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ABSTRACT. In this paper, we consider the existence of generalized solutions for fractional order

integro-differential equations with integral boundary value conditions. We firstly build a new com-

parison theorem. Then by utilizing the monotone iterative technique and the method of lower and

upper generalized solutions, we obtain the existence of extremal generalized solutions or generalized

quasi-solutions.

1. INTRODUCTION

In this paper, we deal with the integral boundary value problems for fractional

order integro-differential equations

(1.1)











Dαx(t) = f(t, x(t), (Tx)(t), (Sx)(t)), n − 1 < α ≤ n, t ∈ J = [0, 1],

x(k)(0) = ak, k = 1, 2, . . . , n − 1,

x(0) = λ1x(τ) + λ2

∫ 1

0
ω(s, x(s))ds + b,

where f ∈ C(J ×R3, R), ω ∈ C(J ×R, R), τ ∈ J , λ1, λ2, b ∈ R, λ2 ≥ 0, Dα is Caputo

fractional derivative of order n − 1 < α ≤ n and

(Tx)(t) =

∫ t

0

k(t, s)x(s)ds, Sx)(t) =

∫ 1

0

h(t, s)x(s)ds

k ∈ C(D, R+), D = {(t, s) ∈ J × J : t ≥ s}, h ∈ C(J × J, R+), R+ = [0,∞).

Differential equations with fractional order are generalization of ordinary differ-

ential equations to non-integer order. This generalization is not mere mathematical

curiosities but rather has interesting applications in many areas of science and en-

gineering such as electrochemistry, control, porous media, electromagnetic, etc.(see

[1]–[3]). There has been a significant development in fractional differential equations

in recent years(see [4]–[20]).

In [9], A. Anguraj, P. Karthikeyan and J. J. Trujillo have investigated the exis-

tence and uniqueness theorem for the nonlinear fractional mixed Volterra- Fredholm
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integro-differential equation with nonlocal initial condition

(1.2)

{

dαx(t)
dtα

= f(t, x(t),
∫ t

0
k(t, s, x(s))ds,

∫ 1

0
h(t, s, x(s))ds),

x(0) =
∫ 1

0
g(s)x(s)ds,

where t ∈ J = [0, 1], 0 < α < 1, g(t) ∈ (0, 1], g(t) ∈ L1([0, 1], R+), x ∈ C(J, E) is a

continuous function on J with values in the Banach space E and ‖ x ‖C= maxt∈J ‖

x(t) ‖E , and f : J × E × E × E → E, k : D × E → E, and h : D0 × E → E

are continuous E-valued functions. Here D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ 1}, and

D0 = J × J . The operator dα/dtα denotes the Caputo fractional derivative of order

α. By means of Krasnoselkii theorem, some results on the existence of solutions are

obtained for the above fractional boundary value problems.

It is well known that the monotone iterative technique is quite useful in the

theory of differential equations and partial differential equations [21, 22, 23]. The

method combining with the upper and lower solutions has also been used to solve the

problems for nonlinear fractional differential equations in [13]-[16].

Motivated by [9], we will investigate the existence of generalized extremal solu-

tions of the higher order fractional differential equations (1.1) by means of the method

of lower and upper generalized solutions combined with the monotone iterative tech-

nique.

This paper is organized as follows: In section 2, we establish a new comparison

principle and consider the linear problem of (1.1). In section 3, under the condition of

λ1 ≥ 0, we obtain the existence of extremal generalized solutions for (1.1) by utilizing

the monotone iterative technique and the method of lower and upper generalized

solutions. In section 4, if λ1 < 0, we obtain the existence of a coupled generalized

quasi-solution of (1.1).

2. PRELIMINARIES AND COMPARISON PRINCIPLE

In this section, we introduce some preliminary facts which will be used throughout

this paper.

Let C(J, R) is Banach space with a norm ‖ x ‖C= max{|x(t)| : t ∈ J}.

Definition 2.1 ([1]). The fractional (arbitrary) order integral of the function y ∈

L1([0, 1], R) of order α > 0 is defined by

Iαy(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds.

