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ABSTRACT. In this paper, we explore the indifference pricing of the insurance contract relevant

to the home reversion plan involving a single insured and a pair of insureds. Under the assumption

that the risk-free bonds accumulate with a stochastic interest rate driven by a diffusion process, we

applied the principle of equivalent utility to derive the partial differential equation system that the

indifferent annuity benefits satisfy under the exponential utility function. Interestingly, the partial

differential equation systems under stochastic interest rate coincide in form with those under the

constant interest rate. However, while some parallels exist, there are subtle differences between them.

In case that the value of stochastic interest rate at the beginning of signing the insurance contract

is the same with the constant interest rate, the indifference annuity benefits under the stochastic

interest rate coincide with those under the constant interest rate. The indifference annuity rates

under the stochastic interest rate relate only with the initial value of stochastic interest rate at the

start of writing the insurance contract, and have nothing to do with the specific paths of the diffusion

process that drives the dynamics of stochastic interest rate.

Keywords: Stochastic interest rate; Home reversion plan; Long-term care; Markov model; Indiffer-
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1. INTRODUCTION

Reverse mortgages are specialized loans available to elderly homeowners. This

loan, as opposed to a simple sale, enables the qualifying seniors to convert some of

their home equity into cash while allowing them to continue to live in their own

homes. Also with a reverse mortgage, such qualifying seniors can access a significant
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amount of cash to pay for living expenses, in-home services and supports, insurance

premiums for long-term care.

With the increase in the aging population, the pressure on social security and

medicare entitlements is on the rise. So, it becomes increasingly important to find

effective ways to improve the seniors’ long-term care financing system, as well as

to decrease state medicare/medicaid budgets. Thus the idea if utilizing the reverse

mortgage to pay for long-term care services and insurance has come into being couple

of decades ago, see [3], [4], [5], [9], [10].

However, the published research on pricing the contract that links the reverse

mortgage to long-term care are still scanty. In a recent work, [11] first designs a special

insurance contract linking the home reversion plan to the long-term care involving a

single insured, and then prices the contract with the equivalent utility principle. Our

earlier work [8] modified and followed the method in this work to design and price the

continuous annuities of home reversion plan and the insurance contract linking home

reversion plan to long-term care for a ‘pair of insureds’ (meaning, husband and wife).

The work [8] assumes that the insurer can choose investment proportion dynamically

between the risky assets and the riskless bonds, the instantaneous yield of the risky

assets is governed by a geometric Brownian motion, and the riskless bonds accumulate

with a constant interest rate. Then, [7] generalizes the dynamics of the risky assets

(i.e. home price) to follow a Lévy process, while the riskless bonds still accumulate

with the constant interest rate. In this paper, we extend the constant interest rate to

the stochastic interest rate and the stochastic interest rate is modeled by a diffusion

process; however, the instantaneous yield of the risky assets is still governed by a

geometric Brownian motion.

The remainder of the paper is organized as follows: Section 2 presents the results

of the optimal investment without the insurance risk under the stochastic interest

rates. As in the case of the insurance contract linking Home Reversion Plan (HRP)

to Long-Term Care (LTC) involving a pair of insureds, we derive, in Section 3, a

system of partial differential equations satisfied by the indifferent annuities under the

exponential utility function. In Section 4, as in the home reversion plan involving

a couple (presented by [8]), we derive the partial differential equation system that

the indifferent annuities satisfy. In section 5, we modify the work of [11] and derive

the partial differential equation system that the indifferent annuities satisfy under the

stochastic interest rate. Interestingly, the partial differential equation system that the

indifference annuities satisfy under the stochastic interest rates are the same in form

with that under the constant interest rate; however, they have different implications
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and meanings. The final Section 6 presents the conclusion and indicate our future

direction in such problems.

2. OPTIMAL INVESTMENT WITHOUT THE INSURANCE RISK

We consider a complete filtered probability space (Ω,F , (Fs)t≤s≤T , P ) satisfying

the usual conditions, where T denotes the term of the trading horizon. The filtration

Fs consists of two subfiltrations, i.e., Fs = FH
s ∨ F r

s , where FH = (FH
s )t≤s≤T covers

the information about the risky asset, and F r = (F r
s )t≤s≤T contains the information

about the stochastic interest rates. We make some blanket assumptions here.

• The filtrations FH and F r are independent. The insurer invests in both a risk-

free asset and a risky asset.

• The value process (Hs)t<s≤T of risky asset is modeled by a geometric Brownian

motion

(1) dHs = Hs(µ ds + σ dBH
s ), Ht = H > 0, t ≤ s ≤ T,

where BH
s is a standard Brownian motion on the probability space (Ω,F , P ),

adapted to the filtration FH
s = σ(BH

u : 0 ≤ u ≤ s). The constant drift parameter

µ and the diffusion parameter σ denote the mean return rate and the volatility

of the risky asset, respectively.

• The value of risk-free asset accumulates with the stochastic interest rate rs > 0,

for t < s ≤ T . The dynamics of the stochastic interest rate is governed by

(2) drs = a(s, rs) ds + b(s, rs) dBr
s , rt = r > 0, t ≤ s ≤ T,

where Br
s is a standard Brownian motion on the probability space (Ω,F , P ),

adapted to the filtration F r
s = σ(Br

u : 0 ≤ u ≤ s). Note that the Brownian

motions {BH
s } and {Br

s}, 0 ≤ s ≤ T , are independent.

