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ABSTRACT.We consider the existence problem for the differential equation ℓu = F (u), where

ℓ is a formally self-adjoint singular second order differential expression and F is nonlinear. Under

certain assumptions on ℓ and F we develop an existence theorem. If the problem has upper and

lower solutions these assumptions can be relaxed. A generalized quasilinearization method is then

developed for this problem and we obtain a monotonic sequence of approximate solutions converging

to a solution of the problem. If F is monotone then the convergence is quadratic.
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1. INTRODUCTION

Let I = (a, b). We consider the nonlinear equation

(1.1) ℓ (u (t)) = f (t, u (t)) , t ∈ I,

where

ℓ (u) = − (pu′)
′
+ qu,

p ≥ 0, q ≥ 0 and f : I × R → R with a boundary condition operator B (·) to be

specified later.

In this paper we consider the problem (1.1) in the case when the differential

expression ℓ is singular and f gives rise to a continuous nonlinear operator in a

Hilbert space (see [8], [9] and the references therein). The case when ℓ is a general

regular differential expression was considered elsewhere [5].

The setup of the problem takes place in the space L2 (I) and its appropriate

subspaces rather than the space of continuous functions which is normally considered

when the expression ℓ is regular. The class of nonlinear functions to be dealt with is

modified accordingly.

Under certain conditions on the nonlinear function f we will prove a general ex-

istence result. The concept of upper and lower solutions will then be extended to the
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context of singular differential expressions. If problem (1) has upper and lower solu-

tions then the conditions on f can be relaxed and problem (1) still has a solution. A

generalized quasilinearization method is developed to generate a monotonic sequence

of approximate solutions of (1) that converge quadratically to a solution of (1). We

also treat the special case when one of the endpoints of the interval I is regular for

the expression ℓ.

This paper consists of four sections besides the introduction. In Section 2 we

introduce some terminology, state the assumptions, set up the working spaces and

formulate problem (1) in these spaces. We then state and prove a general existence

theorem. In Section 3 we introduce the definitions of upper and lower solutions in

the context of singular differential expressions. We then show that our definitions

reduce to the classical ones if the expression ℓ is regular and f is continuous. In

Section 4 we show how the existence of upper and lower solutions for (1) can be used

to relax the assumptions on f and still obtain existence results. We then develop a

quasilinearization method that produces a monotone sequence of approximations to

a solution of (1). Under a monotonicity assumption on f we will be able to show

that the convergence of this sequence is quadratic. In Section 5 we treat the special

case of a singular differential expression with one regular endpoint where we assume

nonlinear boundary conditions.

2. A GENERAL EXISTENCE THEOREM

The working space will be L2 (I) whose norm and inner product will be denoted

by ‖·‖, 〈·, ·〉, respectively. We assume that 1/p, q ∈ L1

loc
(I).

Define the operator F by

Fu (t) = f (t, u (t)) + u (t) t ∈ I.

We assume that F : L2 (I) → L2 (I).

The expression ℓ is regular if a, b are finite and 1/p, q are integrable on I, otherwise

it is singular. The end point a(respectively b) is a regular endpoint for ℓ if it is finite

and 1/p, q ∈ L1 (a, c) (respectively L1 (c, b)) for all c ∈ (a, b), otherwise, it is a singular

end-point for ℓ ( see also [13], chapter 18). The maximal subspace of L2 (I) on which

to consider the expression ℓ without getting out of L2 (I) is

D =
{
u ∈ L2 (I) : u, pu′ ∈ AC (I) , ℓ (u) ∈ L2 (I)

}
.

The operator L : L2 (I) → L2 (I) defined by D (L) = D and Lu = ℓ (u) is called

the maximal operator generated by ℓ. The operator L0 = L∗ (the adjoint of L) is

called the minimal operator generated by ℓ. Its domain will be denoted by D0. The

deficiency index d of L0 is defined as the dimension of the orthogonal complement
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of the range of (L0 − iE), where E is the identity operator on L2 (I). In general

0 ≤ d ≤ 2. In this paper, however, we deal only with the case d = 2.

