This is an involved function of H . Taking the differentiation of ℓ1n(H) with respect

to H is difficult. However, note that ℓ1n(H) is a univariate profile likelihood function
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of H . Many numerical methods can be used to maximise ℓ1n(H) without appealing

to differentiation, for example, the golden section search. In this way we easily obtain

the estimator Ĥ .

Put together, we suggest our algorithm as follows:

1) Maximize (3.10) numerically to get the estimator of H , Ĥ .

2) Calculate the estimators, σ̂2
1 and µ̂1, by replacing H by Ĥ in (3.8) and (3.9),

respectively.

3) Compute the estimators of σ2 and µ by (3.7).

We will demonstrate by simulation in next section that the above algorithm works

pretty well in calculation and the CMLE is much more statistically efficient than the

IMLE.

4. SIMULATION STUDY

In order to examine the performance of the proposed estimators, we did some

simulation experiments. Let us first describe how the data is generated. We first

consider the model (2.2). As in the last section, we take tk = kT
n

. Note that BH(tk)

has the property of Gaussian distribution with EBH(tk) = 0 and E(B2
H(tk)) = t2H

k =

(kT
n

)2H . With this property, equation (2.2) becomes

Sk = S(tk) = s exp

[

σ

(
T

n

)H

BH(k) + µ

(
kT

n

)
−

1

2
σ2

(
kT

n

)2H
]

.

We take the values of the parameters µ = 0.2752908, σ2 = 0.2554078, H = 0.549 and

the initial value of s = 903.84. We simulate the time series from this discrete time

model and apply our methodology to estimate the parameters ϑ = (σ2, µ, H) using

the simulated data set. The simulation is repeated one hundred times.

To have an idea on the performance of the estimators suggested by Kukush et al.

(2005), we also consider the estimation method by Kukush et al. as a comparison. No

doubt, R/S analysis of Hurst (1951) and Mandelbrot (1972, 1975) is the most widely

used method for the estimation of Hurst index in the literature; see also Mandelbrot

and Taqqu (1979) and Mandelbrot and Wallis (1968, 1969a-1969c). We apply the

Hurst value obtained from R/S analysis in Kukush et al.’s method. The simulated

outcomes of the average value of estimates based on 100 replications, with bias and

variance, are reported in Tables 1-4, for T = 15, T = 30, T = 40 and T = 50,

respectively. The 5 cases of sample sizes n = 100, 200, 300, 400, 500 are considered in

each table, where

• ĤCMLE = Hurst index obtained by using the method proposed in this paper;

• µ̂CMLE = µ obtained by the method proposed in this paper;

• σ̂2
CMLE = σ2 obtained by the method proposed in this paper;
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• ĤRS = Hurst index obtained by using the method of R/S analysis;

• σ̂2
IMLE = σ2 obtained by the method of Kukush et. al (2005) with ĤRS;

• To compare our proposed σ̂2
CMLE with Kukush et. al (2005)’s σ̂2

IMLE in terms

of statistical efficiency, we also calculated at the end of each table the efficiency

of σ̂2
IMLE against σ̂2

CMLE , Effσ̂2

IMLE
:σ̂2

CMLE
, which is defined as the ratio of the

simulated variance of σ̂2
CMLE to that of σ̂2

IMLE . Clearly, if Effσ̂2

IMLE
:σ̂2

CMLE
< 1,

then our proposed σ̂2
CMLE is more statistically efficient than the σ̂2

IMLE .

It follows from the results listed in Tables 1–4 that our method performs con-

siderably better. The biases and variances obtained by using our method are in an

acceptable tolerance. All of our estimates for H are obviously quite stable and less

biased. The performance on our proposed estimation of σ2 is fairly satisfactory, with

σ̂2
CMLE much more statistically efficient than Kukush et. al (2005)’s σ̂2

IMLE . In fact,

notice in Tables 1–4 that the statistical efficiency of σ̂2
IMLE in comparison with σ̂2

CMLE

is very low with Effσ̂2

IMLE
:σ̂2

CMLE
< 0.2, which means that the variance of our proposed

estimator σ̂2
CMLE is less than 20% of the variance of Kukush et. al (2005)’s σ̂2

IMLE in

all the simulation experiments. In particular, as n = 500, Effσ̂2

IMLE
:σ̂2

CMLE
< 0.065 in

all 4 Tables, and in Tables 3 and 4 σ̂2
IMLE becomes much worse as n becomes larger

by noting Effσ̂2

IMLE
:σ̂2

CMLE
approximately equal to 18% as n = 100 with T = 40 and

T = 50, respectively. However, for our estimation method, we can clearly see that

the larger the sample size n, the better the estimation performs in general; further,

overall, with larger T , the outcomes become better for fixed n.