• The stochastic interest rate given by (2) satisfies the assumptions:

(B1) a(s, rs) : [0, T ] × (0,∞) 7→ R and b(s, rs) : [0, T ] × (0,∞) 7→ R are continuous

functions, uniformly in s, locally Lipschitz continuous in r;

(B2) For any (t, r) ∈ [0, T ]× (0,∞), we have

sup
u∈[t,T ]

E[|ru|2 | rt = r] < ∞,

P (ru ∈ (0,∞),∀u ∈ [t, T ] | rt = r) = 1.

Under the Assumptions (B1)–(B2), there exists a unique strong solution to the SDE

(2) such that the mapping (t, r, s) 7→ rt,r(s) is P − a.s. continuous, and for each

starting point (t, r) ∈ [0, T ] × (0,∞), the stochastic interest rate process is non-

explosive on [t, T ].
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With the dynamics of the stochastic interest rate for the single-factor structure

governed by the SDE (2), [1], [2] and [13] analyze the pricing of the insurance contract,

where they assume that a(rt, t) ≥ 0 and b(rt, t) ≥ 0 so that rt ≥ 0, for all t ≥ 0.

• Now, the dynamics of risk-free asset Ms (t ≤ s ≤ T ) is given by

dMs = rsMsds, t ≤ s ≤ T.

• Let Ws denote the wealth of insurer at time s, with initial wealth Wt = w.

• The insurer can adjust the dynamic proportion of risky to risk-free asset. Par-

ticularly, the insurer invests πs into the risky asset (in our case, the real estate)

at time s (t ≤ s ≤ T ), and the remainder of the asset Ws − πs into the riskless

asset. Then, the wealth process of insurer Ws associated with πs is a solution to

the following SDE

dWs = πs
dHs

Hs

+ (Ws − πs)
dMs

Ms

= [rsWs + (µ− rs)πs] ds + σπs dBH
s , (t ≤ s ≤ T ),

with the initial wealth Wt = w.

• Without the insurance risk, the value function of the insurer is defined by

(3) U (0)(w, r, t) = sup
{πs∈A}

E[u(WT )|Wt = w, rt = r],

where the utility function u : R → R is assumed to be strictly increasing and

concave.

• Let A denote the set of all admissible strategies πs that are Fs-adapted, self-

financing and square integrable (i.e. E

(∫ T

t

π2
sds

)
< ∞).

• Assume that the utility u is given by the exponential utility function

(4) u(w) = − 1

α
e−αw, (α > 0),

where the parameter α measures the absolute risk aversion of the insurer.

Definition 1. For notational brevity, we introduce the following partial differential

operators:

2Aπ
b f(w, r,H, t) :=

∂f

∂t
+ (rw + (µ− r)π − b)

∂f

∂w
+

1

2
σ2π2 ∂2f

∂w2
+ a(t, r)

∂f

∂r

+
1

2
b2(t, r)

∂2f

∂r2
+ µH

∂f

∂H
+

1

2
σ2H2 ∂2f

∂H2
+ σ2πH

∂2f

∂w∂H
,(5)

(6)

3Aπ
b f(w, r, t) :=

∂f

∂t
+(rw +(µ− r)π− b)

∂f

∂w
+

1

2
σ2π2 ∂2f

∂w2
+a(t, r)

∂f

∂r
+

1

2
b2(t, r)

∂2f

∂r2
,
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(7) 0Lr,σ
b f(H, t) :=

∂f

∂t
+ rH

∂f

∂H
+

1

2
σ2H2 ∂2f

∂H2
+ bαer(T−t).

Here the partial derivatives in equation (5) and (6) are defined as functions of (w, r,H, t)

and (w, r, t), respectively; for instance, ∂f
∂w

in (5) means that ∂f
∂w
≡ ∂f

∂w
(w, r,H, t), and

∂f
∂w

in (6) means that ∂f
∂w
≡ ∂f

∂w
(w, r, t); the parameter α is the same as in (4); T, µ, σ

denote, respectively, trade horizon, the mean return rate, and volatility of risky asset

given by the Equation (1); and r denotes the initial value of stochastic interest rate

given by (2).

We will freely use the following standard results:

1. Applying Itô formula to U (0)(w, r, t) we get

dU (0)(w, r, t) =

[
∂U (0)

∂t
+ (rtwt + (µ− rt)πt)

∂U (0)

∂w
+

1

2
σ2π2

t

∂2U (0)

∂w2
+ a(t, rt)

∂U (0)

∂r

+
1

2
b2(t, rt)

∂2U (0)

∂r2

]
dt + σπt

∂U (0)

∂w
dBH

t + b(t, rt)
∂U (0)

∂r
dBr

t .

2. Using the standard stochastic control methods, we obtain that U (0)(w, r, t) solves

the following HJB equation

∂U (0)

∂t
+ rw

∂U (0)

∂w
+ a(t, r)

∂U (0)

∂r
+

1

2
b2(t, r)

∂2U (0)

∂r2

+ max
π

{
1

2
σ2π2∂2U (0)

∂w2
+ (µ− r)π

∂U (0)

∂w

}
= 0(8)

3. Let ᾱ := αer(T−t). In order to simplify the above HJB equation for U (0)(w, r, t),

we make an ansatz of the form

(9) U (0)(w, r, t) := − 1

α
exp(−αwer(T−t))g(r, t).