Define the formal sesquilinear form

a1 (u, v) =

∫

I

pu′v′ + quv

and let V be the maximal subspace of L2 (I) on which it is defined. To account for

the boundary behavior of functions in the various spaces mentioned above we define

the “half Lagrangian”

{u, v}x = −pu′v (x) , x ∈ I,

the Lagrangian

[u, v]x = {u, v}x − {v, u}x ,

and the brackets

{u, v}b
a = {u, v}b − {u, v}a ,

[u, v]ba = [u, v]b − [u, v]a ,

where it is understood that

{u, v}a = lim
x→a+

{u, v}x

if the limit exists and so on. For u, v ∈ V let

a (u, v) = a1 (u, v) + 〈u, v〉 .

It is easy to show that a (·, ·) is an inner product on V under which V is a Hilbert

space. The following lemma is immediate.

Lemma 2.1. For u ∈ D and v ∈ V, |a1 (u, v)| < ∞ if and only if

∣∣∣{u, v}b
a

∣∣∣ < ∞. If

either condition holds, then

(2.1) a1 (u, v) = {u, v}b
a + 〈Lu, v〉 .

There is a subspace D̃ ⊂ D ∩ V which is at least a two dimensional extension of

D0 such that, for u ∈ D̃ and v ∈ V ,
∣∣∣{u, v}b

a

∣∣∣ <∞ [7].

The boundary condition operator B is taken to be compatible with a so-called

Type I operator L̂1 [3], [6], [7] in the space L2 (I) with separated boundary conditions.

It is a special type of self-adjoint operators and its domain D̂ is characterized by the

existence of d = 2 functions ϕ1, ϕ2 ∈ D̃ such that

1. ϕ1, ϕ2 are linearly independent modulo D0

2. {ϕi, ϕj} (a) = {ϕi, ϕj} (b) = 0 for i, j = 1, 2

3. D̂ = D0 ∔ span {ϕ1, ϕ2}.
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Therefore, we explicitly take

B (u) =
(
{u, ϕ1}b

a , {u, ϕ2}b
a

)
, u ∈ D̃.

Notice that, because d = 2, for any λ in the resolvent set of the operator L̂1,(
L̂1 − λE

)−1

is completely continuous as an operator on L2 (I). Define the positive

definite Type I operator L̂ by

D
(
L̂
)

= D̂,

L̂ = L̂1 + E.

By (2.1), 〈
L̂u, v

〉
= a (u, v) , ∀u, v ∈ D̂.

For the (self adjoint) square root L̂1/2 of L̂ we have

(2.2) a (u, u) =
〈
L̂u, u

〉
=
∥∥∥L̂1/2u

∥∥∥
2

, u ∈ D̂,

which means that L̂1/2 is continuous on D̂ in the the norm of V . Thus, L̂1/2 extends

to a continuous operator on the closure W of D̂ with respect to the norm of V .

Furthermore, for all u, v ∈W ,
〈
L̂1/2u, L̂1/2v

〉
= a (u, v) .

Since

(2.3) a (u, u) ≥ ‖u‖2 ∀u ∈ V,
∥∥∥L̂1/2u

∥∥∥ ≥ ‖u‖ for all u ∈ W . It follows that, as an operator on L2 (I), 0 ∈ ρ
(
L̂1/2

)

(the resolvent set of L̂1/2) and L̂−1/2 is completely continuous. Finally we notice that

L̂−1/2 has the integral representation

(2.4) L̂−1/2 =

∫ ∞

0

1√
λ

(
L̂+ λE

)−1

dλ

(see [10], page 31).

We can now reformulate problem (1.1) in operator form as

(2.5) L̂u = Fu.

Since L̂1/2 : W → L2 (I) is isometric (see (2.2)), L̂−1/2 : L2 (I) → W is also

isometric.

Introduce the nonlinear operator N : W → L2 (I) defined by

Nu = L̂−1/2Fu.

Then we can rewrite (2.5) in the form

(2.6) L̂1/2u = Nu.
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In the sequel, M will stand for a generic constant whose value may change from line

to line.

Theorem 2.2. Suppose the operator F : L2(I) → L2(I) is continuous and bounded

on L2(I). Then (2.6) has a solution.

Proof. We will begin by showing that the operator N is compact. Since by assump-

tion, F is bounded on L2(I) , we have ‖Fu‖ ≤ M for all u ∈ L2(I) . Furthermore,

since L̂−1/2 is continuous as an operator from L2(I) to L2(I), N is bounded on L2(I).