We can also find that the bias by the incomplete likelihood method of Kukush et

al. is quite large in comparison to ours. We are able to give estimates not only for σ2,

but also for µ and Hurst exponent, H . To sum up, the simulation outcomes indicate

that our method is outstanding in obtaining more statistically efficient estimators for

GFBM.

5. EMPIRICAL APPLICATION TO

LONG-MEMORY OPTION PRICING

We now illustrate the finding using empirical data.

5.1. Data. We used a data set from Kuala Lumpur Composite Index (KLCI) avail-

able online at http://www.econstats.com. The daily close price data set of KLCI

from 3rd January 2005 to 29 December 2006 is examined, with 494 observations. The

return series is calculated in logarithm. The figures of the price and return series are

presented in Figures 1 and 2. A summary of the return series can be found in Table 5,

where the mean of this series is 0.0003915 and the variance is 0.00002584.
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5.2. Estimation based on CMLE method. We present in this subsection the

result of our study of modelling the data of KLCI by GFBM. We try to estimate the

parameters of the risky assets model using our proposed complete maximum likelihood

estimation method based on daily return series. The estimates are summarized in

Table 6.

We can clearly see from Table 6 that the suggested estimates are H = 0.575,

σ2 = 0.00002576 and µ = 0.0004510. This finding agrees with the work by Sadique

and Silvapulle (2001), where the presence of weak long memory in Malaysia financial

data is reported.

5.3. Application to European Option Pricing. It is interesting to note that

there has been an active research in pricing the option by using the fractional Black

Scholes equations recently in the literature. Elliot and Chan (2004) provides solution

to pricing the perpetual American option by considering the log return stock series

driven by fractional Brownian motion. In this subsection, we consider the European

option pricing. Mishura (2008) showed that the price at time t0 ∈ [0, T0] of a European

call option with strike price K and maturity T0 is given by

C(t0, S) = SΦ

(
ln S

K
+ r(T0 − t0) + (T 2H

0 − t2H
0 )σ2

2

σ
√

T 2H
0 − t2H

0

)

− Ke−r(T0−t0)Φ

(
ln S

K
+ r(T0 − t0) − (T 2H

0 − t2H
0 )σ2

2

σ
√

T 2H
0 − t2H

0

)
,

where S is the underlying stock price at time t0, r is the risk free interest rate and

Φ(·) is the cumulative function of standard normal distribution. Note that it coincides

with the solution of the usual Black-Scholes option pricing if H = 1
2
.

By using this formula, we can calculate the appropriate value of European call

option. We consider several maturity times for an already traded option as we take

t0 = 47 days. The risk-free interest rate is fixed at 3.5% pa in regards to the actual

Malaysian conventional interest rate on December 29th, 2006, and we are interested

in the daily interest rate in this paper. We select the underlying price at time t0 as

MYR1096.24, following the price on December 29th, 2006. The volatility and Hurst

exponent are estimated based on our method from the historical daily returns data of

KLCI, with estimates listed in Table 6. For comparison, we also calculate the value

of European call option using the estimates based on the method of Kukush et al.

(2005) with R/S analysis and the traditional Black Scholes European option price.

The outcomes are listed in Table 7.

From Table 7, we see that all cases exhibit somewhat differently in the call prices.

Call prices valued by the traditional Black Scholes provide us with the least values,

where the long memory is not taken into account. Method proposed in this paper
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prices the call in an intermediate value between those obtained by the traditional

Black Scholes and the method by Kukush et al. with R/S analysis. Call prices

valued by Kukush et al. with R/S analysis are the highest. Our method is based on

rigorous theoretical reasoning (see the results in the previous sections). It gives rise

to practically acceptable results, where the long-memory is taken into account. It is

seen that the longer the time to expiry, the higher the value of call price becomes. In

the case of “in the money”, the call price reveals higher value when compared with

the case of “out of the money”, as expected.

