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ABSTRACT. This work deals with the existence of multiple positive solutions for a φ−Laplacian

boundary value problem on the half-line. The nonlinearity may exhibit singularities at the solution

and its derivative. New existence results are obtained using the fixed point index theory on cones

of Banach spaces. The singularity is treated by approximation and sequential arguments. Several

examples of applications illustrate the obtained results.
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1. INTRODUCTION

This paper is devoted to the study of the existence of positive solutions to the

following boundary value problem (bvp in short) posed on the positive half-line:

(1.1)

{
(φ(x′))′(t) + q(t)f(t, x(t), x′(t)) = 0, t ∈ I,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0

where α, β > 0 are positive constants, I := (0,+∞) denotes the set of positive real

numbers, and R
+ := [0,+∞). The function q : I −→ I is continuous and the

nonlinearity f : R
+ × I × I −→ R

+ is continuous and satisfies lim
x→0+

f(t, x, y) = +∞
and/or lim

y→0+
f(t, x, y) = +∞, i.e. f(t, x, y) may be singular at x = 0 and/or y = 0.

The map φ : R −→ R is a continuous, increasing homeomorphism such that φ(0) = 0,

extending the so-called p−Laplacian ϕp(s) = |s|p−1s (p > 1).

Boundary value problems on infinite intervals appear in many phenomena in

applied mathematics and physics (see, e.g., [2] and the references therein). Various

mathematical results for nonlinear bvps can be found in the recent literature (see

[5, 6, 7, 20]) where existence and multiplicity of positive solutions have been obtained.
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In [8], the authors have considered the bvp
{
x′′(t) − k2x(t) = q(t)f(t, x(t), x′(t)) = 0, t ∈ I,

x(0) = x(+∞) = 0.

The question of the existence of positive solution was studied when the nonlinearity

is sign-changing; the fixed point index and the upper and lower solutions technique

were combined to prove some existence results.

In [18], the following bvp is studied





(
1
p(t)

(p(t)(x′(t))
)′

(t) + f(t, x(t)) = 0, t ∈ I,

x(0) = 0, lim
t→+∞

p(t)x′(t) = b > 0,

where p satisfies
∫ +∞
0

dt
p(t)

< +∞. Existence of one or two solutions are proved

using index fixed point theory when the nonlinearity f = f(t, x, px′) may present

singularities at x = 0 or/and px′ = 0.

Recently, Lian et al. have studied the following boundary value problem with a

p−Laplacian operator on the half line

{
(ϕp(x

′))′(t) + q(t)f(t, x(t), x′(t)) = 0, t ∈ I,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0.

The authors have showed the existence of at least three positive solutions using a fixed

point theorem due to Avery and Peterson (see [13]). The nonlinearity is assumed to

have no singularity.

With a multi-point condition at 0, the same bvp is investigated in [12] with a

similar method. Existence results are also obtained for the Sturm-Liouville equation

(p(t)x′(t))′(t) + f(t, x(t), x′(t)) = 0 in [17]. In [14], Liang and Zhang have considered

the equation (ϕp(x
′))′(t) + a(t)f(t, x(t)) = 0 with multi-point condition at the origin

and a Neumann condition at positive infinity. However, the nonlinearity does not

depend on the first derivative. In [15, 16], the operator of derivation is extended to

an increasing homeomorphism φ.

In [9], the following singular bvp is considered:

(1.2)

{
(φ(x′))′(t) + q(t)f(t, x(t)) = 0, t > 0,

x(0) = 0, lim
t→+∞

x′(t) = 0.

The authors have showed the existence of multiple positive solutions using the upper

and lower solution method combined with the fixed point index theory. When the

nonlinearity f also depends on the first derivative, problem (1.2) is discussed in [10];

the authors have proved two existence results: the first one is obtained under a sign

condition, the second one when a Nagumo-type growth condition is assumed.
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In this work, we aim to investigate the question of existence and multiplicity

of positive solutions to problem (1.1) when the nonlinearity depends on the first

derivative and may be singular at x = 0 and/or x′ = 0 and when the operator of

derivation φ is a general increasing homeomorphism. The fixed point index theory on

a cone of a suitable Banach space is employed. Existence of single and twin solutions

is proved. The paper comprises five sections. In Sect. 2, we define a special norm

space, construct a special cone, and give its main properties. In Sect. 3, using the

theory of the fixed point index, we prove existence of one and then two positive

solutions to problem (1.1) when the nonlinearity is assumed to have no singularities.

Similar results are obtained in Sect. 4 when f is singular at x = 0 but not at x′ = 0.

The cases when f is singular at both x = 0 and at x′ = 0 are studied in Sect. 5.

The singularity is treated by approximating the fixed point operator and then using

sequential arguments. Each existence theorem is illustrated by means of an example

of application.

2. PRELIMINARIES

In this section, we first gather together some definitions and lemmas we need in

the rest of the paper.

2.1. Auxiliary results.

Definition 2.1. A nonempty subset P of a Banach space E is called a cone if it is

convex, closed, and satisfies the conditions:

(i) αx ∈ P for all x ∈ P and α ≥ 0,

(ii) x ∈ P and − x ∈ P imply x = 0.

Definition 2.2. A mapping A : E → E is said to be completely continuous if it is

continuous and maps bounded sets into relatively compact sets.

The following lemmas will be used to prove our main existence results. More

details on the theory and the computation of the fixed point index on cones in Banach

spaces may be found in [1, 2, 4, 11].

Lemma 2.3. Let Ω be a bounded open set in a real Banach space E, P be a cone of

E, and A : Ω∩P → P be a completely continuous map. Suppose that λAx 6= x, ∀x ∈
∂Ω ∩ P and ∀λ ∈ (0, 1]. Then i(A,Ω ∩ P,P) = 1.

Lemma 2.4. Let Ω be a bounded open set in a real Banach space E, P be a cone of

E, and A : Ω ∩ P → P be a completely continuous map. Suppose that Ax 6≤ x, ∀x ∈
∂Ω ∩ P. Then i(A,Ω ∩ P,P) = 0.
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Let

Cl([0,∞),R) = {x ∈ C([0,∞),R) : lim
t→+∞

x(t) exists}.

For x ∈ Cl([0,∞),R), define ‖x‖l = sup
t∈R+

|x(t)|· This makes Cl a Banach space.

However, the basic space to study problem (1.1) is denoted by

E = {x ∈ C1([0,∞),R), lim
t→+∞

x(t)

1 + t
exists, lim

t→+∞
x′(t) = 0}.

It is clear that E is a Banach space when furnished with the norm ‖x‖ = max{‖x‖1, ‖x‖2}
where ‖x‖1 = sup

t∈R+

|x(t)|
1+t

and ‖x‖2 = sup
t∈R+

|x′(t)|.

Lemma 2.5 ([3, p. 62]). Let M ⊆ Cl(R
+,R). Then M is relatively compact in

Cl(R
+,R) if the following three conditions hold:

(a) M is uniformly bounded in Cl(R
+,R).

(b) The functions belonging to M are almost equicontinuous on R
+, i.e. equicontinu-

ous on every compact interval of R
+.

(c) The functions from M are equiconvergent, that is, given ε > 0, there corresponds

T (ε) > 0 such that |x(t) − x(+∞)| < ε for any t ≥ T (ε) and x ∈M .

Then, we easily deduce

Lemma 2.6. Let M ⊆ E. Then M is relatively compact in E if the following

conditions hold:

(a) M is bounded in E,

(b) the functions belonging to {u : u(t) = x(t)
1+t

, x ∈ M} and to {z : z(t) = x′(t), x ∈
M} are almost equicontinuous on [0,+∞),

(c) the functions belonging to {u : u(t) = x(t)
1+t

, x ∈ M} and to {z : z(t) = x′(t), x ∈
M} are equiconvergent at +∞.

2.2. Related Lemmas.

Definition 2.7. A function x is said to be a solution of problem (1.1) if x ∈ C1(R+,R)

with φ(x′) ∈ AC(R+,R) and (1.1) is satisfied.

We start with a simple observation:

Lemma 2.8. Let x ∈ C(R+,R+) be a positive concave function. Then x is nonde-

creasing on [0,+∞).
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Proof. Let t, t′ ∈ [0,+∞) be such that t′ ≥ t and let λ = t′ − t. Since x is positive

concave, for all n ∈ N
∗ = {1, 2, 3, . . .}, we have

x(t′) = x(t+ λ)

= x
(
(1 − 1

n
)t+ 1

n
(t+ nλ)

)

≥
(
1 − 1

n

)
x(t) + 1

n
x(t+ nλ)

≥
(
1 − 1

n

)
x(t).