To show equicontinuity in the norm of L2(I) we need to show that, for every ǫ > 0

there is a δ > 0 such that

‖τhNu −Nu‖ < ǫ

for all u ∈ L2 (I) and |h| < δ; here τh is the shift operator

τhu (t) = u (t+ h) ,

and it is understood that functions are extended by 0 outside the interval I. Clearly,

for every h, τh is a continuous operator on L2 (I). Furthermore, since τhu → u as

h → 0, it follows from the Banach-Steinhaus theorem that {τh}|h|≤1
is uniformly

bounded.

It was proven in ([14], Theorem 7.7), that, for d = 2 and −λ ∈ ρ
(
L̂
)
,

(
L̂+ λE

)−1

g (t) =

∫

I

R (t, s, λ) g (s) ds,

where the kernel R (t, s, λ) is given by

(2.7) R (t, s, λ) =

{ ∑
2

i,j=1
cijψi (t, λ)ψj (s, λ) , s < t∑

2

i,j=1
dijψi (t, λ)ψj (s, λ) , s ≥ t,

where cij, dij, i, j = 1, 2 are complex numbers and ψi (·, λ) , i = 1, 2 are solutions of

(ℓ+ λ)u = 0 (both are in L2 (I) since d = 2). Also, both functions are continuously

dependent on λ (see [15], Theorem 3.7). Since τh is a continuous operator on L2 (I),

τhNu−Nu = τh

∫ ∞

0

1√
λ

(
L̂+ λE

)−1

Fudλ−
∫ ∞

0

1√
λ

(
L̂+ λE

)−1

Fudλ

=

∫ ∞

0

1√
λ

(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fudλ.

Now ∣∣∣∣
(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fu (t)

∣∣∣∣

≤
∣∣∣∣∣

2∑

i,j=1

cij (ψi (t+ h, λ) − ψi (t, λ))

∫ t

a

ψj (s, λ)Fu (s) ds

∣∣∣∣∣

+

∣∣∣∣∣

2∑

i,j=1

dij (ψi (t+ h, λ) − ψi (t, λ))

∫ t

a

ψj (s, λ)Fu (s) ds

∣∣∣∣∣
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≤ cK (λ) ‖Fu‖
(

2∑

i,j=1

|ψi (t+ h, λ) − ψi (t, λ)|
)

≤ MK (λ)

2∑

i=1

|ψi (t+ h, λ) − ψi (t, λ)| ,

where c = max {|cij | , |dij | : i, j = 1, 2} and K (λ) = max {‖ψj (·, λ)‖ : j = 1, 2}. No-

tice that K (λ) depends continuously on λ. Therefore,
∥∥∥∥
(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fu

∥∥∥∥ ≤MK (λ)

2∑

i=1

‖τhψi (·, λ) − ψi (·, λ)‖ .

Next notice that

‖τhNu −Nu‖ ≤
∫ ∞

0

1√
λ

∥∥∥∥
(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fu

∥∥∥∥ dλ

= I1 + I2 + I3,

where

I1 =

∫ c

0

1√
λ

∥∥∥∥
(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fu

∥∥∥∥ dλ,

I2 =

∫ d

c

1√
λ

∥∥∥∥
(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fu

∥∥∥∥ dλ,

I3 =

∫ ∞

d

1√
λ

∥∥∥∥
(
τh

(
L̂+ λE

)−1

−
(
L̂+ λE

)−1
)
Fu

∥∥∥∥ dλ,

with c, d ∈ R to be determined later.

We will establish that I1, I2, I3 can be made arbitrarily small for all u ∈ L2 (I)

by choosing c sufficiently small and d sufficiently large and for all sufficiently small h.

For I1 we have

I1 ≤ (1 + ‖τh‖) ‖Fu‖
∫ c

0

1√
λ

∥∥∥∥
(
L̂+ λE

)−1
∥∥∥∥ dλ

= (1 + ‖τh‖) ‖Fu‖
∫ c

0

1√
λ (ν + λ)

dλ

≤ 1

ν
(1 + ‖τh‖) ‖Fu‖

∫ c

0

1√
λ
dλ,

where ν > 0 is the smallest eigenvalue of L̂. Taking into account the uniform bound-

edness of the operators {τh} and the boundedness of the set {Fu}, we have

I1 ≤M
√
c.