Then g(r, t) solves the following equation with the boundary condition g(r, T ) =

0 {
ᾱw(T − t)

[
−a(t, r)− 1

2
b2(t, r)(T − t) +

1

2
b2(t, r)ᾱw(T − t)

]

− (µ− r)2

2σ2

}
g(r, t) +

∂g

∂t

+
[
a(t, r)− ᾱw(T − t)b2(t, r)

] ∂g

∂r
+

1

2
b2(t, r)

∂2g

∂r2
= 0.(10)

3. INSURANCE CONTRACT LINKING HRP TO LTC: PAIR OF

INSUREDS

Under the financial market described in Section 2, we first adopt Markov models

to describing the actuarial construct of the contract linking Home Reversion Plan to
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Figure 1. The Markov model for a pair of insureds

Long Term Care, and then show the indifference annuity rates are controlled by a

system of nonlinear partial differential equations.

3.1. Markov Model Distinguishing the Gender of Insureds. The study of this

section is mainly based on a seven-state continuous time Markov model illustrated in

Figure 1(a), which describes the states and transitions for the contract linking home

reversion plan to long term care for a pair of jointly insureds. In the following, the

pair of insureds are denoted by (x) and (y), with the interpretation (x) = x-year old

husband and (y) = y-year old wife. The corresponding states in the Markovian model

are as follows:

(1) State 6 represents that the insured pair (x) and (y) lives at home;

(2) State 5 represents that (x) is dead and (y) lives at home;

(3) State 4 represents that (y) is dead and (x) lives at home;

(4) State 3 represents that (x) and (y) both live at nursing home;

(5) State 2 represents that the only survivor (y) lives at nursing home;

(6) State 1 represents that the only survivor (x) lives at nursing home;

(7) State 0 represents that both (x) and (y) are dead.

The model is assumed to work under the following implicit hypotheses:

(A1) The two events One insured dies and The other insured moves into a nursing

home cannot happen simultaneously.

(A2) For the convenience of analysis, we forbid the event that One of the insureds

lives at home, while the other lives at nursing home.

NOTE: (1) By assuming that the couple (x) and (y) cannot die at the same time,

we can employ Figure 1(b) to illustrate the states and transitions. In the absence of

this assumption, we can use Figure 1(a) to describe the actuarial structure.

(2) Comparing Figure 1(a) with Figure 1(b), we observe that the transitions 6 → 0

and 3 → 0 appear in Figure 1(a) but not in Figure 1(b).

(3) Under the assumption (A1), both the transitions 6 → 1 and 6 → 2 cannot happen.
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Assume that Zs is a continuous-time Markov chain representing the policy state at

the time s ∈ [t, T ). Let Pij(s, t) = P (Zt = j|Zs = i), (i, j ∈ S, s ≤ t) denote the tran-

sition probabilities, and λij(t) = limh→0
Pij(t,t+h)

h
, i 6= j, and λii(t) = −

∑
j 6=i λij(t),

denote the corresponding transition intensity. Let τi be the stopping time of entering

the state i (i = 0, 1, . . . , 5), i.e., τi := inf{t; Zt = i}, i = 0, 1, . . . , 5.

Cash Flow SDEs: When the policy states and transitions are illustrated by

Figure 1(a), the insurance contract linking home reversion plan to long term care, for

a pair of insureds, is designed as follows:

(I) When the insureds are at state i (i = 1, 2, . . . , 6), the insurer pay the insureds

the continuous annuity with rate bi (i = 1, 2, . . . , 6).

(II) The insureds employ all cash from the sale of the house to repay the insurer at

the time τ = min{τ0, τ1, τ2, τ3}.

Then, when the insurer underwrites the above contract linking home reversion

plan to long term care, the cash flows of the insurer are governed by the following

system of SDEs:

(11)



dWs = µ6 ds + σπs dBH
s , t < s < min(τ0, τ3, τ4, τ5),

dWs = µ5 ds + σπs dBH
s , τ3 = τ4 = ∞, t < τ5 < s < min(τ0, τ2),

dWs = µ4 ds + σπs dBH
s , τ3 = τ5 = ∞, t < τ4 < s < min(τ0, τ1),

dWs = µ3 ds + σπs dBH
s , τ4 = τ5 = ∞, t < τ3 < s < min(τ0, τ1, τ2),

dWs = µ2 ds + σπs dBH
s , τ4 = ∞, t < τ2 < s < τ0 ≤ T,

dWs = µ1 ds + σπs dBH
s , τ5 = ∞, t < τ1 < s < τ0 ≤ T,

dWs = µ0 ds + σπs dBH
s , t < τ0 < s ≤ T.

where b0 ≡ 0 and µi = rsWs + (µ − rs)πs − bi (i = 0, 1, . . . , 6), with the boundary

conditions:

(12)



Wt = w,

Wτ+
0

= Wτ−0
+ Hτ0 , τ3 = τ4 = τ5 = ∞,

Wτ+
1

= Wτ−1
+ Hτ1 , τ3 = τ5 = ∞, t < τ1 < τ0 ≤ T,

Wτ+
2

= Wτ−2
+ Hτ2 , τ3 = τ4 = ∞, t < τ2 < τ0 ≤ T,

Wτ+
3

= Wτ−3
+ Hτ3 , τ4 = τ5 = ∞, t < τ3 < τ0 ≤ T.