Therefore

x(t′) ≥ lim
n→+∞

(
1 − 1

n

)
x(t) = x(t).

Since φ is an increasing homeomorphism, it is easy to prove

Lemma 2.9. If x is a solution of problem (1.1), then x is positive, monotone in-

creasing and concave on [0,+∞).

Now, define the positive cone

P = {x ∈ E : x(t) ≥ 0, concave [0,+∞), x(0) ≥ β

α + β
‖x‖2 and αx(0)−βx′(0) = 0}.

In a series of lemmas, we study the main properties of P.

Lemma 2.10. Let x ∈ P and θ ∈ (1,+∞). Then

x(t) ≥ 1

θ
‖x‖1, ∀ t ∈ [1/θ, θ].

Proof. By definition of P, x is nondecreasing on [0,+∞). Moreover x′(∞) = 0 im-

plies that the function x(t)
1+t

achieves its maximum at some t0 ∈ [0,+∞). So, by the

concavity of x, we have for t ∈ [1/θ, θ]

x(t) ≥ min
t∈[ 1

θ
,θ]
x(t) = x(1

θ
) = x( θ−1+θt0

θ+θt0
1

θ−1+θt0
+ 1

θ+θt0
t0)

≥ θ−1+θt0
θ+θt0

x( 1
θ−1+θt0

) + 1
θ+θt0

x(t0)

≥ 1
θ+θt0

x(t0) = 1
θ
x(t0)
1+t0

= 1
θ
‖x‖1.

Lemma 2.11. Define the function ρ by

(2.1) ρ(t) =

{
t, t ∈ [0, 1]
1
t
, t ∈ (1,+∞)

and let x ∈ P.Then

x(t) ≥ ρ(t)‖x‖1, ∀ t ∈ [0,+∞).

Proof. Let t ∈ [0,+∞) and distinguish between four cases:

(a) If t = 0, then x(0) ≥ 0 = ρ(0)‖x‖1.
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(b) If t ∈ (0, 1), then 1
t
∈ (1,+∞). By Lemma 2.10, we have that x(s) ≥ t‖x‖1, ∀ s ∈

[t, 1
t
]. In particular for s = t, x(t) ≥ t‖x‖1 = ρ(t)‖x‖1.

(c) If t ∈ (1,+∞), then by Lemma 2.10, we have that x(s) ≥ 1
t
‖x‖1, ∀ s ∈ [1

t
, t]. In

particular for s = t, x(t) ≥ 1
t
‖x‖1 = ρ(t)‖x‖1.

(d) Let t = 1 and let {tn}n be a real sequence such that tn > 1 and tn → 1, as

n→ +∞. By the third case, we have x(tn) ≥ 1
tn
‖x‖1, ∀n ≥ 1. Then

x(1) = lim
n→+∞

x(tn) ≥ lim
n→+∞

1

tn
‖x‖1 = ‖x‖1 = ρ(1)‖x‖1.

Lemma 2.12. Let x ∈ P. Then ‖x‖1 ≤ M‖x‖2, where M = max{β
α
, 1}. Hence

‖x‖ ≤M‖x‖2.

Proof. Since x ∈ P, then for every t ∈ [0,+∞),

x(t)

1 + t
=

1

1 + t

(∫ t

0

x′(s)ds+
β

α
x′(0)

)
≤ t+ β

α

1 + t
‖x‖2 ≤M‖x‖2.

This implies that ‖x‖ = max{‖x‖1, ‖x‖2} ≤ max{M‖x‖2, ‖x‖2} = M‖x‖2.

Lemma 2.13. Let x ∈ P. Then

x(t) ≥ ρ(t)
β

α + β
‖x‖, ∀ t ∈ [0,+∞).

Proof. Since x ∈ P, we have ‖x‖1 = sup
t∈R+

x(t)
1+t

≥ x(0)
1+0

= x(0) ≥ β
α+β

‖x‖2. Hence

‖x‖2 ≤ α+β
β

‖x‖1. As a consequence

‖x‖ = max{‖x‖1, ‖x‖2} ≤ max{‖x‖1,
α + β

β
‖x‖1} =

α + β

β
‖x‖1.

Finally, Lemma 2.11 implies that x(t) ≥ ρ(t)‖x‖1 ≥ β
α+β

ρ(t)‖x‖.

Lemma 2.14. Let x ∈ P. Then, for all t ∈ R
+, x(t)

x′(t)
≥ β

α
ρ(t).

Proof. Since x ∈ P, we have that x is nondecreasing and x′ is nonincreasing. Hence

x(t)

x′(t)
≥ x(0)

x′(0)
=
β

α

x(0)

x(0)
≥ β

α
≥ β

α
ρ(t).

Lemma 2.15. Let δ ∈ C(R+,R+) be such that
∫ +∞
0

δ(s)ds < +∞ and let

x(t) =
β

α
φ−1

(∫ +∞

0

δ(τ)dτ

)
+

∫ t

0

φ−1

(∫ +∞

s

δ(τ)dτ

)
ds.

Then {
(φ(x′))′(t) + δ(t) = 0, t > 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0,

and hence x ∈ P.
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Proof. It is easy to check that
{

(φ(x′))′(t) + δ(t) = 0, t > 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0.

By Lemma 2.9, x is positive and concave on [0,+∞). Moreover, we have that

x(0) =
β

α
φ−1

(∫ +∞

0

(δ(τ))dτ

)
and ‖x‖2 = φ−1

(∫ +∞

0

(δ(τ))dτ

)
.

Then

x(0) =
β

α
φ−1

(∫ +∞

0

(δ(τ))dτ

)
=
β

α
‖x‖2 ≥

β

α + β
‖x‖2,

and so x ∈ P.

3. THE REGULAR CASE

In this section, we suppose that f : R
+ ×R

+ ×R
+ → R

+ is continuous and there

exists t0 > 0 such that f(t0, 0, 0) 6≡ 0 so that the trivial solution is ruled out. Let

ρ̃(t) = ρ(t)
1+t

, F (t, x, y) = f(t, (1 + t)x, y), and assume that

(H1): There exist m ∈ C(R+,R+) and g ∈ C(R+ × R
+,R+) such that

(3.1) F (t, x, y) ≤ m(t)g(x, y), ∀ t, x, y ∈ R
+,

where g is a nondecreasing function in each argument with
∫ +∞

0

q(τ)m(τ)dτ < +∞

and for each c > 0

(3.2)

∫ +∞

0

φ−1

(∫ +∞

s

g(c, c)q(τ)m(τ)dτ

)
ds < +∞.

(H2):

sup
c>0

c

Mφ−1
(∫ +∞

0
q(τ)m(τ)g(c, c)dτ

) > 1.

(H3): There exist positive numbers a < b such that

lim
x→+∞

F (t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y ≥ 0.

For x ∈ P, define the operator A by

Ax(t) =
β

α
φ−1

(∫ +∞

0

q(τ)f(τ, x(τ), x′(τ))dτ

)

+

∫ t

0

φ−1

(∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτ

)
ds.

We have

Lemma 3.1. Suppose (H1) holds. Then, the operator A sends P into P and A is

completely continuous.
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Proof. By Lemma 2.15, A(P) ⊂ P. We show that A is completely continuous.

Step 1: A is continuous. Let some sequence {xn}n≥0 ⊆ P be such that lim
n→+∞

xn = x0.

Then there exists r > 0 such that ‖xn‖ ≤ r, ∀n ≥ 0. By (H1), we have

q(τ)|f(τ, xn(τ), x
′
n(τ)) − f(τ, x0(τ), x

′
0(τ))|

= q(τ)|F (τ,
xn(τ)

1 + τ
, x′n(τ)) − F (τ,

x0(τ)

1 + τ
, x′0(τ))|

≤ 2q(τ)m(τ)g(r, r).

The continuity of f and the Lebesgue dominated convergence theorem imply that

|φ((Axn(t)))
′ − φ((Ax0(t)))

′| ≤
∫ +∞

0

q(τ)|f(τ, xn(τ), x
′
n(τ)) − f(τ, x0(τ), x

′
0(τ))|dτ

and the right-hand side tends to 0 as n → +∞, that is ‖Axn − Ax0‖2 → 0, as

n→ +∞; Lemma 2.12 implies that ‖Axn − Ax0‖ tends to 0 as n→ +∞.

Step 2: Let D be a bounded set. Then there exists r > 0 such that ‖x‖ ≤ r, ∀x ∈ D.