Similarly, for I3 we have

I3 ≤ (1 + ‖τh‖) ‖Fu‖
∫ ∞

d

1√
λ

∥∥∥∥
(
L̂+ λ

)−1
∥∥∥∥ dλ

= (1 + ‖τh‖) ‖Fu‖
∫ ∞

d

1√
λ (ν + λ)

dλ
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≤ (1 + ‖τh‖) ‖Fu‖
∫ ∞

d

1

λ3/2
dλ

≤ M√
d
.

For I2 we have

I2 ≤ M

2∑

i=1

∫ d

c

K (λ) ‖τhψi (·, λ) − ψi (·, λ)‖ 1√
λ
dλ

≤ M

2∑

i=1

∫ d

c

‖τhψi (·, λ) − ψi (·, λ)‖ dλ.

Since for every λ ∈ [c, d], ‖τhψi (·, λ) − ψi (·, λ)‖ → 0 as h→ 0 and

‖τhψi (·, λ) − ψi (·, λ)‖ ≤ (1 + ‖τh‖) ‖ψi (·, λ)‖ ≤M,

it follows from the Lebesgue dominated convergence theorem that I2 → 0 as h → 0.

Thus it can be made arbitrarily small by choosing h sufficiently small.

This establishes the compactness of the operator N . The continuity of N follows

from the continuity of F since

‖Nu−Nv‖ =

∥∥∥∥
∫ ∞

0

1√
λ

(
L̂+ λE

)−1

(Fu− Fv) dλ

∥∥∥∥

≤ ‖Fu− Fv‖
∫ ∞

0

1√
λ

∥∥∥∥
(
L̂+ λE

)−1
∥∥∥∥ dλ

= ‖Fu− Fv‖
∫ ∞

0

1√
λ (ν + λ)

dλ =
π√
ν
‖Fu− Fv‖ .

To prove the existence of solutions, we note that any solution of (1.1) is a fixed

point of L̂−1/2N . Since N : W → L2 (I) is compact and L̂−1/2 : L2 (I) → W is

continuous, L̂−1/2N : W → W is compact. By the Schauder fixed point theorem,

L̂−1/2N has a fixed point.

3. UPPER AND LOWER SOLUTIONS AND EXISTENCE

We begin this section by introducing the definition of upper and lower solutions

for Type I operators and then we show that if (1.1) has upper and lower solutions

then it has a solution.

Definition 3.1. A function β ∈ D̂ (α ∈ D̂) is called an upper (a lower) solution of

(1.1) if ℓ (β) ≥ f (·, β) (ℓ (α) ≤ f (·, α)) almost everywhere on I.

Theorem 3.2. Suppose F : L2(I) → L2(I) is continuous on L2(I). Suppose further

that α, β are lower and upper solutions of (1.1) such that α ≤ β on I and that

F ([α, β]) is bounded. Then (1.1) has a solution u ∈ D̂ such that

α ≤ u ≤ β on I.
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Proof. Consider the modified problem

(3.1) L̂u = F ∗u

where F ∗ : L2 (I) → L2 (I) is defined by

F ∗u = F (β ∧ u ∨ α) .

Notice that the operators ∨,∧ : L2(I)×L2(I) → L2(I) are continuous. For example,

the operator ∨ can be written in terms of continuous operators as

f ∨ g =
|f − g| + (f − g)

2
.

Therefore, F ∗ is continuous and bounded on L2 (I). By Theorem 2.2, equation (3.1)

has a solution u ∈ D̂. We claim that u ≤ β on I. If not then let I1 = (γ, δ) be the

maximal interval on which u > β. Let z = u− β and z1 = z ∨ 0. Then z ∈ D̂ and

0 < ‖z1‖2 ≤ a (z1, z1) = a (z, z1)

= {z, z1}δ
γ +

〈
L̂z, z1

〉
=
〈
L̂z, z1

〉

=
〈
F ∗u− L̂β, z1

〉
=
〈
Fβ − L̂β, z1

〉
≤ 0,

which is a contradiction. In a similar fashion we can show that u ≥ α on I. It follows

that F ∗u = Fu and u is a solution of (1.1).

For the next theorem we need a slight generalization of the definition of convex

functions.

Definition 3.3. Suppose Ω ⊂ L2 (I) is a convex set and H : Ω → L2 (I) is real (i.e.,

Hu ⊂ R whenever u : I → R). We will say that H is convex if

(3.2) H ((1 − θ) u+ θv) ≤ (1 − θ)Hu+ θHv

for all θ ∈ [0, 1] , u, v ∈ Ω.