3.2. The HJB Equations for the Indifference Annuity Rates.

Definition 2. A strategy {πs : (t, T ] × Ω 7→ R, t < s ≤ T} is called admissible, if

πs is progressively measurable with respect to the filtration Fs, the SDE system (11)

has a unique strong solution, and E[
∫ T

t
π2

sds] < ∞.
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Value Function: Let A denote the set of all admissible strategies. For the

above insurance linking HRP to LTC in the above subsection, the value function of

the insurer at state i (i = 4, 5, 6) is defined by

U (i)(w, r,H, t) = sup
{πs∈A}

E[u(WT )|Wt = w, rt = r, Ht = H, Zt = i], i = 4, 5, 6.

When the insureds are at state i (i = 1, 2, 3) at time t (0 ≤ t < T ), the insurer

pays the insureds a continuous annuity at the constant rate bi (i = 1, 2, 3). This

still leaves the insurer at risk of payment of the annuity. From article (II) of the

insurance treaty described above, the insured repays the insurer with the cash of

selling the house at time τ = min{τ0, τ1, τ2, τ3}. In other words, at the time t > τ =

min{τ0, τ1, τ2, τ3}, the insured has repaid the insurer. Then, the maximum expected

utility of terminal wealth for the insurer corresponding to the states i, i = 1, 2, 3,

which are derived by the optimal strategy, are not dependent on the house price. So,

the value function of the insurer at state i (i = 1, 2, 3) are defined as follows

U (i)(w, r, t) = sup
{πs∈A}

E[u(WT )|Wt = w, rt = r, Zt = i].

The following Lemma 1 gives the nonlinear partial differential equation system

that the value functions U (i)(w, r,H, t) (i = 4, 5, 6) and U (i)(w, r, t) (i = 1, 2, 3) solve.

The PDE operators 2Aπ
bi
U (i)(w, r,H, t) and 3Aπ

bi
U (i)(w, r, t) are defined in (5) and

(6), respectively. The definition of U (0)(w, r, t) are given by (3) and it satisfies HJB

Equation (8).

Lemma 1. U (6)(w, r,H, t) solve the following HJB equation

max
π

[2Aπ
b6

U (6)(w, r,H, t)] +
∑
j=4,5

λ6j(t)[U
(j)(w, r,H, t)− U (6)(w, r,H, t)]

+
∑
j=0,3

λ6j(t)[U
(j)(w + H, r, t)− U (6)(w, r,H, t)] = 0,(13)

where U (i)(w, r,H, t) (i = 4, 5) and U (3)(w, r, t), respectively, satisfy the following

HJB Equations

(14) max
π

[
2Aπ

b5
U (5)(w, r,H, t)

]
+

∑
j=0,2

λ5j(t)[U
(j)(w + H, r, t)− U (5)(w, r,H, t)] = 0,

(15) max
π

[
2Aπ

b4
U (4)(w, r,H, t)

]
+

∑
j=0,1

λ4j(t)[U
(j)(w + H, r, t)− U (4)(w, r,H, t)] = 0,

(16) max
π

[
3Aπ

b3
U (3)(w, r, t)

]
+

∑
j=0,1,2

λ3j(t)[U
(j)(w, r, t)− U (3)(w, r, t)] = 0.
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Furthermore, U (i)(w, r, t) (i = 1, 2) solve the following HJB Equation

(17) max
π

[
3Aπ

bi
U (i)(w, r, t)

]
+ λi0(t)[U

(0)(w, r, t)− U (i)(w, r, t)] = 0.

The HJB Equations (13)–(17) are subject to the following terminal conditions

U (i)(w, r,H, T ) = u(w) (i = 4, 5, 6), U (i)(w, r, T ) = u(w) (i = 1, 2, 3).

Proof. Assume the insurer fixes the strategy {πs} as {π} from the time t to t + h,

which may not be the optimal strategy. From the time t+h to the end of horizon, the

insurer invests with the optimal investment strategies. We consider the next possible

state from State 6 and the optimal investment. From the definition of U (6)(w, r,H, t),

we obtain

U (6)(w, r,H, t) ≥
∑
j=0,3

P6j(t, t + h)Ew,r,H,t[U (j)(Wt+h + Ht+h, rt+h, t + h)]

+
∑
j=4,5

P6j(t, t + h)Ew,r,H,t[U (j)(Wt+h, rt+h, Ht+h, t + h)]

+P66(t, t + h)Ew,r,H,t[U (6)(Wt+h, rt+h, Ht+h, t + h)],(18)

where the notation Ew,r,H,t denotes the conditional expectation with respect to {Wt =

w, rt = r, Ht = H}.