We shall proceed in three steps.

(a) A(D) is uniformly bounded. For x ∈ D, we have

‖Ax‖ ≤M‖Ax‖2

≤M sup
t∈R+

|(Ax)′(t)|

≤M sup
t∈R+

φ−1

(∫ +∞

t

q(τ)f(τ, x(τ), x′(τ))dτ

)

≤M sup
t∈R+

φ−1

(∫ +∞

0

q(τ)F (τ,
x(τ)

1 + τ
, x′(τ))dτ

)

≤Mφ−1

(∫ +∞

0

q(τ)m(τ)g(r, r)dτ

)
<∞.

Then A(D) is bounded.

(b) For any T > 0 and t, t′ ∈ [0, T ] (t > t′), we have
∣∣∣∣
Ax(t)

1 + t
− Ax(t′)

1 + t′

∣∣∣∣ ≤
β

α
φ−1

(∫ +∞

0

q(τ)f(τ, x(τ), x′(τ))dτ

) ∣∣∣∣
1

1 + t
− 1

1 + t′

∣∣∣∣

+

∣∣∣∣∣

∫ t

0
φ−1

(∫ +∞
s

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds

1 + t

−
∫ t′

0
φ−1

(∫ +∞
s

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds

1 + t′

∣∣∣∣∣

≤ β

α
φ−1

(∫ +∞

0

q(τ)f(τ, x(τ), x′(τ))dτ

) ∣∣∣∣
1

1 + t
− 1

1 + t′

∣∣∣∣

+

∣∣∣∣
1

1 + t
− 1

1 + t′

∣∣∣∣
∫ +∞

0

φ−1

(∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτ

)
ds
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+

∣∣∣∣∣

∫ +∞
t′

φ−1
(∫ +∞

s
q(τ)f(τ, x(τ), x′(τ))dτ

)
ds

1 + t′

−
∫ +∞
t

φ−1
(∫ +∞

s
q(τ)f(τ, x(τ), x′(τ))dτ

)
ds

1 + t

∣∣∣∣∣

≤ β

α
φ−1

(∫ +∞

0

q(τ)f(τ, x(τ), x′(τ))dτ

) ∣∣∣∣
1

1 + t
− 1

1 + t′

∣∣∣∣

+ 2| 1

1 + t
− 1

1 + t′
|
∫ +∞

0

φ−1

(∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτ

)
ds

+
1

1 + t′

∫ t

t′
φ−1

(∫ +∞

s

q(τ)f(τ, x(τ), x′(τ))dτ

)
ds

≤ β

α
φ−1

(∫ +∞

0

q(τ)m(τ)g(r, r)dτ

)∣∣∣∣
1

1 + t
− 1

1 + t′

∣∣∣∣

+ 2| 1

1 + t
− 1

1 + t′
|
∫ +∞

0

φ−1

(∫ +∞

s

q(τ)m(τ)g(r, r)dτ

)
ds

+
1

1 + t′

∫ t

t′
φ−1

(∫ +∞

s

q(τ)m(τ)g(r, r)dτ

)
ds.

Also we have

|φ((Ax)′(t)) − φ((Ax)′(t′))| =

∣∣∣∣
∫ t

t′
q(τ)f(τ, x(τ), x′(τ))dτ

∣∣∣∣ ≤
∫ t

t′
q(τ)m(τ)g(r, r)dτ.

Then, for all ε > 0 and T > 0, there exists δ > 0 such that for all t, t′ ∈ [0, T ] and

|t− t′| < δ, we have
∣∣∣∣
Ax(t)

1 + t
− Ax(t′)

1 + t′

∣∣∣∣ < ε and |(Ax)′(t) − (Ax)′(t′)| < ε.

(c) For any x ∈ D, we have lim
t→+∞

Ax(t)
1+t

= lim
t→+∞

(Ax)′(t) = 0. Therefore

sup
x∈D

|Ax(t)
1 + t

− lim
t→+∞

Ax(t)

1 + t
|

= sup
x∈D

∣∣∣∣∣∣

β
α
φ−1

(∫ +∞
0

q(τ)f(τ, x(τ), x′(τ))dτ
)

1 + t
+

∫ t

0
φ−1

(∫ +∞
s

q(τ)f(τ, x(τ), x′(τ))dτ
)
ds

1 + t

∣∣∣∣∣∣

≤
β
α
φ−1

(∫ +∞
0

q(τ)m(τ)g(r, r)dτ
)

1 + t
+

∫ +∞
0

φ−1
(∫ +∞

s
q(τ)m(τ)g(r, r)dτ

)
ds

1 + t

and

sup
x∈D

|(Ax)′(t)| = sup
x∈D

φ−1

(∫ +∞

t

q(τ)f(τ, x(τ), x′(τ))dτ

)

≤ φ−1

(∫ +∞

t

q(τ)m(τ)g(r, r)dτ

)
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which implies that

lim
t→+∞

sup
x∈D

∣∣∣∣
Ax(t)

1 + t
− lim

t→+∞

Ax(t)

1 + t

∣∣∣∣ = 0 and lim
t→+∞

sup
x∈D

|(Ax)′(t) − lim
t→+∞

(Ax)′(t)| = 0.

By Lemma 2.6, A(D) is relatively compact in E. Hence A : P −→ P is completely

continuous.

3.1. Existence of a single solution.

Theorem 3.2. Assume that Assumptions (H1)− (H2) hold. Then problem (1.1) has

at least one positive solution.

Proof. From condition (H2), there exists R > 0 such that

(3.3)
R

Mφ−1
(∫ +∞

0
q(τ)m(τ)g(R,R)dτ

) > 1.

Let

Ω1 = {x ∈ E : ‖x‖ < R}.
We claim that x 6= λAx for all x ∈ ∂Ω1 ∩ P and λ ∈ (0, 1]. On the contrary, suppose

that there exist x0 ∈ ∂Ω1 ∩ P and λ0 ∈ (0, 1] such that x0 = λ0Ax0. By Lemma 2.12,

we have
R = ‖x0‖ = ‖λ0Ax0‖

≤ M‖Ax0‖2

≤ M sup
t≥0

φ−1
(∫ +∞

t
q(τ)f(τ, x(τ), x′(τ))dτ

)
,

≤ Mφ−1
(∫ +∞

0
q(τ)m(τ)g(R,R)

)
,

which is a contradiction to (3.3). Owing to Lemma 2.3, we deduce that

(3.4) i(A,Ω1 ∩ P,P) = 1.

Hence there exists an x0 ∈ Ω1 ∩ P such that Ax0 = x0. Since f(t0, 0, 0) 6≡ 0 and

x0(t) ≥ β
α+β

ρ(t)‖x0‖, x0 is a positive solution of (1.1).

3.2. Two positive solutions.

Theorem 3.3. Assume that (H1)−(H3) hold and suppose that φ−1 is super-multiplicative,

that is

(3.5) φ−1(xy) ≥ φ−1(x)φ−1(y), ∀x, y ≥ 0.

Then problem (1.1) has at least two positive solutions.

Remark 3.4.

(a) If φ is sub-multiplicative, then φ−1 is super-multiplicative.

(b) The p−Laplacian is super-multiplicative and sub-multiplicative, hence multiplica-

tive.
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Proof. Choosing the same R as in the proof of Theorem 3.2, we get

(3.6) i(A,Ω1 ∩ P,P) = 1,

and thus there exists x0 solution of problem (1.1) in Ω1. Let 0 < a < b < +∞ be as

in (H3) and set N = 1 +
φ(α(α+β)

β2c2
)

R b

a
q(s)ds

where c = mint∈[a,b] ρ̃(t)
β

α+β
. By (H3), there exists

an R′ > β
α+β

R such that

F (t, x, y) > Nφ(x), ∀ t ∈ [a, b], ∀x ≥ R′, ∀ y ∈ R
+.

Define the open ball

Ω2 = {x ∈ E : ‖x‖ < R′/c} .
We show that Ax 6≤ x for all x ∈ ∂Ω2 ∩ P. Suppose on the contrary that there exists

x0 ∈ ∂Ω2 ∩ P such that Ax0 ≤ x0. Since x0 ∈ P ∩ ∂Ω2, we have

x0(t)

1 + t
≥ β

α+ β
ρ̃(t)‖x0‖ ≥ min

t∈[a,b]

β

α + β
ρ̃(t)

R′

c
= c

R′

c
≥ R′, ∀ t ∈ [a, b].