Theorem 3.4. Let Ω ⊂ L2 (I) be convex and suppose that the operator H : Ω →
L2 (I) has a Gateaux derivative H ′ on Ω. The following are equivalent

1. H is convex

2. Hu ≥ Hv +H ′u (v − u) for all u, v ∈ Ω.

Proof. The proof is a simple adaptation of Theorem 4.3.16 in [1].

Suppose F : L2(I) → L2(I) is continuous on L2(I). Suppose further that α0, β0 ∈
D̂ are lower and upper solutions of (1.1), respectively such that α0 ≤ β0 on I and

that F ([α0, β0]) is bounded. Let H : [α0, β0] → L2 (I) be the operator

Hu = γ (〈u, u0〉)2w0,
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where u0, w0 ∈ L2 (I) , w0 ≥ 0 and γ > 0. Then H is continuous, convex and its first

and second Fréchet derivatives are

H ′uv = 2γ 〈u, u0〉 〈v, u0〉w0,

H ′′uvw = 2γ 〈v, u0〉 〈w, u0〉w0, ∀v, w ∈ L2 (I) .

Clearly

‖H ′u‖ ≤ 2γ ‖u0‖2 ‖w0‖ ‖β‖ ,
‖H ′′u‖ ≤ 2γ ‖u0‖2 ‖w0‖ , ∀u ∈ [α0, β0] .

In other words, H ′ and H ′′ are uniformly bounded on [α0, β0]. Observe that the

representation

(3.3) H (u) = H (v) +H ′ (v) (u− v) +

∫
1

0

(1 − τ)2

2
H ′′ (v + τ (u− v)) (u− v)2 dτ

is valid.

Define the operators Φ : [α0, β0] → L2 (I) by

Φu = Hu− Fu

and G : [α0, β0] × [α0, β0] → L2 (I) by

(3.4) G (u, v) = Fv +H ′v (u− v) − [Φu− Φv] .

It is easy to check that Φ and G are continuous. Furthermore, by Theorem 3.4,

Fu ≥ G (u, v)

for all u, v ∈ [α0, β0]. Using the representation (3.3) for H , the operator G of (3.4)

can be written as

G (u, v) = Fu−
∫

1

0

(1 − τ)2

2
H ′′ (v + τ (u− v)) (u− v)2 dτ.

Consider the equation

(3.5) L̂u = G (u, α0) .

By Theorem 2.2 and Theorem 3.2, equation (3.5) has a solution α1 ∈ [α0, β0]. Fur-

thermore,

L̂α1 = G (α1, α0) ≤ Fα1.

Therefore, α1, β0 are lower and upper solutions of (1.1). Repeating the same step with

α0 replaced by α1 in (3.5) we obtain a lower solution α2 of (1.1) with α0 ≤ α1 ≤ α2 ≤
β0. Continuing in this manner we obtain a sequence of functions {αn} in D̂ ∩ [α0, β0]

such that

L̂αn = G (αn, αn−1) ,

α0 ≤ α1 ≤ · · · ≤ αn ≤ · · · ≤ β0.
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Theorem 3.5. Suppose F : L2(I) → L2(I) is continuous on L2(I). Suppose further

that α0, β0 ∈ D̂ are lower and upper solutions of (1.1), respectively such that α0 ≤ β0

on I and that F ([α0, β0]) is bounded. Let {αn} be the monotone sequence generated

in the manner described above. Then {αn} converges in V to a solution α of (1.1).

Furthermore, if F is also monotone on [α0, β0]; that is

〈Fu− Fv, u− v〉 ≤ 0 ∀u, v ∈ [α0, β0] ,

then the convergence αn → α is quadratic.

Proof. The monotonicity of the sequence {αn} and its boundedness insure the exis-

tence of a pointwise limit α. Then α0 ≤ α ≤ β0. Therefore, α ∈ L2 (I). The Lebesgue

Dominated Convergence Theorem then implies that αn → α in the norm of L2 (I).

Since we also have α ∈ [α0, β0], and since G is continuous in the norm of L2 (I), we

get G (αn, αn−1) → G (α, α) = Fα. Finally, since L̂ is closed, α ∈ D̂ and L̂α = Fα.