Apply Itô formula to U (i)(w, r,H, t) (i = 4, 5, 6) to obtain

U (i)(Wt+h, rt+h, Ht+h, t + h)

= U (i)(w, r,H, t) +

∫ t+h

t
2Aπ

b2
U (i)(Ws, rs, Hs, s)ds

+

∫ t+h

t

b(s, rs)
∂U (i)

∂r
(Ws, rs, Hs, s)dBr

s

+

∫ t+h

t

[
σHs

∂U (i)

∂H
(Ws, rs, Hs, s) + σπ

∂U (i)

∂w
(Ws, rs, Hs, s)

]
dBH

s ,(19)

Again, Itô formula applied to U (i)(w, r, t) yields

U (i)(Wt+h, rt+h, t + h)

= U (i)(w, r, t) +

∫ t+h

t
3Aπ

bi
U (i)(Ws, rs, s)ds

+

∫ t+h

t

σπ
∂U (i)

∂w
(Ws, rs, s)dBH

s +

∫ t+h

t

b(s, rs)
∂U (i)

∂r
(Ws, rs, s)dBr

s .(20)

where b0 ≡ 0. Note that, as h → 0, we have

P66(t, t + h) → 1,

P6j(t, t + h) → 0 (j = 0, 3, 4, 5),
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P6j(t, t + h)

h
→ λ6j(t) (j = 0, 3, 4, 5),∑

j=0,3,4,5,6

P6j(t, t + h) = 1.

Inserting (19) and (20) into (18), reorganizing terms appropriately, dividing the equa-

tion by h, and letting h → 0 we obtain

0 ≥ 2Aπ
b6

U (6)(w, r,H, t) +
∑
j=4,5

λ6j(t)[U
(j)(w, r,H, t)− U (6)(w, r,H, t)]

+
∑
j=0,3

λ6j(t)[U
(j)(w + H, r, t)− U (6)(w, r,H, t)] = 0,(21)

Finally, we follow the optimal strategy π = π∗ in the time interval [t, t+h] to observe

that the Equality in (18) holds true. We obtain (13).

In the same way, we can show that (14)–(17) hold. We thus conclude the proof.

While the insurer pays the insureds the agreed upon continuous annuity, the

insureds repay the insurer with the cash on selling the house at a random time of the

insurance period as compensation. When the insurer pays out the annuity so that

the optimal investment with the insurance risk and paying the continuous annuity

coincides with the optimal investment without insurance risk and not paying the

annuity, the insurer is indifferent with and without underwriting the insurance risk.

In this case, the annuity rates are known as the indifference annuity rates. Thus,

when the annuity rates are the same with the indifference annuity rates, we have

U (0)(w, r, t) = U (6)(w, r,H, t; bi, i = 1, . . . , 6).

The following theorem presents the nonlinear PDE system that the indifference

annuity rates solve.

Theorem 2. Assume that the utility function is exponential, viz, u(w) = − 1
α
e−αw.

Let φi(t) (i = 1, 2) be the solution of the following terminal value problem

(22)
dφi(t)

dt
+ biᾱφi(t) + λi0(t)[1− φi(t)] = 0, φi(T ) = 1.

Then the indifference continuous annuity rates bi (i = 1, 2, . . . , 6) satisfy the following

equations

(23) φ6(H, t; b1, b2, . . . , b6) = 0,

where φ6(H, t) solves the following HJB Equation

0Lr,σ
b6

φ6(H, t) +
∑
j=4,5

λ6j(t)[e
φj(H,t)−φ6(H,t) − 1]
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+
∑
j=0,3

λ6j(t)[e
−ᾱH−φ6(H,t)(φ3(t)1{j=3} + 1{j=0})− 1] = 0,(24)

with the terminal condition φ6(H, T ) = 0. The functions φj(H, t) (j = 4, 5) and φ3(t)

in (24) solve the following HJB equations

(25) 0Lr,σ
b5

φ5(H, t) + [λ52(t)φ2(t) + λ50(t)]e
−(ᾱH+φ5(H,t)) − [λ52(t) + λ50(t)] = 0,

(26) 0Lr,σ
b4

φ4(H, t) + [λ41(t)φ1(t) + λ40(t)]e
−(ᾱH+φ4(H,t)) − [λ41(t) + λ40(t)] = 0,

(27)
dφ3(t)

dt
+ b3ᾱφ3(t) +

∑
j=1,2

λ3j(t)[φj(t)− φ3(t)] + λ30(t)[1− φ3(t)] = 0,

subject to the terminal conditions φi(H, T ) = 0 (i = 4, 5) and φ3(T ) = 1, respectively.

Proof. To reduce dimensions of the equations in Lemma 1, we make the transforma-

tion

(28) U (i)(w, r,H, t) = U (0)(w, r, t)eφi(H,t), i = 4, 5, 6,

(29) U (i)(w, r, t) = U (0)(w, r, t)φi(t), i = 1, 2, 3.

We obtain the derivatives of U (i)(w, r,H, t) (i = 4, 5, 6) from Equation (28)

∂U (i)

∂r
= eφi(H,t)∂U (0)

∂r
,

∂U (i)

∂H
= eφi(H,t)U (0) ∂φi

∂H
,

∂2U (i)

∂r2
= eφi(H,t)∂

2U (0)

∂r2
,

∂U (i)

∂w∂H
= eφi(H,t)∂U (0)

∂w

∂φi

∂H
,

∂U (i)

∂w
= eφi(H,t)∂U (0)

∂w
,

∂U (i)

∂t
= eφi(H,t)

[
∂U (0)

∂t
+ U (0)∂φi

∂t

]
,

∂2U (i)

∂w2
= eφi(H,t)∂

2U (0)

∂w2
,

∂2U (i)

∂H2
= eφi(H,t)U (0)

[
∂2φi

∂H2
+ (

∂φi

∂H
)2

]
.