Then, for all t ∈ [a, b], the following estimates hold:

x0(t)
1+t

≥ Ax0(t)
1+t

≥ β
α(1+t)

φ−1
(∫ +∞

0
q(τ)F (τ, x0(τ)

1+τ
, x′0(τ))dτ

)

> β
α(1+t)

φ−1
(∫ b

a
q(τ)Nφ(x0(τ)

1+τ
)dτ

)

≥ β
α(1+t)

φ−1
(∫ b

a
q(τ)Nφ(R′)dτ

)

≥ β
α
ρ̃(t)φ−1(φ(R′))φ−1(N

∫ b

a
q(τ)dτ)

≥ R′

c
β2c2

α(α+β)
φ−1

(
N

∫ b

a
q(τ)dτ

)

> R′

c
.

Passing to the supremum over t yields ‖x0‖1 >
R′

c
. Hence ‖x0‖ > R′

c
, contradicting

‖x0‖ = R′

c
. Finally, Lemma 2.4 yields

(3.7) i(A,Ω2 ∩ P,P) = 0,

while (3.6) and (3.7) imply that

(3.8) i(A, (Ω2 \ Ω1) ∩ P,P) = −1.

Then A has another fixed point y0 ∈ (Ω2 \ Ω1) ∩ P. Moreover y0(t) ≥ β
α+β

ρ̃(t)R and

R < ‖y0‖ < R′

c
. By (3.3) we have ‖x0‖ < R, which implies that ‖x0‖ < R < ‖y0‖

and thus x0 and y0 are two distinct positive solutions of (1.1).

Example 3.5. Consider the boundary value problem

(3.9)

{
((x′(t))p)′ + ((x′(t))r)′ + δe−t (x

p(t)+(1+t)px′q(t))
(1+t)p

= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0,

where p and r (p < r) are two odd numbers. f(t, x, y) = (xp+(1+t)pyr)
(1+t)p

, φ(t) = tp + tr,

and q(t) = δe−t where 0 < δ < 1 is a positive constant. Then φ is continuous,
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increasing, and φ(0) = 0. Moreover F (t, x, y) = f(t, (1 + t)x, y) = xp + yr. Now, we

check the main assumptions.

(H1): Let g(x, y) = xp + yr and m(t) = 1. Then F (t, x, y) ≤ m(t)g(x, y), for all

t, x, y ∈ R
+. Moreover

∫ +∞

0

q(τ)m(τ)dτ =

∫ +∞

0

δe−τdτ = δ < +∞

and, for any positive constant c, we have

∫ +∞
0

φ−1
(∫ +∞

s
q(τ)m(τ)g(c, c)dτ

)
ds =

∫ +∞
0

φ−1 (δ(cp + cr)e−s) ds

≤
∫ +∞
0

φ−1(cp + cr)e−s)ds

≤
∫ +∞
0

φ−1((ce−
s
r )p + (ce−

s
r )r))ds

≤
∫ +∞
0

φ−1(φ(ce−
s
r )ds

=
∫ +∞
0

ce−
s
r ds <∞.

(H2):

sup
c>0

c

Mφ−1(
R +∞
0 q(τ)m(τ)g(c,c)dτ)

= sup
c>0

c
Mφ−1(δ(cp+cr))

≥ sup
c>0

c

Mφ−1((cδ
1
r )p+(cδ

1
r )r))

= sup
c>0

c

Mφ−1(φ(cδ
1
r ))

= 1

Mδ
1
r
.

If 0 < δ < ( 1
M

)r, then all conditions of Theorem 3.2 hold which implies that problem

(3.9) has at least one positive solution.

Example 3.6. Consider the boundary value problem

(3.10)





((x′(t))
1
5 )′ + δe−t (x

2(t)+(1+t)2x′2(t)+(1+t)2)
(1+t)2

= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0,

where f(t, x, y) = (x2+(1+t)2y2+(1+t)2)
(1+t)2

, φ(t) = t
1
5 , and q(t) = δe−t and δ is a positive

constant. Then φ is continuous, increasing, and φ(0) = 0. Moreover F (t, x, y) =

f(t, (1 + t)x, y) = x2 + y2 + 1. We check the main assumptions.

(H1): Let g(x, y) = x2 + y2 + 1 and m(t) = 1. Then F (t, x, y) ≤ m(t)g(x, y) for

all t, x, y ∈ R
+,

∫ +∞

0

q(τ)m(τ)dτ =

∫ +∞

0

δe−τdτ = δ < +∞

and for each c > 0, we have

∫ +∞
0

φ−1
(∫ +∞

s
q(τ)m(τ)g(c, c)dτ

)
ds < +∞.
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(H2):

sup
c>0

c

Mφ−1
(∫ +∞

0
q(τ)m(τ)g(c, c)dτ

) = sup
c>0

c

Mφ−1(δ(2c2 + 1))
= sup

c>0

c

Mδ5(2c2 + 1)5
.

If 0 < δ < (sup
c>0

c
M(2c2+1)5

)
1
5 , then all conditions of Theorem 3.2 hold which implies

that problem (3.10) has at least one positive solution.

Example 3.7. Consider the boundary value problem

(3.11)





(a(x′(t))

3
5 )′ + e−t (x

2(t)+(1+t)2x′3(t)+(1+t)2)
(1+t)2

= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0.

Here φ(t) = at
3
5 and a > max{1, (sup

c>0

c

M(c2+c3+1)
5
3
)−1}. Then φ is continuous, increas-

ing, φ(0) = 0 and, for all x, y ≥ 0, we have

φ−1(xy) ≥ φ−1(x)φ−1(y).

Moreover F (t, x, y) = x2 + y3 + 1. Now let q(t) = e−t, m(t) = 1, and g(x, y) =

x2 + y3 + 1; then it is easy to check (H1).

(H2):

sup
c>0

c

Mφ−1
(∫ +∞

0
q(τ)m(τ)g(c, c)dτ

) = sup
c>0

c

Mφ−1(c2 + c3 + 1)

= a
5
3 sup
c>0

c

M(c2 + c3 + 1)
5
3

> 1.

(H3): It is clear that

lim
x→+∞

F (t, x, y)

φ(x)
= +∞, uniformly in t and y.

Then all conditions of Theorem 3.3 are met which implies that problem (3.11) has at

least two positive solutions.

4. SINGULARITIES AT x = 0 BUT NOT AT x′ = 0

In this section, we suppose that f : R
+ × I ×R

+ → R
+ is continuous and assume

that

(H4): There exist m,ψ ∈ C(R+,R+) and g, h ∈ C(I, I) such that h is a decreasing

function and ψ, g
h

are increasing functions with

(4.1) F (t, x, y) ≤ m(t)g(x)ψ(y), ∀ t, y ∈ R
+, ∀x ∈ I

and for each c, c′ > 0,

(4.2)

∫ +∞

0

q(τ)m(τ)h(cρ̃(τ))dτ < +∞,
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(4.3)

∫ +∞

0

φ−1

(
g(c′)

h(c′)
ψ(c′)

∫ +∞

s

q(τ)m(τ)h(cρ̃(τ))dτ

)
ds < +∞.

(H5): For any c > 0, there exists ψc ∈ C(R+,R+) and there exists an interval

J ⊂ (1,+∞) such that ψc(t) > 0 on J and

F (t, x, y) ≥ ψc(t), ∀ t, y ∈ R
+, ∀x ∈ (0, c]

with

(4.4)

∫ +∞

0

q(τ)ψc(τ)dτ < +∞.

(H6):

sup
c>0

c

Mφ−1
(
g(c)
h(c)

ψ(c)
∫ +∞
0

q(τ)m(τ)h(c β
α+β

ρ̃(τ))dτ
) > 1.

(H7): There exist positive numbers a < b such that

lim
x→+∞

F (t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y ≥ 0.

Given f ∈ C(R+ × I × R
+,R+), define a sequence of approximating functions

{fn}n≥1 by

fn(t, x, y) = f(t,max{(1 + t)/n, x}, y), n ∈ {1, 2, . . .}

and for x ∈ P, define a sequence of operators by

Anx(t) =
β

α
φ−1

(∫ +∞

0

q(τ)fn(τ, x(τ), x
′(τ))dτ

)

+

∫ t

0

φ−1

(∫ +∞

s

q(τ)fn(τ, x(τ), x
′(τ))dτ

)
ds.

We have

Lemma 4.1. Suppose (H4) holds. Then, for each n ≥ 1, the operator An sends P

into P and is completely continuous.