Definition 2.2 ([1]). The Caputo fractional derivative of order α > 0 of a function

y ∈ Cn([0, 1], R) is given by

Dαy(t) =
1

Γ(n − α)

∫ t

0

(t − s)n−α−1y(n)(s)ds,
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where n = [α] + 1, [α] denotes the integer part of the number α.

Lemma 2.3 ([1]). If f(t) ∈ Cn([0, 1], R) and n − 1 < α ≤ n, then

IαDαf(t) = f(t) −
n−1
∑

k=0

f (k)(0)

k!
tk.

Now we consider a linear initial value problem, which is important to us in ob-

taining the existence of generalized solutions for problem (1.1).

(2.1)

{

Dαu(t) − Mu(t) − N(Tu)(t) − N1(Su)(t) = ρ(t), t ∈ J,

u(k)(0) = ak, ak ∈ R, k = 0, 1, . . . , n − 1,

where n − 1 < α ≤ n, M, N, N1, ak ∈ R (k = 1, . . . , n − 1) and ρ(t) ∈ C(J, R).

We give a definition of generalized solutions for fractional differential equations

as follows

Definition 2.4. We say that u(t) ∈ C(J, R) is a generalized solution of fractional

differential equations (2.1) if u(t) can be represented by

(2.2) u(t) =
n−1
∑

k=0

ak

k!
tk +

1

Γ(α)

∫ t

0

(t−s)α−1[ρ(s)+Mu(s)+N(Tu)(s)+N1(Su)(s)]ds.

Remark 2.5. If u(t) is a solution of (2.1), i.e., u ∈ Cn(J, R) and (2.1) holds, we easily

get u(t) is a generalized solution of (2.1) by Lemma 2.3, i.e., u ∈ C(J, R) and (2.2)

holds. However, by the following simple example, a generalized solution of (2.1) is not

a solutions of (2.1) in general. But that u ∈ C(J, R) is a generalized solution of (2.1)

implies u ∈ Cn−1(J, R) and u(k)(0) = ak, k = 0, . . . , n − 1 by a simple calculation.

Example 2.6. In (2.1), we let ρ(t) = a (a is a constant), M = N = N1 = 0,

α = n − 1 + 1
2

(n is any natural number). According to (2.2), we get

u(t) =
n−1
∑

k=0

ak

k!
tk+

a

Γ(n − 1 + 1
2
)

∫ t

0

(t−s)n−2+ 1
2 ds =

n−1
∑

k=0

ak

k!
tk+

a

Γ(n + 1
2
)
tn−1+ 1

2 , t ∈ [0, 1],

which imply that u(t) /∈ Cn([0, 1]). According to the definition of Caupto derivative,

we could not define Caupto derivative of order α for the generalized solution u of

(2.1).

Lemma 2.7. Assume that M, N, N1 ≥ 0 are constants and the following inequality

holds

(2.3)
M + Nk0 + N1h0

Γ(α + 1)
< 1, n = 1, 2, . . . ,

then (2.1) has a unique generalized solution.
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Proof. We firstly define an operator A : C(J, R) → C(J, R) by

Au =

n−1
∑

k=0

ak

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[ρ(s) + Mu(s) + N(Tu)(s) + N1(Su)(s)]ds.

Then, we have

‖ Au − Av ‖C =
1

Γ(α)
‖

∫ t

0

(t − s)α−1[M(u(s) − v(s))

+N((Tu)(s) − (Tv)(s)) + N1((Su)(s) − (Sv)(s))]ds ‖C

=
1

Γ(α)
‖

∫ t

0

(t − s)α−1[M(u(s) − v(s))

+N

∫ s

0

k(s, r)(u(r)− v(r))dr + N1

∫ 1

0

h(s, r)(u(r)− v(r))dr]ds ‖C

≤
M + Nk0 + N1h0

Γ(α)
max
t∈[0,1]

∫ t

0

(t − s)α−1ds ‖ u − v ‖C

≤
M + Nk0 + N1h0

Γ(α + 1)
‖ u − v ‖C , n = 1, 2, . . . .

From (2.3) and the Banach fixed point theorem, (2.1) has a unique generalized

solution u(t) ∈ C(J, R).