Substituting the partial derivatives of U (6)(w, r,H, t) into maxπ{2Aπ
b6

U (6)(w, r,H, t)},
and noting (8) and (9), we can obtain that

max
π

[
2Aπ

b6
U (6)(w, r,H, t)

]
= U (0)(w, r, t)eφ6(H,t)

0Lr,σ
b6

φ6(H, t).(30)

Inserting (28) and (29), and noting ᾱ = αer(T−t), we get∑
j=4,5

λ6j(t)[U
(j)(w, r,H, t)− U (6)(w, r,H, t)]

= U (0)(w, r, t)eφ6(H,t)
∑
j=4,5

λ6j(t)
(
eφj(H,t)−φ6(H,t) − 1

)
,(31)

(32) U (3)(w +H, r, t)−U (6)(w, r,H, t) = U (0)(w, r, t)eφ6(H,t)
(
e−ᾱH−φ6(H,t)φ3(t)− 1

)
,

(33) U (0)(w + H, r, t)− U (6)(w, r,H, t) = U (0)(w, r, t)eφ6(H,t)
(
e−ᾱH−φ6(H,t) − 1

)
.
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Substitute (30), (31), (32) and (33) into (13) to obtain the Equation (24). With

similar steps, we get the Equations (25) and (26) from (14) and (15), respectively.

Noting the operator 3Aπ
b3

(w, r, t) defined by (6) and Equation (8) and (9), we obtain

(34) max
π

[
3Aπ

b3
U (3)(w, r, t)

]
= U (0)(w, r, t)

[
dφ3(t)

dt
+ b3ᾱφ3(t)

]
.

Substitute U (i)(w, r, t) = U (0)(w, r, t)φi(t), (i = 1, 2, 3), to obtain∑
j=0,1,2

λ3j(t)[U
(j)(w, r, t)− U (3)(w, r, t)]

= U (0)(w, r, t)

[ ∑
j=1,2

λ3j(t) (φj(t)− φ3(t)) + λ30(t) (1− φ3(t))

]
(35)

Substituting (34) and (35) into (16) we obtain (27). Equation (22) follows similarly

from the HJB Equation (17). This completes the proof.

Remark 1. Theorem 2 presents the indifference pricing equations for the continuous

annuity rate bi (i = 1, 2, . . . , 6). Apparently, the bi, (i = 1, 2, . . . , 6), do not appear in

those equations. In fact, the bi’s are hidden in the appropriate differential operators.

For example, noting the definition of 0Lr,σ
b f(X, t) given by (7), the specific form of

0Lr,σ
bi

φi(H, t) (i = 4, 5, 6) is expressed as

(36) 0Lr,σ
bi

φi(H, t) =
∂φi

∂t
+ rH

∂φi

∂H
+

1

2
σ2H2 ∂2φi

∂H2
+ biαer(T−t),

where r denotes the value of stochastic interest rate rt at time t.

Remark 2. For the contracts linking home reversion plan to the long term care based

on Markov models in [8], we just need to make the corresponding modifications in

the derivative details of Lemma 1 and Theorem 2. Then the results paralleling them

under the stochastic interest rates can be derived without much effort.

Employing the methods of Theorem 3.4. and Corollary 3.5 of [8], we can obtain

from Theorem 2 the Feynman-Kac formula for the indifference continuous annuity

rates bi, i = 1, 2, . . . , 6.

4. HOME REVERSION PLAN FOR A PAIR OF INSUREDS

The contents of Sections 4 and 5 parallel that of Section 3. Therefore, we continue

to follow similar notations as in Section 3. With constant interest rate, [8] prices the

home reversion plan for a pair of jointly insureds with the principle of equivalent

utility. In this Section, we continue the study of this problem under the assumption

of stochastic interest rate. Allowing that a pair of jointly insureds die simultaneously,

we can adopt Figure 2(b) to describe the policy states and transitions. Otherwise

the corresponding policy states and the transitions are given in Figure 2(a). The
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(a)

0

12

3

(b)

01

2

(c)

Figure 2. Markov model for home reversion plan for a pair of insureds

following are based on Figure 2(a). The associated policy states for the couple are as

follows:

1. State 3 represents that both (x) and (y) are alive;

2. State 2 represents that (x) is dead and (y) is alive;

3. State 1 represents that (x) is alive and (y) is dead;

4. State 0 represents that both (x) and (y) are dead.

Here, as before, (x) and (y) denote the x-year old husband and y-year old wife,

respectively. Let τi = inf{t; Zt = i} denote the stopping time of entrance into state

i (i = 0, 1, 2). The home reversion plan applied jointly by a couple is designed as

follows

• As for benefits, we assume that a continuous annuity benefit is paid at an in-

stantaneous constant rate bi when the insureds are in state i, i = 1, 2, 3.

• In return, the insurer will be repaid with g(Xτ0 , τ0) at the time of entering into

state 0, where 0 ≤ g(Xτ0 , τ0) ≤ Xτ0 . In other words, the insureds agree as per

the contract, to repay with whole or part of the cash generated from the sale of

the house at time τ0.