Proof. First, we check the integrability of the function δ in Lemma 2.15. For all

n ≥ 1, we have:
∫ ∞
0
δ(τ)dτ =

∫ ∞
0
q(τ)fn(τ, x(τ), x

′(τ))dτ

=
∫ ∞
0
q(τ)f(τ,max{1+τ

n
, x(τ)}, x′(τ))dτ

=
∫ ∞
0
q(τ)F (τ,max{ 1

n
, x(τ)

1+τ
}, x′(τ))dτ

≤
∫ ∞
0
q(τ)m(τ)h(max{ 1

n
, x(τ)

1+τ
}) g(max{ 1

n
,
x(τ)
1+τ

})
h(max{ 1

n
,
x(τ)
1+τ

})
ψ(x′(τ))dτ

≤
∫ ∞
0
q(τ)m(τ)h( 1

n
) g(‖x‖)
h(‖x‖)ψ(‖x‖)dτ

≤ g(‖x‖)
h(‖x‖)ψ(‖x‖)

∫ ∞
0
q(τ)m(τ)h( 1

n
ρ̃(τ))dτ.

By (4.2), the right-hand side is finite. Therefore AnP ⊆ P. The proof that An is

completely continuous is similar to that of the operator A in Theorem 3.2 and is

omitted.
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4.1. Existence of a single solution.

Theorem 4.2. Assume that Assumptions (H4)− (H6) hold. Then problem (1.1) has

at least one positive solution.

Proof.

Step 1: An approximating solution. From condition (H6), there exists R > 0 such that

(4.5)
R

Mφ−1
(
g(R)
h(R)

ψ(R)
∫ +∞
0

q(τ)m(τ)h( β
α+β

Rρ̃(τ))dτ
) > 1.

Let

Ω1 = {x ∈ E : ‖x‖ < R}.

We claim that x 6= λAnx for any x ∈ ∂Ω1 ∩ P, λ ∈ (0, 1], and n ≥ n0 > 1/R. On the

contrary, suppose that there exists n1 ≥ n0, x1 ∈ ∂Ω1 ∩ P and λ1 ∈ (0, 1] such that

x1 = λ1An1x1. By Lemma 2.13, we have x1(t) ≥ β
α+β

ρ(t)‖x1‖ = β
α+β

ρ(t)R, ∀ t ∈ R
+.

Then x1(t)
1+t

≥ β
α+β

ρ̃(t)R. As a consequence, we derive the estimates:

R = ‖x1‖
= ‖λ1An1x1‖
≤ ‖An1x1‖
≤ M‖An1x1‖2

≤ M sup
t≥0

φ−1
(∫ +∞

t
q(τ)fn1(τ, x1(τ), x

′
1(τ))dτ

)
,

≤ Mφ−1
(∫ +∞

0
q(τ)F (τ,max{ 1

n1
, x1(τ)

1+τ
}, x′1(τ))dτ

)
,

≤ Mφ−1
(∫ +∞

0
q(τ)m(τ)g(max{ 1

n1
, x1(τ)

1+τ
})ψ(x′1(τ))dτ

)
,

≤ Mφ−1(
∫ +∞
0

q(τ)m(τ)h(max{ 1
n1
, x1(τ)

1+τ
}) g(max{ 1

n1
,
x1(τ)
1+τ

})

h(max{ 1
n1
,
x1(τ)
1+τ

})
ψ(x′1(τ))dτ

≤ Mφ−1
(
g(R)
h(R)

ψ(R)
∫ +∞
0

q(τ)m(τ)h( β
α+β

ρ̃(τ)R)dτ
)
,

which is a contradiction to (4.5). Then by Lemma 2.3, we deduce that

(4.6) i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . .}.

Hence there exists an xn ∈ Ω1 ∩ P such that Anxn = xn, ∀n ≥ n0.

Step 2: a compactness argument.

(a) Since ‖xn‖ < R, by (H5) there exists ψR ∈ C(R+,R+) such that

fn(t, xn(t), x
′
n(t)) ≥ ψR(t), ∀ t ∈ I

with ∫ +∞

0

q(s)ψR(s)ds < +∞.
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Then

xn(t) = Anxn(t)

≥
∫ t

0
φ−1

(∫ +∞
s

q(τ)fn(τ, xn(τ), x
′
n(τ))dτ

)
ds

≥
∫ t

0
φ−1

(∫ +∞
s

q(τ)ψR(τ)dτ
)
ds.

Let

(4.7) c∗ = φ−1

(∫ +∞

1

q(τ)ψR(τ)dτ

)
> 0,

and distinguish between two cases:

(i): If t ∈ [0, 1], then

xn(t) ≥ tφ−1

(∫ +∞

t

q(τ)ψR(τ))dτ

)
≥ tφ−1

(∫ +∞

1

q(τ)ψR(τ)dτ

)
= ρ(t)c∗.

(ii): If t ∈ (1,+∞), then

xn(t) ≥
∫ 1

0
φ−1

(∫ +∞
s

q(τ)ψR(τ)dτ
)
ds

≥
∫ 1

0
φ−1

(∫ +∞
1

q(τ)ψR(τ)dτ
)
ds

≥ φ−1
(∫ +∞

1
q(τ)ψR(τ)dτ

)

≥ 1
t
φ−1

(∫ +∞
1

q(τ)ψR(τ)dτ
)

≥ ρ(t)c∗.

Then, we deduce that xn(t)
1+t

≥ c∗ρ̃(t), ∀ t ∈ R
+, ∀n ≥ n0.

(b) For any T > 0 and t, t′ ∈ [0, T ] (t > t′), the following estimates hold:
∣∣∣xn(t)

1+t
− xn(t′)

1+t′

∣∣∣
≤

∣∣ 1
1+t

− 1
1+t′

∣∣φ−1
(∫ +∞

0
q(τ)fn(τ, xn(τ), x

′
n(τ))dτ

)

+

∣∣∣∣
R t

0
φ−1(

R +∞
s

q(τ)fn(τ,xn(τ),x′n(τ))dτ)ds
1+t

−
R t′

0
φ−1(

R +∞
s

q(τ)fn(τ,xn(τ),x′n(τ))dτ)ds
1+t′

∣∣∣∣
≤

∣∣ 1
1+t

− 1
1+t′

∣∣φ−1
(∫ +∞

0
q(τ)m(τ)h(c∗ρ̃(s)) g(R)

h(R)
ψ(R)dτ

)

+2
∣∣ 1
1+t

− 1
1+t′

∣∣ ∫ +∞
0

φ−1
(∫ +∞

s
q(τ)m(τ)h(c∗ρ̃(τ)) g(R)

h(R)
ψ(R)dτ

)
ds

+ 1
1+t′

∫ t

t′
φ−1(

∫ +∞
s

q(τ)m(τ)h(c∗ρ̃(τ)) p(R)
h(R)

ψ(R)dτ)ds

and

|φ(x′n(t)) − φ(x′n(t
′))| =

∣∣∣∣
∫ t

t′
q(τ)fn(τ, xn(τ), x

′
n(τ))dτ)

∣∣∣∣

≤
∫ t

t′
q(τ)m(τ)h(c∗ρ̃(τ))

p(R)

h(R)
ψ(R)dτ.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that |xn(t)
1+t

− xn(t′)
1+t′

| < ε and

|x′n(t) − x′n(t
′)| < ε for all t, t′ ∈ [0, T ] with |t− t′| < δ.
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(c) For any n ≥ 0, we have, by (H4), lim
t→+∞

xn(t)
1+t

= lim
t→+∞

x′n(t) = 0. Therefore

sup
n≥n0

|xn(t)
1+t

− lim
t→+∞

xn(t)
1+t

|

= sup
n≥n0

β

α
φ−1(

R +∞
0 q(τ)fn(τ,xn(τ),x′n(τ))dτ)+

R t

0 φ
−1(

R +∞
s

q(τ)fn(τ,xn(τ),x′n(τ))dτ)ds
1+t

≤
β

α
φ−1( g(R)

h(R)
ψ(R)

R +∞
0

q(τ)m(τ)h(c∗eρ(τ))dτ)
1+t

+
R +∞
0

φ−1( g(R)
h(R)

ψ(R)
R +∞
s

q(τ)m(τ)h(c∗eρ(τ))dτ)ds
1+t

.

where the right-hand side tends to 0 as t→ +∞. Also

lim
t→+∞

sup
n≥n0

|x′n(t) − lim
t→+∞

x′n(t)|

= lim
t→+∞

sup
n≥n0

φ−1
(∫ +∞

t
q(τ)fn(τ, xn(τ), x

′
n(τ))dτ

)

≤ lim
t→+∞

φ−1
(
g(R)
h(R)

ψ(R)
∫ +∞
t

q(τ)m(τ)h(c∗ρ̃(τ))dτ
)

= 0.