Lemma 2.8. Suppose u(t) ∈ Cn−1(J, R) satisfies the following inequalities

(2.4)

{

u(t) ≤
∑n−1

k=0
u(k)(0)

k!
tk + 1

Γ(α)

∫ t

0
(t − s)α−1q(s)ds,

u(k)(0) ≤ 0, k = 0, . . . , n − 1,

where M, N, N1 ≥ 0 are constants,

q(t) = Mu(t) + N(Tu)(t) + N1(Su)(t),

and the inequality (2.3) holds. Then u(t) ≤ 0 for all t ∈ J .

Proof. Suppose, to the contrary, that there exists a t∗ ∈ J such that u(t∗) > 0. Let

u(t∗) = max{u(t) : t ∈ J} = λ, λ > 0. We obtain that

u(t) ≤

n−1
∑

k=0

u(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[Mu(s) + N(Tu)(s) + N1(Su)(s)]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1[Mu(s) + N(Tu)(s) + N1(Su)(s)]ds

=
1

Γ(α)

∫ t

0

(t − s)α−1[Mu(s) + N

∫ s

0

k(s, r)u(r)dr + N1

∫ 1

0

h(s, r)u(r)dr]ds

≤ λ
M + Nk0 + N1h0

Γ(α)

∫ t

0

(t − s)α−1ds

= λ
M + Nk0 + N1h0

Γ(α + 1)
tα
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≤ λ
M + Nk0 + N1h0

Γ(α + 1)
.

Let t = t∗. We have

λ ≤ λ
M + Nk0 + N1h0

Γ(α + 1)
.

So
M + Nk0 + N1h0

Γ(α + 1)
≥ 1,

which is a contradiction. Hence u(t) ≤ 0 for all t ∈ J .

3. EXTREMAL GENERALIZED SOLUTIONS OF PROBLEM (1.1)

In this section, We consider the condition of λ1 ≥ 0. we shall establish the

existence of extremal generalized solutions of problem (1.1).

Definition 3.1. A function ϕ ∈ Cn−1(J, R) is called a lower generalized solution of

(1.1) if











ϕ(t) ≤
∑n−1

k=0
ϕ(k)(0)

k!
tk + 1

Γ(α)

∫ t

0
(t − s)α−1f(s, ϕ(s), (Tϕ)(s), (Sϕ)(s))ds, t ∈ J,

ϕ(k)(0) ≤ ak, k = 1, . . . , n − 1,

ϕ(0) ≤ λ1ϕ(τ) + λ2

∫ 1

0
ω(s, ϕ(s))ds + b.

Analogously, φ ∈ Cn−1(J, R) is called an upper generalized solution of (1.1) if











φ(t) ≥
∑n−1

k=0
φ(k)(0)

k!
tk + 1

Γ(α)

∫ t

0
(t − s)α−1f(s, φ(s), (Tφ)(s), (Sφ)(s))ds, t ∈ J,

φ(k)(0) ≥ ak, k = 1, . . . , n − 1,

φ(0) ≥ λ1φ(τ) + λ2

∫ 1

0
ω(s, φ(s))ds + b.

We need the following assumptions.

(H1) ϕ, φ are lower and upper generalized solutions of (1.1), respectively, such that

ϕ ≤ φ on J .

(H2) There exists two constants M, N ≥ 0 such that

f(t, x, y, z) − f(t, x̄, ȳ, z̄) ≥ M(x − x̄) + N(y − ȳ) + N1(z − z̄),

wherever ϕ(t) ≤ x̄ ≤ x ≤ φ(t), (Tϕ)(t) ≤ ȳ ≤ y ≤ (Tφ)(t), (Sϕ)(t) ≤ z̄ ≤ z ≤

(Sφ)(t), t ∈ J .

(H3) There exists m(t) ∈ C(J, R+) such that

ω(t, x) − ω(t, y) ≤ m(t)(x − y),

if ϕ(t) ≤ x ≤ y ≤ φ(t).

Let [ϕ, φ] = {x ∈ C(J, R) : ϕ(t) ≤ x(t) ≤ φ(t), t ∈ J}.