Dynamics of Wealth: Based on the financial market in Section 2, when the

insurer underwrites home reversion plan for a couple, the dynamics of wealth is as

follows

Wt = w,

Wτ+
0

= Wτ−0
+ g(Hτ0 , τ0), t < τ0 < T,

dWs = [rsWs + (µ− rs)πs − b3] ds + σπs dBH
s , t < s < min(τ1, τ2) < T,

dWs = [rsWs + (µ− rs)πs − b2] ds + σπs dBH
s , t < τ2 < s < τ0 < T, τ1 = ∞,

dWs = [rsWs + (µ− rs)πs − b1] ds + σπs dBH
s , t < τ1 < s < τ0 < T, τ2 = ∞,

dWs = [rsWs + (µ− rs)πs] ds + σπs dBH
s , t < τ0 < s < T.



562 L. MA, J. ZHANG, AND D. KANNAN

Value Functions: For the above home reversion plan, the corresponding value

functions U (i)(w, r,H, t) (i = 1, 2, 3) are defined as follows

(37) U (i)(w, r,H, t) = sup
{πs∈A}

E[u(WT )|Wt = w, rt = r, Ht = H, Zt = i].

Here A represents the set of all admissible strategies that can be strictly defined in

the same way as in Definition 2.

Computing the corresponding derivatives as in the proof of Lemma 1, we can

show that the value functions defined by (37) solve the following HJB system.

Lemma 3. U (3)(w, r,H, t) solves the HJB Equation

(38) max
{π∈A}

[2Aπ
b3

U (3)(w, r,H, t)] +
∑
i=1,2

λ3i(t)[U
(i)(w, r,H, t)− U (3)(w, r,H, t)] = 0,

where U (i)(w, r,H, t) (i = 1, 2) solve the HJB Equations

(39) max
{π∈A}

[
2Aπ

bi
U (i)(w, r,H, t)

]
+ λi0(t)[U

(0)(w + g(H, t), r, t)− U (i)(w, r,H, t)] = 0,

subject to the terminal conditions

U (i)(w, r,H, T ) = u(w), i = 1, 2, 3,

respectively.

With the continuous indifference annuity rate b1, b2, b3, the optimal investment

with insurance risk is the same with the optimal investment without the insurance

risk, i.e.

U (0)(w, r, t) = U (3)(w, r,H, t; b1, b2, b3).

The following Theorem 4 gives the pricing equation system that the indifference

annuity rates b1, b2, b3 satisfy.

Theorem 4. Assume that the utility function is exponential, viz u(w) = − 1
α
e−αw.

Then, the indifference continuous annuity rates bi (i = 1, 2, 3) solve the following

equation

(40) φ3(H, t; b1, b2, b3) = 0,

where φ3(H, t) solves the HJB Equation

(41) 0Lr,σ
b3

φ3(H, t) +
∑
i=1,2

λ3i(t)
(
eφi(H,t)−φ3(H,t) − 1

)
= 0,

and φi(H, t) (i = 1, 2) satisfies the HJB Equation

(42) 0Lr,σ
bi

φi(H, t) + λi0(t)
(
e−(ᾱg(H,t)+φi(H,t)) − 1

)
= 0,

subject to φi(H, T ) = 0, i = 1, 2, 3.
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Remark 3. The reader will notice that Theorem 4 coincides with Theorem 4.3. in

[8] in form, just with different notations. However, there exist both differences and

similarities between them.

• Difference: The main differences are due to the different meanings of r in

these two theorems. The rate r in Theorem 4 represents the initial value of

stochastic interest rate whose dynamics are modeled by the diffusion process

(2). Thus, Theorem 4 indicates that the indifference annuity rates only relate

with the initial value of stochastic interest rate at the beginning of underwriting

the insurance, and have nothing with how the diffusion process evolves. Note

here that the r in Theorem 4.3 of [8] denotes a fixed deterministic interest rate

during the whole insurance period.

• Similarity: There exist mutual connections between them. Suppose here that

the initial value of stochastic interest rate in Theorem 4 coincides with the

constant interest rate in Theorem 4.3 of [8], the indifference annuity rates under

stochastic interest rate are the same as for that under the constant interest rate.

5. INSURANCE CONTRACT LINKING HRP TO LTC: A SINGLE

INSURED

Under the hypothesis that the interest rate is constant, the work [11] prices the

insurance contract linking home reversion plan and long-term care insurance with the

principle of equivalent utility. In this section, we will continue to price the linked

contract, but now under the assumption of stochastic interest rate rather than a fixed

rate. Since this section parallels Sections 3 and 4, we adopt similar notations and

omit the proofs.

The article [11] adopts a three-state Markov model to illustrate the policy states

and transitions of the linked contract. The corresponding policy states are:

• State (2): the Insured is healthy and living at home,

• State (1): the Insured is in the nursing home, and

• State (0): the Insured is dead.

Assume that there is no chance to recover from State (1) to health (State (2)), i.e.

the transition 1 → 2 cannot appear in Figure 2(c).

The stopping time τi = inf{t; Zt = i} represent the time of entering the State i,

i = 0, 1. The linked insurance contract designed by Xiao (2010) is characterized by

the following clauses:

(I) When the insured stays at state i (i = 1, 2), the insurer pay the continuous

annuities with the constant rate bi, i = 1, 2, and b2 < b1.
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(II) At the stopping time τ = min{τ0, τ1}, the insureds repay the insurer with the

cash of selling house.