Therefore {xn}n≥n0 is relatively compact in E by Lemma 2.6 and hence there exists

a subsequence {xnk}k≥1 converging to some limit x0. Since xnk(t) ≥ ρ̃(t)c∗, ∀ k ≥ 1,

we infer that x0(t) ≥ ρ̃(t)c∗, ∀ t ∈ R
+. From (4.5), we have ‖x0‖ < R. Consequently,

the continuity of f implies that, for all s ∈ R
+, we have

lim
k→+∞

fnk(s, xnk(s), x
′
nk

(s)) = lim
k→+∞

f(s,max{(1 + s)/nk, xnk(s)}, x′nk(s))
= f(s,max{0, x0(s)}, x′0(s)) = f(s, x0(s), x

′
0(s)).

By the Lebesgue dominated convergence theorem, we finally deduce that

x0(t) = lim
k→+∞

xnk(t)

= lim
k→+∞

β
α
φ−1

(∫ +∞
0

q(τ)fnk(τ, xnk(τ), x
′
nk

(τ))dτ
)

+
∫ t

0
φ−1

(∫ +∞
s

q(τ)fnk(τ, xnk(τ), x
′
nk

(τ))dτ
)
ds

= β
α
φ−1

(∫ +∞
0

q(τ)f(τ, x0(τ), x
′
0(τ))dτ

)

+
∫ t

0
φ−1

(∫ +∞
s

q(τ)f(τ, x0(τ), x
′
0(τ))dτ

)
ds.

Therefore x0 is a positive solution of problem (1.1).

4.2. Two positive solutions.

Theorem 4.3. Assume that (H4)− (H7) hold and φ−1 is super-multiplicative. Then

problem (1.1) has at least two positive solutions.

The proof is identical to that of Theorem 3.3 and is omitted.

Example 4.4. Consider the singular boundary value problem

(4.8)





((x′(t))
1
5 )′ + δe−t (1+t)

ω−2m(t)(x2(t)+(1+t)2)(x′3(t)+1)
xω(t)

= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0,
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where

m(t) =

{
tω

(1+t)ω
, t ∈ [0, 1]

1
tω(1+t)ω

, t ∈ (1,+∞),

f(t, x, y) = m(t)(1+t)ω−2(x2+(1+t)2)(y3+1)
xω

(ω > 0), φ(t) = t
1
5 , and q(t) = δe−t. Then φ is

continuous, increasing and φ(0) = 0. Moreover

F (t, x, y) = f(t, (1 + t)x, y) =
m(t)(x2 + 1)(y3 + 1)

xω
.

(H4): Let g(x) = x2+1
xω

, ψ(y) = (y3 + 1), and h(x) = 1
xω

. Then h is a decreasing

function, ψ, g
h

are increasing functions, and

F (t, x, y) ≤ m(t)g(x)ψ(y), ∀ t, y ∈ R
+, ∀x > 0.

Moreover, for any c, c′ > 0, we have
∫ +∞

0

q(τ)m(τ)h(cρ̃(τ))dτ =
δ

cω

∫ +∞

0

e−τdτ =
δ

cω
< +∞

and
∫ +∞
0

φ−1
(∫ +∞

s
g(c′)ψ(c′)
h(c′)

q(τ)m(τ)h(cρ̃(τ))dτ
)
ds =

∫ +∞
0

φ−1
(
δ g(c

′)ψ(c′)
ch(c′)

e−s
)
ds

= (δ g(c
′)ψ(c′)
ch(c′)

)5
∫ +∞
0

e−5sds

= 1
5
(δ g(c

′)ψ(c′)
ch(c′)

)5 < +∞.

(H5): For any c > 0, there exists ψc(t) = m(t)
cω

such that

F (t, x, y) ≥ ψc(t), ∀ t, y ∈ R
+, ∀x ∈ (0, c]

and
∫ +∞
0

q(τ)ψc(τ)dτ < +∞.

(H6):

sup
c>0

c

Mφ−1( g(c)ψ(c)
h(c)

R +∞
0

q(τ)m(τ)h(c β

α+β
eρ(τ))dτ)

= sup
c>0

c

M(δ (α+β)ω

βω
g(c)ψ(c)
cωh(c) )

5

= β5ω

Mδ5(α+β)5ω
sup
c>0

c5ω+1

(c2+1)5(c3+1)5
.

If we choose α, β, ω, and δ such that Mδ5(α+β)5ω

β5ω < sup
c>0

c5ω+1

(c2+1)5(c3+1)5
, then all conditions

of Theorem 4.2 are fulfilled, which implies that problem (4.8) has at least one positive

solution.

Example 4.5. Consider the singular boundary value problem

(4.9)





(a(x′(t))
3
5 )′ + e−t m(t)(x2(t)+(1+t)2)(x′3(t)+1)

(1+t)x(t)
= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0.

Here

m(t) =

{
t2

(1+t)2
, t ∈ [0, 1]

1
t2(1+t)2

, t ∈ (1,+∞)
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and φ(t) = at
3
5 , where a > max{1, (sup

c>0

c

M
“

(c2+1)(c3+1)(α+β)2
√
cβ2

”

5
3
)−1}. Then φ is continu-

ous, increasing, φ(0) = 0 and, for all x, y ≥ 0, satisfies

φ−1(xy) ≥ φ−1(x)φ−1(y).

Moreover F (t, x, y) = m(t)(x2+1)(y3+1)√
x

. Let h(x) = 1
x2 , g(x) = x2+1√

x
, and ψ(y) = (y3+1);

then it is easy to show (H4) and (H5).

(H6):

sup
c>0

c

Mφ−1( g(c)ψ(c)
h(c)

R +∞
0

q(τ)m(τ)h(c β
α+β

eρ(τ))dτ)
= sup

c>0

c

Mφ−1
“

g(c)ψ(c)(α+β)2

β2c2h(c)

”

= sup
c>0

c

M
“

g(c)ψ(c)(α+β)2

β2a

”

5
3

= a
5
3 sup
c>0

c

M
“

g(c)ψ(c)(α+β)2

β2

”

5
3
> 1.

(H7): It is clear that, for any compact interval [a, b] ⊆ (0,+∞), we have

lim
x→+∞

F (t, x, y)

φ(x)
= lim

x→+∞

m(t)(x2 + 1)(y3 + 1)

ax
3
5
√
x

= +∞, ∀ t ∈ [a, b], ∀ y ∈ R
+.

Then all conditions of Theorem 4.3 are met; consequently problem (4.9) has at least

two positive solutions.

4.3. A further result. Theorem 4.2 still holds true if we keep (H5) and replace

conditions (H4) and (H6) by the following one:

(H4)
′: there exist m ∈ C(R+,R+) and a decreasing function l ∈ C(I, I) such that

(4.10) F (t, x, y) ≤ m(t)l(x/y), ∀ t ∈ R
+, ∀x, y ∈ I

and for any c > 0

(4.11)

{ ∫ +∞
0

q(τ)m(τ)l(cρ̃(τ))dτ < +∞,
∫ +∞
0

φ−1
(∫ +∞

s
q(τ)m(τ)l(cρ̃(τ))dτ

)
ds < +∞.

Now, given f ∈ C(R+ × I × R
+,R+), define a sequence of approximating functions

{fn}n≥1 by

fn(t, x, y) = f(t,max{(1 + t)/n, x},max{1/n, y}), n ∈ {1, 2, . . .}.

Next for x ∈ P, define a sequence of operators by

Anx(t) =
β

α
φ−1

(∫ +∞

0

q(τ)fn(τ, x(τ), x
′(τ))dτ

)

+

∫ t

0

φ−1

(∫ +∞

s

q(τ)fn(τ, x(τ), x
′(τ))dτ

)
ds.