6. CONCLUSION

Application of dynamic fractional Brownian motion in financial environment has

been a subject of debate by researchers in this field for a number of years since its first

appearance in the early 1960s. Extensive works developed in recent years in stochastic

integration of this process provide useful tools for its applications to finance, mostly

to the problems of option pricing. In this paper, we have proposed a CMLE method

and investigated the performance of our method for the dynamic geometric fractional

Brownian motion in financial modelling. We have also compared the performance of

our method with the previous works in the literature.

From the simulation study, we observed that our method performed significantly

better when compared with the previous methods. We also showed that by using

this method, we can obtain good estimates of all the parameters involved in the

geometric fractional Brownian motion. These parameters are important in modelling

the fractional Black Scholes markets. With the values of these parameters obtained,

we are able to price the long-memory European option using the fractional Black

Scholes models.

Based on the findings in this paper, we conclude that dynamic geometric frac-

tional Brownian motion is a good and promising tool for better understanding on

how the financial markets actually behave.
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8. APPENDICES

8.1. Appendix A: Proof of Theorem 3.2. Derivation of profile complete

maximum likelihood estimation. We will now derive the estimators for µ1 and

σ2
1 in regards to the log likelihood obtained in (3.5). The partial derivatives of ℓn(θ)

with respect to µ1 and σ2
1 are given by

∂ℓn

∂µ1

= −
1

2σ2
1

{(Z − µ11 +
1

2
σ2

1xH)′Σ−1
0 (−1) + (−1)′Σ−1

0 (Z − µ11 +
1

2
σ2

1xH)}

=
1

σ2
1

1′Σ−1
0 (Z − µ11 +

1

2
σ2

1xH),

∂ℓn

∂σ2
1

= −
n

2σ2
1

−
1

2

1

(σ2
1)

2
{σ2

1{(Z − µ11 +
1

2
σ2

1xH)′Σ−1
0

1

2
xH +

1

2
x′

HΣ−1
0 (Z − µ11 +

1

2
σ2

1xH)}

− {(Z − µ11 +
1

2
σ2

1xH)′Σ−1
0 (Z − µ11 +

1

2
σ2

1xH)}}.

Setting them equal to zero yields

(8.1) µ1 =
1

1′Σ−1
0 1

(1′Σ−1
0 Z +

1

2
σ2

11
′Σ−1

0 xH),
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and

σ2
1 =

1

n
(Z − µ11 −

1

2
σ2

1xH)′Σ−1
0 (Z − µ11 +

1

2
σ2

1xH)

=
1

n
(Z −

1

2
σ2

1xH)′Σ−1
0 (Z − (

1′Σ−1
0 Z + 1

2
σ2

11
′Σ−1

0 xH

1′Σ−1
0 1

)1 +
1

2
σ2

1xH)

=
1

n
(Z −

1

2
σ2

1xH)′Σ−1
0 (I − (

11′Σ−1
0

1′Σ−1
0 1

))(Z +
1

2
σ2

1xH),

respectively. By substituting Σ1 = Σ−1
0 (I− (

11
′Σ−1

0

1
′Σ−1

0
1
)), the above equation is simplified

to

σ2
1 =

1

n
(Z −

1

2
σ2

1xH)′Σ1(Z +
1

2
σ2

1xH)

=
1

n
Z ′Σ1Z − σ2

1(
x′

HΣ1Z − Z ′Σ1xH

2n
) − σ4

1(
x′

HΣ1xH

4n
).

Notice from this equality that the solution for σ2 can be obtain by solving the qua-

dratic equation

σ4
1(

1

4n
x′

HΣ1xH) + σ2
1 −

1

n
Z ′Σ1Z = 0,

which, when x′

HΣ1xH 6= 0, gives

σ̂2
1 =

√
1 + 1

n2x
′

HΣ1xHZ ′Σ1Z − 1

1
2n

x′

HΣ1xH

=
1 + 1

n2 x
′

HΣ1xHZ ′Σ1Z − 1

1
2n

x′

HΣ1xH(
√

1 + 1
n2 x

′

HΣ1xHZ ′Σ1Z + 1)

=
2Z ′Σ1Z√

n2 + x′

HΣ1xHZ ′Σ1Z + n
.(8.2)

Note that when x′

HΣ1xH = 0, it is obvious that the final equality of (8.2) can still

be applied. Therefore, (3.8) and (3.9) in Subsection 3.2 follow from (8.2) and (8.1),

respectively.
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Figure 1. Daily close price series of KLCI from 3rd January 2005 to