By the clause (II), if the insureds directly enters State 0 from State 2, then at

time τ0 the insurer will sell the insured’s house and own all the cashes coming out of

the sale of the house as compensation for annuity. If the insureds first enter State 1

from State 2 before entering state 0, then at time τ1 the insurer will sell the house of

insureds and own all cash proceeds.

Wealth Equations: In the current context, when the insurer signs the insurance

contract linking home reversion plan and long term care, the dynamics of its wealth

are as follows:

Wt = w,

Wτ+
1

= Wτ−1
+ Hτ1 , τ1 < τ0 < T,

Wτ+
0

= Wτ−0
+ Hτ0 , τ1 = ∞, τ0 < T,

dWs = [rsWs + (µ− rs)πs − b2] ds + σπs dBH
s , t < s < min(τ0, τ1),

dWs = [rsWs + (µ− rs)πs − b1] ds + σπs dBH
s , τ1 < s < τ0,

dWs = [rsWs + (µ− rs)πs] ds + σπs dBH
s , τ0 < s < T.

Value Functions: The value functions describe the goal of the insurer which is

to maximize the expected utility of terminal wealth. In the present case, the value

functions at the State 2 and 1 are:

(43) U (2)(w, r,H, t; b1, b2) = sup
{πs∈A}

E[u(WT )|Wt = w, rt = r, Ht = H, Zt = 2],

(44) U (1)(w, r, t; b1) = sup
{πs∈A}

E[u(WT )|Wt = w, rt = r, Zt = 1],

where A represents the set of all admissible strategies which can be defined in the

same way as in Definition 2.

Modifying slightly the derivations in Lemma 1, we can show that the value func-

tion defined by (43) and (44) solve the following HJB equation system

Lemma 5. The value function U (2)(w, r,H, t) solves the HJB equation

(45) max
π

[2Aπ
b2

U (2)(w, r,H, t)] +
∑
i=0,1

λ2i(t)[U
(i)(w + H, r, t)− U (2)(w, r,H, t)] = 0,

where the value function U (1)(w, r, t) satisfies

(46) max
π

[
3Aπ

b1
U (1)(w, r, t)

]
+ λ10(t)[U

(0)(w, r, t)− U (1)(w, r, t)] = 0,

subject to the respective terminal conditions

U (2)(w, r,H, T ) = u(w), U (1)(w, r, T ) = u(w).
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If the insurer pays the insureds with the indifference continuous annuity rates

b1, b2, then the maximum expectation utility of the insurer subject to the insurance

risk coincides with the one without the insurance risk, i.e.

U (0)(w, r, t) = U (2)(w, r,H, t; b1, b2).

Pricing Equation: With the notation ᾱ = αer(T−t), the following Theorem 6

presents the pricing equations of indifference annuity rates bi (i = 1, 2) for a single

insured.

Theorem 6. Assume that the utility function is exponential, viz u(w) = − 1
α
e−αw.

The indifference continuous annuity rates bi (i = 1, 2) satisfy the following equation

(47) φ2(H, t; b1, b2) = 0,

where φ2(H, t) solves the HJB equation

(48) 0Lr,σ
b2

φ2(H, t) + e−ᾱH−φ2(H,t)[φ1(t)λ21(t) + λ20(t)]− [λ21(t) + λ20(t)] = 0,

in which φ1(t) satisfies the following ordinary differential equation

(49)
dφ1(t)

dt
+ [b1ᾱ− λ10(t)] φ1(t) + λ10(t) = 0,

where (48) and (49) are subject to the boundary conditions φ2(H, T ) = 0 and φ1(T ) =

1, respectively.

Remark 4. Although Theorem 6 coincides in form with Theorem 2 of [11], these

two theorems have some connections as well as differences. The interested readers

can imitate Remark 3 to conclude their connections and differences. In particular,

the notation r in Theorem 6 represents the value of the stochastic interest rate at the

initial moment of signing the insurance contract, while the notation r of Theorem 2

in [11] is the fixed constant interest rate during the whole insurance period.

6. CONCLUSION

With a multi-state Markov modeling, this article explores the indifference pricing

of continuous annuities of the insurance contract relevant to the home reversion plan

involving a single insured and an insured couple. We assume that the risky asset (i.e.,

home value) follows a geometric Brownian motion, and the risk-free bonds accumulate

with a stochastic interest rate driven by a diffusion process. Under such assumptions,

we applied the principle of equivalent utility to derive the partial differential equa-

tion system that the indifferent annuity benefits satisfy under the exponential utility

function. Interestingly, the partial differential equation system under stochastic in-

terest rate coincides in form with those under the constant interest rate. However,
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there exist connections as well as differences between them. In case that the value of

stochastic interest rate at the beginning of signing the insurance contract is the same

as the constant interest rate in [11] and [8], then the indifference annuity benefits un-

der the stochastic interest rate coincide with those under the constant interest rate.

The indifference annuity rates under the stochastic interest rate relate only with the

initial value of stochastic interest rate at the start of writing the insurance contract,

and have nothing to do with the specific paths of the diffusion process that drives the

dynamics of stochastic interest rate.
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