Let en = α− αn. Then

a (en, en) =
〈
L̂en, en

〉
= 〈Fα−G (αn, αn−1) , en〉 → 0.

Furthermore, if F is also monotone on [α0, β0] then

L̂en = Fα−G (αn, αn−1)

= Fα− Fαn

+

∫
1

0

(1 − τ)2

2
H ′′ (αn−1 + τ (αn − αn−1)) (αn − αn−1)

2 dτ.

Therefore, using the monotonicity assumption on F , we get

‖en‖2 ≤ a (en, en) =
〈
L̂en, en

〉

≤
∫

1

0

(1 − τ)2

2
‖H ′′ (αn−1 + τ (αn − αn−1))‖ ‖αn − αn−1‖2 ‖en‖ dτ

≤ M ‖H ′′ (u)‖ ‖αn − αn−1‖2 ‖en‖ .

Hence,

‖en‖ ≤M ‖αn − αn−1‖2 .

Since αn−1 ≤ αn ≤ α, we have αn − αn−1 ≤ α − αn−1. Therefore, ‖αn − αn−1‖ ≤
‖en−1‖ and so

‖en‖ ≤M ‖en−1‖2 .
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4. THE CASE WITH ONE REGULAR ENDPOINT

In this section we consider the case when the point a is a singular endpoint and b

is a regular endpoint for ℓ. Then, for any u ∈ D, u (b) and pu′ (b) both exist and are

finite (see [15], Theorem 2.9). Since assigning boundary conditions at the singular

point is not always possible, we will discuss here existence theorems for boundary

value problems of the form

(4.1)
ℓ (u) = f (·, u) ,

g (u (b)) = 0,

where we assume that the function g : R → R is continuous and that there exists a

closed and bounded interval J0 ⊂ R such that the interval

J1 = {t+ g (t) : t ∈ J0} ⊆ J0.

Since the function t 7→ t + g (t) has a fixed point in J0, g has a zero in J0. This is

obviously a necessary condition for the existence of a solution of (4.1).

The most general separated self adjoint boundary condition [15] at the regular

endpoint b is

cosσu (b) + sin σpu′ (b) = 0, σ ∈ [0, π) .

For the purposes of this section we will be working with a Type I operator L̂ that

corresponds to σ = 0. Therefore, the functions in its domain D̂ satisfy the boundary

conditions u (b) = 0 and {u, v} (a) = 0 for all u, v ∈ D̂. We will be looking for

solutions of (4.1) of the form v = u + sy where u ∈ D̂, s ∈ R and y ∈ D is suitably

chosen. Specifically, we choose y ∈ D to be the solution of the initial value problem

(4.2)
(ℓ+ 1)y = 0,

y(b) = 1, py′(b) = 0.

This choice is possible since all solutions of (ℓ+1)y = 0 are in L2(I). In what follows

we will establish that y /∈W .

Lemma 4.1. Let y ∈ D be the function given by (4.2), then y /∈W .

Proof. Suppose, to the contrary that y ∈ W . Define the space

W0 = {w ∈W : w = 0 near a}.

Observe that W0 is dense in L2(I) (it contains C∞
0

(I)). Furthermore, L̂1/2W0 is dense

in L2(I). To see this assume θ ∈
(
L̂1/2W0

)⊥
and let θ = L̂

−1/2

1
θ1. Then

〈
θ, L̂1/2w

〉
= 0 ∀w ∈W0,

i.e., 〈
L̂
−1/2

1
θ1, L̂

1/2w
〉

= 0 ∀w ∈W0.
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Since L̂−1/2 is self-adjoint, then

〈θ1, w〉 = 0 ∀w ∈W0.

Therefore, θ1 = 0, and consequently, θ = 0. Now for any w ∈W0, using the boundary

conditions for y and w we get
〈
L̂1/2y, L̂1/2w

〉
= a(y, w) = {y, w}b

a + 〈(L+ E)y, w〉 = 0.

Therefore, L̂1/2y ∈
(
L̂1/2W0

)⊥
. Thus y is in the kernel of L̂1/2 which is a contradiction

since L̂1/2 is invertible.

Next, define the space W1 by

W1 = W ∔ span {y} .

Then W1 can be given the structure of a Hilbert space with the inner product

〈u+ sy, v + ty〉 = 〈u, v〉V + st.

Let s0 ∈ I be a zero of the function g. Define the operator F̃ on W1 by

F̃ (u) = F (u+ s0y) .