We have

Theorem 4.6. Assume that Assumptions (H4)
′ and (H5) hold. Then problem (1.1)

has at least one positive solution.
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Proof. Lemma 2.15 implies that AnP ⊆ P. The proof thatAn is completely continuous

is similar to that of the operator A in Theorem 3.2 and is omitted. Let R be such

that

R > Mφ−1

(∫ +∞

0

q(τ)m(τ)l(min

(
β

α
, 1

)
ρ̃(τ))dτ

)

and set

Ω1 = {x ∈ E : ‖x‖ < R}.
We claim that x 6= λAnx, for any x ∈ ∂Ω1 ∩ P, λ ∈ (0, 1], and n ≥ 1. On the

contrary, suppose that there exists n0 ≥ 1, x0 ∈ ∂Ω1 ∩ P, and λ0 ∈ (0, 1] such that

x0 = λ0An0x0. By Lemma 2.14, we have x0(t)
x′0(t)

≥ β
α
ρ(t) and, for each n ≥ 1

max{1/n, x0(t)
1+t

}
max{ 1

n
, x′0(t)}

≥ min{β
α
, 1}ρ̃(t), ∀ t ∈ R

+.

Therefore

R = ‖x0‖
= ‖λ0An0x0‖
≤ ‖An0x0‖
≤ M‖An0x0‖2

≤ M sup
t≥0

φ−1
(∫ +∞

t
q(τ)fn0(τ, x0(τ), x

′
0(τ))dτ

)
,

≤ Mφ−1
(∫ +∞

0
q(τ)F (τ,max{ 1

n0
, x0(τ)

1+τ
},max{ 1

n0
, x′0(τ))}dτ

)
,

≤ Mφ−1

(∫ +∞
0

q(τ)m(τ)l(
max{ 1

n0
,
x0(τ)
1+τ

}
max{ 1

n0
,x′0(τ)}

)dτ

)
,

≤ Mφ−1(
∫ +∞
0

q(τ)m(τ)l(min{β
α
, 1}ρ̃(τ)))dτ,

which is a contradiction. By Lemma 2.3, we conclude that

(4.12) i(An,Ω1 ∩ P,P) = 1, for all n ∈ {1, 2, . . .}.

Hence there exists an xn ∈ Ω1 ∩ P such that Anxn = xn, ∀n ≥ 1. Arguing as in the

proof of Theorem 4.2, Step 2 together with the condition (H4)
′ and the fact that

q(τ)fn(τ, xn(τ), x
′
n(τ)) ≤ q(τ)m(τ)l

(
min{β

α
, 1}ρ̃(τ)

)
,

we can prove that {xn}n is relatively compact. Hence there exists a subsequence

{xnk}k≥1 with limit lim
k→+∞

xnk = x̄. Since ‖x̄‖ ≤ R, then from (H5) we deduce that

x̄(t) ≥ c∗ρ(t), ∀ t ∈ R
+, where c∗ is defined by (4.7); thus x̄ is a positive solution of

problem (1.1).

Now, consider the following assumptions:

(A1): There exist m ∈ C(R+,R+) and g, ψ, l ∈ C(I, I) such that l is a decreasing

function and ψ, g are increasing functions with

(4.13) F (t, x, y) ≤ m(t)g(x)ψ(y)l(x/y), ∀ t ∈ R
+, ∀x, y ∈ I.
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For each c, c′ > 0,

(4.14)

∫ +∞

0

q(τ)m(τ)l(cρ̃(τ))dτ < +∞,

(4.15)

∫ +∞

0

φ−1

(
g(c′)ψ(c′)

∫ +∞

s

q(τ)m(τ)l(cρ̃(τ))dτ

)
ds < +∞.

(A2):

sup
c>0

c

Mφ−1
(
g(c)ψ(c)

∫ +∞
0

q(τ)m(τ)l(min{β
α
, 1}ρ̃(τ))dτ

)
ds

> 1.

(A3): For any c > 0, there exists ψc ∈ C(R+,R+) and there exists an interval

J ⊂ (1,+∞) such that ψc(t) > 0 on J and

F (t, x, y) ≥ ψc(t), ∀ t, y ∈ R
+, ∀x ∈ (0, c]

with

(4.16)

∫ +∞

0

q(τ)ψc(τ)dτ < +∞.

(A4): There exist positive numbers a < b such that

lim
x→+∞

F (t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b ] and y ≥ 0.

We state without proof another existence result:

Theorem 4.7. Assume that Assumptions (A1)− (A4) hold. Then problem (1.1) has

at least two positive solutions.

5. SINGULARITIES AT x = 0 AND AT x′ = 0

In this final section, we suppose that the nonlinearity f is positive, continuous

on R
+ × I × I, and φ is multiplicative, i.e.

φ(xy) = φ(x)φ(y), ∀x, y ≥ 0.

Next, we list some assumptions:

(H8): there exist m ∈ C(R+,R+) and g, h, ψ, l ∈ C(I, I) such that h, l are de-

creasing functions and ψ
l
, g
h

are increasing functions with

(5.1) F (t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ R
+, ∀x, y ∈ I,

and for each c > 0,

(5.2)

∫ +∞

0

q(τ)m(τ)h(cρ̃(τ))dτ < +∞.
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(H9): For any c > 0, there exists ψc ∈ C(R+,R+) and there exists an interval

J ⊂ (1,+∞) such that ψc(t) > 0, in J and

F (t, x, y) ≥ ψc(t), ∀ t ∈ I, ∀x, y ∈ (0, c]

with

γc(t) =

∫ +∞

t

q(τ)ψc(τ)dτ ≤
∫ +∞

0

q(τ)ψc(τ)dτ < +∞,

and for each k > 0,

∫ +∞

0

φ−1

(∫ +∞

s

q(τ)m(τ)h(kρ̃(τ))l(φ−1(γc(τ))dτ

)
ds < +∞.

(H10):

sup
c>0

c

Mφ−1
(
L−1

(
g(c)ψ(c)
h(c)l(c)

∫ +∞
0

q(τ)m(τ)h(c β
α+β

ρ̃(τ)), dτ
)) > 1,

where L is defined by

L(u) =

∫ u

0

ds

l(φ−1(s))
, ∀u ∈ R

+.

(H11): There exist positive numbers a < b such that

lim
x→+∞

F (t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y > 0.

Now, given f ∈ C(R+ × I × I,R+), define a sequence of approximating functions

{fn}n≥1 by

fn(t, x, y) = f(t,max{(1 + t)/n, x},max{1/n, y}), n ∈ {1, 2, . . .}

and for x ∈ P, define a sequence of operators by

Anx(t) =
β

α
φ−1

(∫ +∞

0

q(τ)fn(τ, x(τ), x
′(τ))dτ

)

+

∫ t

0

φ−1

(∫ +∞

s

q(τ)fn(τ, x(τ), x
′(τ))dτ

)
ds.

We have

Lemma 5.1. Suppose that (H8) holds. Then, for each n ≥ 1, the operator An sends

P into P and is completely continuous.

Proof. Lemma 2.15 yields that AnP ⊆ P. The proof that An is completely continuous

is similar to that of the operator A in Theorem 3.2; hence it is omitted.
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5.1. Existence of a single positive solution.

Theorem 5.2. Assume that Assumptions (H8) − (H10) hold. Then problem (1.1)

has at least one positive solution.

Proof.

Step 1: An approximating solution. From condition (H10), there exists R > 0 such

that

(5.3)
R

Mφ−1
(
L−1

(
g(R)ψ(R)
h(R)l(R)

∫ +∞
0

q(τ)m(τ)h( β
α+β

Rρ̃(τ))dτ
)) > 1.

Define the open ball

Ω1 = {x ∈ E : ‖x‖ < R}.

We claim that x 6= λAnx for any x ∈ ∂Ω1 ∩ P, λ ∈ (0, 1] and n ≥ n0 > 1/R. On the

contrary, suppose that there exists n1 ≥ n0, x1 ∈ ∂Ω1 ∩ P, and λ1 ∈ (0, 1] such that

x1 = λ1An1x1. By Lemma 2.13, we have

x1(t) ≥
β

α + β
ρ(t)‖x1‖ =

β

α + β
ρ(t)R, ∀ t ∈ R

+.

Then x1(t)
1+t

≥ β
α+β

ρ̃(t)R. As a consequence, the following estimates hold:

−(φ(x′1(t)))
′ = φ(λ1)q(t)fn(t, x1(t), x

′
1(t))

≤ q(t)F (t,max{1/n1,
x1(t)
1+t

},max{1/n1, x
′
1(t)})

≤ q(t)m(t)g(max{1/n1,
x1(t)
1+t

})ψ(max{1/n1, x
′
1(t)})

≤ q(t)m(t)h(max{ 1
n1
, x1(t)

1+t
})l(max{1/n1, x

′
1(t)})

g(max{1/n1,
x1(t)
1+t

})
h(max{1/n1,

x1(t)
1+t

})
ψ(max{1/n1,x′1(t)})
l(max{1/n1,x′1(t)})

≤ g(R)ψ(R)
h(R)l(R)

q(t)m(t)h( β
α+β

Rρ̃(t))l(x′1(t)).