Now we are in the position to establish the main results of this paper.
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Theorem 3.2. Let inequality (2.3) and (H1)–(H3) hold. If y, z ∈ C(J, R) such that

y(t) =
n−1
∑

k=0

y(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, ϕ(s), (Tϕ)(s), (Sϕ)(s))

−M(ϕ(s) − y(s)) − N((Tϕ)(s) − (Ty)(s)) − N1((Sϕ)(s) − (Sy)(s))]ds,

z(t) =

n−1
∑

k=0

z(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, φ(s), (Tφ)(s), (Sφ)(s))

−M(φ(s) − z(s)) − N((Tφ)(s) − (Tz)(s)) − N1((Sφ)(s) − (Sz)(s))]ds,

y(0) = λ1ϕ(τ) + λ2

∫ 1

0

ω(s, ϕ(s))ds + b, z(0) = λ1φ(τ) + λ2

∫ 1

0

ω(s, φ(s))ds + b,

y(k)(0) = z(k)(0) = ak, k = 1, . . . , n − 1,

then ϕ(t) ≤ y(t) ≤ z(t) ≤ φ(t), t ∈ J , and y(t), z(t) are lower and upper generalized

solutions of (1.1), respectively.

Proof. Let m(t) = ϕ(t) − y(t), then

m(t) ≤
n−1
∑

k=0

ϕ(k)(0)

k!
tk −

n−1
∑

k=0

y(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[M(ϕ(s) − y(s))

+N((Tϕ)(s) − (Ty)(s)) + N1((Sϕ)(s) − (Sy)(s))]ds

=

n−1
∑

k=0

m(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[Mm(s) + N(Tm)(s) + N1(Sm)(s)]ds,

m(k)(0) = ϕ(k)(0) − y(k)(0) ≤ ak − ak = 0, k = 1, . . . , n − 1,

m(0) = ϕ(0) − y(0)

≤ λ1ϕ(τ) + λ2

∫ 1

0

ω(s, ϕ(s))ds + b − (λ1ϕ(τ) + λ2

∫ 1

0

ω(s, ϕ(s))ds + b) = 0.

By Lemma 2.8, we get that m(t) ≤ 0 on J . That is, ϕ(t) ≤ y(t). Similarly, we can

prove that z(t) ≤ φ(t).

Next we suppose that m(t) = y(t) − z(t), then

m(t) =
n−1
∑

k=0

m(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[(f(s, ϕ(s), (Tϕ)(s), (Sϕ)(s))

−Mϕ(s) − N(Tϕ)(s) − N1(Sϕ)(s))

−(f(s, φ(s), (Tφ)(s), (Sφ)(s))− Mφ(s) − N(Tφ)(s) − N1(Sφ)(s))

+M(y(s) − z(s)) + N((Ty)(s) − (Tz)(s)) + N1((Sy)(s) − (Sz)(s))]

≤
n−1
∑

k=0

m(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[Mm(s) + N(Tm)(s) + N1(Sm)(s)]ds,

m(k)(0) = y(k)(0) − z(k)(0) = ak − ak = 0, k = 1, . . . , n − 1,
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m(0) = y(0) − z(0)

= (λ1ϕ(τ) + λ2

∫ 1

0

ω(s, ϕ(s))ds + b) − (λ1φ(τ) + λ2

∫ 1

0

ω(s, φ(s))ds + b)

≤ λ1ϕ(τ) − λ1φ(τ) + λ2

∫ 1

0

m(s)(ϕ(s)ds − φ(s))ds

≤ 0.

By Lemma 2.8, we get that m(t) ≤ 0 on J . That is y(t) ≤ z(t). So ϕ(t) ≤ y(t) ≤

z(t) ≤ φ(t), t ∈ J .

In the following ,we need to prove y(t) is a lower generalized solution of (1.1).

y(t) =
n−1
∑

k=0

y(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, ϕ(s), (Tϕ)(s), (Sϕ)(s))

−M(ϕ(s) − y(s)) − N((Tϕ)(s) − (Ty)(s)) − N1((Sϕ)(s) − (Sy)(s))]ds

≤
n−1
∑

k=0

y(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1f(s, y(s), (Ty)(s), (Sy)(s))ds, t ∈ J,

y(k)(0) = ak, k = 1, . . . , n − 1,

y(0) = λ1ϕ(τ) + λ2

∫ 1

0

ω(s, ϕ(s))ds + b

≤ λ1y(τ) + λ2

∫ 1

0

[ω(s, y(s)) + m(s)(ϕ(s) − y(s))]ds + b

≤ λ1y(τ) + λ2

∫ 1

0

ω(s, y(s))ds + b.