Then (4.1) can be formalized in the domain D̂ as

(4.3) L̂u1 = F̃ (u1) .

If (4.3) has a solution u1 then, letting u = u1 + s0y we get

(ℓ+ 1)u = (L+ E) (u1 + s0y)

= L̂u1 = F̃ (u1)

= F (u1 + s0y) = F (u)

and u (b) = s0 so that g (u (b)) = 0. Therefore, u is a solution of (4.1). Conversely,

we can show that if u is a solution of (4.1) then u1 = u− u (b) y is a solution of (4.3)

The definitions of upper and lower solutions are modified as follows.

Definition 4.2. A function β̃ ∈ D̂ ∔ span {y} (α̃ ∈ D̂ ∔ span {y}) will be called an

upper (a lower) solution of (4.1) if ℓβ̃ ≥ f(·, β̃) (ℓα̃ ≤ f (·, α̃)) almost everywhere in

I.

If α̃ is a lower solution for (4.1) and if we put α̃ = α + s0y with α ∈ D̂ then

L̂α = (L+ E) (α̃− s0y) = (L+ E) α̃ ≤ F (α̃) = F̃ (α) .

Therefore, α is a lower solution of (4.3) in the sense of Definition 3.1. A similar

remark holds for upper solutions.
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With these remarks we will now work out the equivalents of Theorem 2.2, The-

orem 3.2 and Theorem 3.5. It can be easily checked that the mapping T : W1 →
L2(I) × C defined by

(4.4) T (u+ sy) =
(
L̂1/2u, s

)

is an onto isometry. Define the operator Ñ : W ∔ J0y → L2(I) × J0 by

Ñ(u+ sy) = (N(u+ sy), s+ g(s))

Proposition 4.3. Suppose that the operator equation

(4.5) T (u+ sy) = Ñ(u+ sy)

has a solution v ∈W1. Then v is a solution of (4.1).

Proof. Write v = u+ sy. Then

L̂1/2u = L̂−1/2F (u+ sy)

and

s = s+ g(s).

The first equation above gives that u ∈ D̂ and the second equation gives

g(v(b)) = g(s) = 0.

Furthermore,

(ℓ+ 1)v = (L+ E)v = (L+ E)(u+ sy)

= L̂u = F (u+ sy) = Fv.

Thus, v is a solution of (4.1).

Theorem 4.4. Suppose the operator F : L2(I) → L2(I) is continuous and bounded.

Then the operator Ñ is compact and continuous. Consequently equation (4.5) has a

solution.

Proof. Since N is compact and continuous and (u+ sy) 7→ s+ g(s) is continuous and

bounded, Ñ is compact and continuous. Therefore, the operator T−1Ñ : W ∔ J0y →
W ∔ J0y is compact and continuous. By the Schauder fixed point theorem it has a

fixed point.

Theorem 4.5. Suppose F : L2(I) → L2(I) is continuous on L2(I). Suppose further

that

1. α̃, β̃ are lower and upper solutions of (4.1) such that α̃ ≤ β̃on I

2. g−1 (0) ⊆
[
α̃ (b) , β̃ (b)

]
.

3. F
([
α̃, β̃

])
is bounded.
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Then (4.1) has a solution u ∈W1 such that

α̃ ≤ u ≤ β̃ on I.

Proof. Define the operator F ∗ by

F ∗u = F
(
α̃ ∨ u ∧ β̃

)

and consider the operator equation

T1u = Ñu,

where, in the definition of Ñ , F is replaced by F ∗. By Theorem 4.4 this problem has

a solution u ∈ W ∔ J0y. We may write u = v + u (b) y with v ∈W and observe that

g (u (b)) = 0. Assumption 2 implies that α̃ (b) ≤ u (b) ≤ β̃ (b). Using an argument

similar to that of Theorem 3.2 we can show that u ∈
[
α̃, β̃

]
. Furthermore,

(L+ E) u = L̂v = F ∗
(
α̃ ∧ u ∨ β̃

)
= Fu.

Hence, u is a solution of (4.1).

Finally we notice that the parallel of Theorem 3.5 is also obtainable in the case

(4.1) under similar assumptions and the appropriate modification of Assumption 2 in

Theorem 4.5, namely, something like g−1 (0) ∈
[
α̃0 (b) , β̃0 (b)

]
.
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