Hence
−(φ(x′1(t)))

′

l(x′1(t))
≤ g(R)ψ(R)

h(R)l(R)
q(t)m(t)h

(
β

α + β
Rρ̃(t)

)
.

An integration from t to +∞ yields

∫ +∞

t

−(φ(x′1(τ)))
′

l(x′1(τ))
dτ ≤ g(R)ψ(R)

h(R)l(R)

∫ +∞

t

q(τ)m(τ)h

(
β

α + β
Rρ̃(τ)

)
dτ.

Therefore

L (φ(x′1(t))) ≤
g(R)ψ(R)

h(R)l(R)

∫ +∞

t

q(τ)m(τ)h

(
β

α + β
Rρ̃(τ)

)
dτ.

Then, for all t ∈ R
+

x′1(t) ≤ φ−1

(
L−1

(
g(R)ψ(R)

h(R)l(R)

∫ +∞

1

q(τ)m(τ)h

(
β

α+ β
Rρ̃(τ)

)
dτ

))
.
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By Lemma 2.12, we deduce that

R = ‖x1‖ ≤ M‖x1‖2

≤ M sup
t∈R+

x′1(t)

≤ Mφ−1
(
L−1

(
g(R)ψ(R)
h(R)l(R)

∫ +∞
1

q(τ)m(τ)h( β
α+β

Rρ̃(τ))dτ
))

,

which is a contradiction to (5.3). Finally, Lemma 2.3 yields that

(5.4) i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . .}.

Hence there exists an xn ∈ Ω1 ∩ P such that Anxn = xn, ∀n ≥ n0.

Step 2: a compactness argument. Since ‖xn‖ < R, from (H9), there exists ψR ∈ C(R+,

R
+) such that

fn(t, xn(t), x
′
n(t)) ≥ ψR(t), ∀ t ∈ R

+,

with ∫ +∞

0

q(s)ψR(s)ds < +∞.

Then

xn(t) = Anxn(t) ≥
∫ t

0

φ−1

(∫ +∞

s

q(τ)fn(τ, xn(τ), x
′
n(τ))dτ

)
ds

≥
∫ t

0

φ−1

(∫ +∞

s

q(τ)ψR(τ)dτ

)
ds.

Let

c∗ = φ−1

(∫ +∞

1

q(τ)ψR(τ)dτ

)
> 0.

Arguing as in the proof of Theorem 4.2, we get xn(t)
1+t

≥ c∗ρ̃(t) and x′n(t) ≥ φ−1(γR(t)),

∀ t ∈ R
+, ∀n ≥ n0. Condition (H8) implies that

q(τ)fn(τ, xn(τ), x
′
n(τ)) ≤

g(R)ψ(R)

h(R)l(R)
q(τ)m(τ)h(c∗ρ̃(τ))l(φ−1(γR(τ))).

Finally, as in proof of Theorem 4.2, we can show that {xn}n≥n0 has a convergent

subsequence {xnj}j≥1 with limit lim
j→+∞

xnj = x̄ and x̄(t) ≥ c∗ρ̃(t), ∀ t ∈ R
+. Then x̄ is

a positive solution of problem (1.1).

5.2. Two positive solutions. Similarly to Theorem 4.3, we also obtain the following

result the proof of which is omitted.

Theorem 5.3. Assume that (H8)− (H11) hold. Then problem (1.1) has at least two

positive solutions.

We end the paper with two examples of applications illustrating Theorem 5.2 and

Theorem 5.3 respectively.
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Example 5.4. Consider the singular boundary value problem

(5.5)





((x′(t))3)′ + e−t m(t)(x2(t)+(1+t)2)(x′(t)+1)

(1+t)x(t)x′(t)
= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0,

where

m(t) =

{
t

1+t
, t ∈ [0, 1]

1
t(1+t)

, t ∈ (1,+∞).

Here f(t, x, y) = m(t)(x2+(1+t)2)(y+1)
(1+t)xy

, φ(t) = t3, and q(t) = e−t. Then φ is continuous,

increasing, and φ(0) = 0. Moreover F (t, x, y) = f(t, (1 + t)x, y) = m(t)(x2+1)(y+1)
xy

. Set

g(x) = x2+1
x
, ψ(y) = (y+1)

y
, h(x) = 1

x
, and l(y) = 1

y
. Then, for any u ≥ 0, we have

L(u) =

∫ u

0

ds

l(φ−1(s))
=

∫ u

0

ds

l(s
1
3 )

=

∫ u

0

s
1
3ds =

3

4
u

4
3 .

Hence

L−1(u) =

(
4u

3

) 3
4

.

(H8): It is clear that h, l are decreasing functions, g
h
, ψ
l

are increasing functions,

and F (t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ R
+, ∀x, y > 0. Moreover, for any c > 0,

we have

∫ +∞

0

q(τ)m(τ)h(cρ̃(τ))dτ =
1

c

∫ +∞

0

e−τdτ =
1

c
< +∞.

(H9): For any c > 0, there exists ψc(t) = m(t)
c2

such that

F (t, x, y) ≥ ψc(t), ∀ t ∈ R
+, ∀x, y ∈ (0, c]

and
∫ +∞
0

q(τ)ψc(τ)dτ < +∞. In addition, for any t ≥ 0, we have

γc(t) =

∫ +∞

t

q(τ)ψc(τ)dτ ≥ 1

c2

∫ t+1

t

q(τ)m(τ)dτ ≥ 1

c2
e−(t+1)

(t+ 1)(t+ 2)
.

Then, for each k > 0, we have

∫ +∞
0

φ−1
(∫ +∞

s
q(τ)m(τ)h(kρ̃(τ))l(φ−1(γc(τ)))dτ

)
ds

≤
∫ +∞
0

φ−1

(
1
k

∫ +∞
s

e−τdτ

(γc(τ))
1
3
ds

)

≤
∫ +∞
0

φ−1
(

1
k
c

2
3

∫ +∞
s

e−τe
τ+1
3 (τ + 1)

1
3 (τ + 2)

1
3dτ

)
ds

≤ φ−1
(

1
k
c

2
3e

1
3

) ∫ +∞
0

φ−1
(∫ +∞

s
e

−2τ
3 (τ + 1)

1
3 (τ + 2)

1
3dτ

)
ds < +∞.
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(H10):

sup
c>0

c

Mφ−1(L−1( g(c)ψ(c)
h(c)l(c)

R +∞
0

q(τ)m(τ)h(c β

α+β
eρ(τ))dτ))ds

= sup
c>0

c

Mφ−1(L−1(α+β
β

g(c)ψ(c)
cl(c)h(c)

))

= sup
c>0

c

Mφ−1
“

( (4(α+β)g(c)ψ(c)
3βcl(c)h(c)

)
3
4

”

= sup
c>0

c

M
“

( (4(α+β)g(c)ψ(c)
3βcl(c)h(c)

)
1
4

”

= sup
c>0

c

M
“

( (4(α+β)(c2+1)(c+1)
3βc

)
1
4

” > 1.

Therefore all conditions of Theorem 5.2 hold; this implies that problem (5.5) has at

least one positive solution.

Example 5.5. Consider the singular boundary value problem

(5.6)





((x′(t))3)′ + ae−t m(t)(x5(t)+(1+t)5)(x′(t)+1)

(1+t)4x(t)x′(t)
= 0,

αx(0) − βx′(0) = 0, lim
t→+∞

x′(t) = 0,

where

m(t) =

{
t

1+t
, t ∈ [0, 1]

1
t(1+t)

, t ∈ (1,+∞).

Here f(t, x, y) = m(t)(x5+(1+t)2)(y+1)
(1+t)xy

, φ(t) = t3, and q(t) = ae−t where

0 < a <
β

M4(α + β)

(
sup
c>0

c

(c5 + 1)((c+ 1)

)4

.

Then φ is continuous, increasing, and φ(0) = 0, F (t, x, y) = f(t, (1 + t)x, y) =
m(t)(x5+1)(y+1)

xy
, g(x) = x5+1

x
, ψ(y) = (y+1)

y
, h(x) = 1

x
, and l(y) = 1

y
. Then all conditions

of Theorem 5.3 are fulfilled, which implies that problem (5.6) has at least two positive

solutions.

Remark 5.6. We can prove a similar result when the nonlinearity presents a singu-

larity at x′ = 0 but not at x = 0. This case is omitted.
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