29 December 2006
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December 2006
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Table 1. Outcome of simulation with T = 15: average value of

estimates based on 100 replications, with bias in ( ) and variance in [ ]

n 100 200 300 400 500

0.5378 0.5395 0.5446 0.5438 0.5409

ĤCMLE
(−0.0112)
[0.0019]

(−0.0095)
[0.0011]

(−0.0044)
[0.0012]

(−0.0052)
[0.0008]

(−0.0081)
[0.0009]

0.2590 0.2593 0.3199 0.2512 0.2697

µ̂CMLE
(−0.0163)
[0.0321]

(−0.0160)
[0.1022]

(0.0446)
[0.0270]

(−0.0240)
[0.0254]

(−0.0056)
[0.0159]

0.2439 0.2424 0.2520 0.2500 0.2448

σ̂2
CMLE

(−0.0115)
[0.0043]

(−0.0131)
[0.0025]

(−0.0034)
[0.0037]

(−0.0054)
[0.0029]

(−0.0106)
[0.0034]

0.6575 0.6275 0.6099 0.6326 0.5969

ĤRS
(0.1085)
[0.0318]

(0.0785)
[0.0200]

(0.0609)
[0.0141]

(0.0836)
[0.0113]

(0.0479)
[0.0057]

0.4739 0.5127 0.4748 0.5717 0.4060

σ̂2
IMLE

(0.2185)
[0.1158]

(0.2573)
[0.2747]

(0.2194)
[0.1925]

(0.3163)
[0.2226]

(0.1506)
[0.0524]

Effσ̂2

IMLE
:σ̂2

CMLE
0.0371 0.0091 0.0192 0.0130 0.0649

Table 2. Outcome of simulation with T = 30: average value of

estimates based on 100 replications, with bias in ( ) and variance in [ ]

n 100 200 300 400 500

0.5392 0.5374 0.5448 0.5425 0.5454

ĤCMLE
(−0.0098)
[0.0017]

(−0.0116)
[0.0010]

(−0.0042)
[0.0012]

(−0.0065)
[0.0009]

(−0.0036)
[0.0008]

0.2398 0.2788 0.2475 0.2691 0.2841

µ̂CMLE
(−0.0355)
[0.0194]

(0.0035)
[0.0172]

(−0.0278)
[0.0152]

(−0.0062)
[0.0163]

(0.0088)
[0.0184]

0.2457 0.2457 0.2520 0.2527 0.2538

σ̂2
CMLE

(−0.0097)
[0.0019]

(−0.0097)
[0.0018]

(−0.0034)
[0.0024]

(−0.0027)
[0.0019]

(−0.0016)
[0.0021]

0.6165 0.6302 0.6175 0.5950 0.6155

ĤRS
(0.0675)
[0.0291]

(0.0812)
[0.0165]

(0.0685)
[0.0104]

(0.0460)
[0.0113]

(0.0665)
[0.0073]

0.3230 0.3902 0.3937 0.3806 0.4177

σ̂2
IMLE

(0.0676)
[0.0232]

(0.1348)
[0.0389]

(0.1383)
[0.0573]

(0.1252)
[0.0481]

(0.1623)
[0.0498]

Effσ̂2

IMLE
:σ̂2

CMLE
0.0819 0.0463 0.0419 0.0395 0.0422
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Table 3. Outcome of simulation with T = 40: average value of

estimates based on 100 replications, with bias in ( ) and variance in [ ]

n 100 200 300 400 500

0.539 0.5363 0.5409 0.5455 0.5433

ĤMLE
(−0.0100)
[0.0019]

(−0.0127)
[0.0011]

(−0.0081)
[0.0012]

(−0.0035)
[0.0007]

(−0.0057)
[0.0007]

0.2853 0.2662 0.2841 0.3083 0.2799

µ̂CMLE
(0.0100)
[0.0869]

(−0.0091)
[0.0130]

(0.0089)
[0.0153]

(0.0330)
[0.0155]

(0.0046)
[0.0133]

0.2504 0.2512 0.2477 0.2510 0.2487

σ̂2
CMLE

(−0.0050)
[0.0021]

(−0.0042)
[0.0016]

(−0.0077)
[0.0016]

(−0.0044)
[0.0015]