So y(t) is a lower generalized solution of (1.1). Similarly, we can prove that z(t) is an

upper generalized solution of (1.1).

Theorem 3.3. Let inequality (2.3) and (H1)–(H3) hold. Then there exist monotone

sequences {ϕn}, {φn} ⊂ [ϕ, φ] which converge uniformly to the extremal generalized

solutions of (1.1) in [ϕ, φ], respectively.

Proof. For i = 1, 2, . . . , we suppose that

(3.1)











Dαϕi(t) − Mϕi(t) − N(Tϕi)(t) − N1(Sϕi)(t) = ρi−1(t), t ∈ J,

ϕ
(k)
i (0) = ak, k = 1, . . . , n − 1,

ϕi(0) = λ1ϕi−1(τ) + λ2

∫ 1

0
ω(s, ϕi−1(s))ds + b,

and

(3.2)











Dαφi(t) − Mφi(t) − N(Tφi)(t) − N1(Sφi)(t) = ρ̄i−1(t), t ∈ J,

φ
(k)
i (0) = ak, k = 1, . . . , n − 1,

φi(0) = λ1φi−1(τ) + λ2

∫ 1

0
ω(s, φi−1(s))ds + b.
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where

ρi−1(t) = f(t, ϕi−1(t), (Tϕi−1)(t), (Sϕi−1)(t))

−Mϕi−1(t) − N(Tϕi−1)(t) − N1(Sϕi−1)(t),

ρ̄i−1(t) = f(t, φi−1(t), (Tφi−1)(t), (Sφi−1)(t))

−Mφi−1(t) − N(Tφi−1)(t) − N1(Sφi−1)(t).

Obviously, Eqs. (3.1) and (3.2) have the following generalized solutions, respec-

tively.

ϕi(t) =
n−1
∑

k=0

ϕ
(k)
i (0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, ϕi−1(s), (Tϕi−1)(s), (Sϕi−1)(s))

−M(ϕi−1(s) − ϕi(s)) − N((Tϕi−1)(s) − (Tϕi)(s))

−N1((Sϕi−1)(s) − (Sϕi)(s))]ds, t ∈ J, k = 0, . . . , n − 1,

φi(t) =

n−1
∑

k=0

φ
(k)
i (0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, φi−1(s), (Tφi−1)(s), (Sφi−1)(s))

−M(φi−1(s) − φi(s)) − N((Tφi−1)(s) − (Tφi)(s))

−N1((Sφi−1)(s) − (Sφi)(s))]ds, t ∈ J, k = 0, . . . , n − 1.

In view of Theorem 3.2, we have that

ϕ = ϕ0 ≤ ϕ1 ≤ · · ·ϕi ≤ · · · ≤ φi ≤ · · · ≤ φ1 ≤ φ0 = φ

and each ϕi, φi ∈ [ϕ, φ] (i = 1, 2 . . . ).

Obviously the sequences {ϕi}, {φi} are uniformly bounded and equicontinuous,

one can employ the standard arguments, namely the Ascoli-Arzela criterion to con-

clude that the sequences {ϕi}, {φi} converge uniformly on J with limi→∞ ϕi = x∗,

limi→∞ φi = x∗ uniformly on J . Moreover, x∗, x
∗ are generalized solutions of (1.1) in

[ϕ, φ].

To prove that x∗(t), x
∗(t) are extremal generalized solutions of (1.1), let x ∈ [ϕ, φ]

be any generalized solution of (1.1). That is,

x(t) =

n−1
∑

k=0

x(k)(0)

k!
tk+

1

Γ(α)

∫ t

0

(t−s)α−1f(s, x(s), (Tx)(s), (Sx)(s))ds, k = 0, . . . , n−1,

where x(k)(0) = ak, k = 1, . . . , n − 1, x(0) = λ1x(τ) + λ2

∫ 1

0
ω(s, x(s))ds + b.

Suppose that there exists a positive integer i such that ϕi(t) ≤ x(t) ≤ φi(t) on

J . Let m(t) = ϕi+1(t) − x(t), we have

m(t) =
n−1
∑

k=0

m(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, ϕi(s), (Tϕi)(s), (Sϕi)(s))
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−Mϕi(s) − N(Tϕi)(s) − N1(Sϕi)(s)

−(f(s, x(s), (Tx)(s), (Sx)(s)) − Mx(s) − N(Tx)(s) − N1(Sx)(s))

+M(ϕi+1(s) − x(s)) + N((Tϕi)(s) − (Tx)(s))

+N1((Sϕi)(s) − (Sx)(s))]ds

≤
n−1
∑

k=0

m(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[Mm(s) + N(Tm)(s) + N1(Sm)(s)]ds,

m(k)(0) = ϕ
(k)
i+1(0) − x(k)(0) = ak − ak = 0, k = 1, . . . , n − 1,

m(0) = ϕi+1(0) − x(0)

= λ1ϕi(τ) + λ2

∫ 1

0

ω(s, ϕi(s))ds + b − (λ1x(τ) + λ2

∫ 1

0

ω(s, x(s))ds + b)

≤ λ1(ϕi(τ) − x(τ)) + λ2

∫ 1

0

m(s)(ϕi(s) − x(s))ds

≤ 0.

By Lemma 2.8, we know that m(t) ≤ 0 on J , i.e, ϕi+1(t) ≤ x(t) on J . Similarly we

obtain that x(t) ≤ φi+1(t) on J . Since ϕ0 ≤ x(t) ≤ φ0 on J , by induction we get that

ϕi(t) ≤ x ≤ φi(t) on J for every i. Therefore, x∗(t) ≤ x(t) ≤ x∗(t) on J by taking

i → ∞.

4. GENERALIZED QUASI-SOLUTIONS OF PROBLEM (1.1)

In this section, we consider the condition of λ1 < 0, we also use monotone iterative

technique to obtain the existence of a coupled generalized quasi-solution for (1.1).

Definition 4.1. Functions ϕ, φ ∈ Cn−1(J, R) are called coupled lower and upper

generalized solutions of problem (1.1), respectively, if










ϕ(t) ≤
∑n−1

k=0
ϕ(k)(0)

k!
tk + 1

Γ(α)

∫ t

0
(t − s)α−1f(s, ϕ(s), (Tϕ)(s), (Sϕ)(s))ds, t ∈ J,

ϕ(k)(0) ≤ ak, k = 1, . . . , n − 1,

ϕ(0) ≤ λ1φ(τ) + λ2

∫ 1

0
ω(s, ϕ(s))ds + b,

and










φ(t) ≥
∑n−1

k=0
φ(k)(0)

k!
tk + 1

Γ(α)

∫ t

0
(t − s)α−1f(s, φ(s), (Tφ)(s), (Sφ)(s))ds, t ∈ J,

φ(k)(0) ≥ ak, k = 1, . . . , n − 1,

φ(0) ≥ λ1ϕ(τ) + λ2

∫ 1

0
ω(s, φ(s))ds + b.

Definition 4.2. A pair (U, V ) ∈ C(J, R) × C(J, R) is called a coupled generalized

quasi-solution of problem (1.1) if

U(t) =
n−1
∑

k=0

U (k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1f(s, U(s), (TU)(s), (SU)(s))ds,
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V (t) =

n−1
∑

k=0

V (k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1f(s, V (s), (TV )(s), (SV )(s))ds,

where

U (k)(0) = V (k)(0) = ak, k = 1, . . . , n − 1,

U(0) = λ1V (τ) + λ2

∫ 1

0

ω(s, U(s))ds + b,

V (0) = λ1U(τ) + λ2

∫ 1

0

ω(s, V (s))ds + b.

We need the following assumption.

(H4) ϕ, φ are coupled lower and upper generalized solutions of (1.1), respectively,

such that ϕ ≤ φ on J .