(−0.0067)
[0.0016]

0.6113 0.6258 0.6275 0.6282 0.6095

ĤRS
(0.0623)
[0.0289]

(0.0768)
[0.0226]

(0.0785)
[0.0139]

(0.0792)
[0.0091]

(0.0605)
[0.0095]

0.3011 0.3752 0.3883 0.4052 0.3945

σ̂2
IMLE

(0.0457)
[0.0115]

(0.1198)
[0.0409]

(0.1328)
[0.0394]

(0.1498)
[0.0420]

(0.1390)
[0.0628]

Effσ̂2

IMLE
:σ̂2

CMLE
0.1826 0.0391 0.0406 0.0357 0.0255

Table 4. Outcome of simulation with T = 50: average value of

estimates based on 100 replications, with bias in ( ) and variance in [ ]

n 100 200 300 400 500

0.541 0.54 0.5423 0.5428 0.5438

ĤMLE
(−0.0080)
[0.0018]

(−0.0090)
[0.0014]

(−0.0067)
[0.0012]

(−0.0062)
[0.0008]

(−0.0052)
[0.0008]

0.2907 0.2675 0.2867 0.2690 0.2644

µ̂CMLE
(0.0154)
[0.0714]

(−0.0078)
[0.0150]

(0.0114)
[0.0141]

(−0.0062)
[0.0101]

(−0.0109)
[0.0113]

0.2469 0.2478 0.2508 0.2520 0.2526

σ̂2
CMLE

(−0.0085)
[0.0013]

(−0.0076)
[0.0014]

(−0.0046)
[0.0015]

(−0.0034)
[0.0012]

(−0.0028)
[0.0018]

0.6249 0.6167 0.6134 0.6212 0.6008

ĤRS
(0.0759)
[0.0327]

(0.0677)
[0.0127]

(0.0644)
[0.0100]

(0.0722)
[0.0095]

(0.0518)
[0.0101]

0.2881 0.3210 0.3417 0.3784 0.3614

σ̂2
IMLE

(0.0327)
[0.0072]

(0.0656)
[0.0116]

(0.0863)
[0.0148]

(0.1230)
[0.0278]

(0.1060)
[0.0283]

Effσ̂2

IMLE
:σ̂2

CMLE
0.1806 0.1207 0.1014 0.0432 0.0636

Table 5. Summary of the return series of KLCI

Min. 1st Qu. Median Mean Var 3rd Qu. Max.

-0.0202000 -0.0023850 0.0005159 0.0003915 0.00002584 0.0029860 0.0190700
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Table 6. Likelihood value with respect to the model parameters

H value σ̂2 µ̂ likelihood value

0.500 0.00002573 0.0004035 2357.961

0.570 0.00002571 0.0004470 2361.453

0.573 0.00002574 0.0004494 2361.464

0.574 0.00002575 0.0004502 2361.465

0.575 0.00002576 0.0004510 2361.465

0.576 0.00002577 0.0004518 2361.464

0.600 0.00002613 0.0004740 2361.115

Table 7. Comparison of European call option prices using differ-

ent methods: CCMLE (this paper), CIMLE (Kukush et al. with R/S

analysis) and CBS (traditional Black Scholes)

T0 − t0 K CCMLE CIMLE CBS

(H = 0.575) (H = 0.6551) (H = 0.5)

[σ2 = 0.00002576] [σ2 = 0.00002590] [σ2 = 0.00002589]

1070 30.8566 35.2810 28.7439

1080 23.2219 28.4503 20.2328

15 1090 16.6880 22.4382 13.0493

1100 11.3930 17.2847 7.5809

1110 7.3561 12.9897 3.9079

1070 35.9385 43.3136 31.9585

1080 28.9344 36.9983 24.1350

30 1090 22.7585 31.2702 17.3923

1100 17.4615 26.1410 11.8932

1110 13.0511 21.6084 7.6796

1070 38.9955 47.9854 34.0120

1080 32.2057 41.8453 26.4335

40 1090 26.1415 36.2119 19.8239

1100 20.8361 31.0917 14.2966

1110 16.2947 26.4823 9.8847

1070 41.8534 52.3096 35.9756

1080 35.2107 46.2922 28.5660

50 1090 29.2202 40.7253 22.0404

1100 23.9057 35.6126 16.4850

1110 19.2709 30.9517 11.9273