Theorem 4.3. Let inequality (2.3) and (H2)–(H4) hold. If

y(t) =

n−1
∑

k=0

y(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, ϕ(s), (Tϕ)(s), (Sϕ)(s))

−M(ϕ(s) − y(s)) − N((Tϕ)(s) − (Ty)(s))

−N1((Sϕ)(s) − (Sy)(s))]ds, t ∈ J, k = 0, . . . , n − 1,

z(t) =

n−1
∑

k=0

z(k)(0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, φ(s), (Tφ)(s), (Sφ)(s))

−M(φ(s) − z(s)) − N((Tφ)(s) − (Tz)(s))

−N1((Sφ)(s) − (Sz)(s))]ds, t ∈ J, k = 0, . . . , n − 1,

where

y(k)(0) = z(k)(0) = ak, k = 1, . . . , n − 1,

a0 = y(0) = λ1φ(τ) + λ2

∫ 1

0

ω(s, ϕ(s))ds + b,

a∗

0 = z(0) = λ1ϕ(τ) + λ2

∫ 1

0

ω(s, φ(s))ds + b,

then ϕ(t) ≤ y(t) ≤ z(t) ≤ φ(t), t ∈ J , and y(t), z(t) are coupled lower and upper

generalized solutions of (1.1), respectively.

The way of proof is similar to the one we used in the proof of Theorem 3.1, so

we omit it.

Theorem 4.4. Let inequality (2.3) and (H2)–(H4) hold. Then there exist monotone

sequences {ϕn}, {φn} ⊂ [ϕ, φ] which converge uniformly to a coupled generalized

quasi-solution of (1.1) in [ϕ, φ].
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Proof. For i = 1, 2, . . . , we suppose that

(4.1)











Dαϕi(t) − Mϕi(t) − N(Tϕi)(t) − N1(Sϕi)(t) = ρi−1(t), t ∈ J,

ϕ
(k)
i (0) = ak, k = 1, . . . , n − 1,

ϕi(0) = λ1φi−1(τ) + λ2

∫ 1

0
ω(s, ϕi−1(s))ds + b,

and

(4.2)











Dαφi(t) − Mφi(t) − N(Tφi)(t) − N1(Sφi)(t) = ρ̄i−1(t), t ∈ J,

φ
(k)
i (0) = ak, k = 1, . . . , n − 1,

φi(0) = λ1ϕi−1(τ) + λ2

∫ 1

0
ω(s, φi−1(s))ds + b.

where

ρi−1(t) = f(t, ϕi−1(t), (Tϕi−1)(t), (Sϕi−1)(t))

−Mϕi−1(t) − N(Tϕi−1)(t) − N1(Sϕi−1)(t),

ρ̄i−1(t) = f(t, φi−1(t), (Tφi−1)(t), (Sφi−1)(t))

−Mφi−1(t) − N(Tφi−1)(t) − N1(Sφi−1)(t).

Obviously, Eqs. (4.1) and (4.2) have the following generalized solutions, respec-

tively.

ϕi(t) =
n−1
∑

k=0

ϕ
(k)
i (0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, ϕi−1(s), (Tϕi−1)(s), (Sϕi−1)(s))

−M(ϕi−1(s) − ϕi(s)) − N((Tϕi−1)(s) − (Tϕi)(s))

−N1((Sϕi−1)(s) − (Sϕi)(s))]ds, t ∈ J, k = 0, . . . , n − 1,

φi(t) =

n−1
∑

k=0

φ
(k)
i (0)

k!
tk +

1

Γ(α)

∫ t

0

(t − s)α−1[f(s, φi−1(s), (Tφi−1)(s), (Sφi−1)(s))

−M(φi−1(s) − φi(s)) − N((Tφi−1)(s) − (Tφi)(s))

−N1((Sφi−1)(s) − (Sφi)(s))]ds, t ∈ J, k = 0, . . . , n − 1.

In view of Theorem 4.3, we have that

ϕ = ϕ0 ≤ ϕ1 ≤ · · ·ϕi ≤ · · · ≤ φi ≤ · · · ≤ φ1 ≤ φ0 = φ

and each ϕi, φi ∈ [ϕ, φ](i = 1, 2 . . . ).

Obviously the sequences {ϕi}, {φi} are uniformly bounded and equicontinuous,

one can employ the standard arguments, namely the Ascoli-Arzela criterion to con-

clude that the sequences {ϕi}, {φi} converge uniformly on J with limi→∞ ϕi = x∗,

limi→∞ φi = x∗ uniformly on J . Indeed, (x∗, x
∗) is a coupled generalized quasi-solution

of problem (1.1) in [ϕ, φ].
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