EXISTENCE, UNIQUENESS AND BLOWUP FOR A PARABOLIC PROBLEM WITH A MOVING NONLINEAR SOURCE ON A SEMI-INFINITE INTERVAL

C. Y. CHAN, P. SAWANGTONG, AND T. TREEYAPRASERT
Department of Mathematics, University of Louisiana at Lafayette
Lafayette, Louisiana 70504-1010, USA
chan@louisiana.edu
Department of Mathematics, King Mongkut's University of Technology North
Bangkok, Bangkok, 10800, Thailand
panumarts@kmutnb.ac.th
Department of Mathematics and Statistics, Thammasat University
Rangsit Center, Pathumthani 12120, Thailand
tawikan@tu.ac.th

ABSTRACT. Let v and T be positive numbers, $D=(0, \infty), \Omega=D \times(0, T]$, and \bar{D} be the closure of D. This article studies the first initial-boundary value problem,

$$
\begin{gathered}
u_{t}-u_{x x}=\delta(x-v t) f(u(x, t)) \text { in } \Omega \\
u(x, 0)=\psi(x) \text { on } \bar{D} \\
u(0, t)=0, u(x, t) \rightarrow 0 \text { as } x \rightarrow \infty \text { for } 0<t \leq T
\end{gathered}
$$

where $\delta(x)$ is the Dirac delta function, and f and ψ are given functions. It is shown that the problem has a unique continuous solution u, if u exists for $t \in\left[0, t_{b}\right)$ with $t_{b}<\infty$, then u blows up at t_{b}.

AMS (MOS) Subject Classification. 35K60, 35B35, 35K55, 35K57

1. INTRODUCTION

Let v and T be positive numbers, $D=(0, \infty), \Omega=D \times(0, T]$, and \bar{D} be the closure of D. We consider the following semilinear parabolic first initial-boundary value problem,

$$
\left\{\begin{array}{c}
H u=\delta(x-v t) f(u(x, t)) \text { in } \Omega, \tag{1.1}\\
u(x, 0)=\psi(x) \text { on } \bar{D} \\
u(0, t)=0, u(x, t) \rightarrow 0 \text { as } x \rightarrow \infty \text { for } 0<t \leq T,
\end{array}\right.
$$

where $H u=u_{t}-u_{x x}, \delta(x)$ is the Dirac delta function, and f and ψ are given functions. We assume that $f(0) \geq 0, f(u)$ and its derivatives $f^{\prime}(u)$ and $f^{\prime \prime}(u)$ are positive for $u \geq 0$, and $\psi(x)$ is nontrivial, nonnegative and continuous such that $\psi(0)=0$, and $\psi(x) \rightarrow 0$ as $x \rightarrow \infty$.

A solution u of the problem (1.1) is a continuous function satisfying (1.1). A solution u of the problem (1.1) is said to blow up at the point $\left(\hat{x}, t_{b}\right)$ if there exists a sequence $\left\{\left(x_{n}, t_{n}\right)\right\}$ such that $u\left(x_{n}, t_{n}\right) \rightarrow \infty$ as $\left(x_{n}, t_{n}\right) \rightarrow\left(\hat{x}, t_{b}\right)$. Here, t_{b} is called the blow-up time. If t_{b} is finite, then u is said to blow up in a finite time. On the other hand, if $t_{b}=\infty$, then u is said to blow up in infinite time. Related problems were studied by Kirk and Olmstead [3], and Olmstead [4]. They showed that if the magnitude of the (constant) velocity v exceeds a certain value, then blowup does not occur; they also showed that if v is below another value, then blowup occurs. In Section 2, we convert the problem (1.1) into a nonlinear integral equation and prove that the integral equation has a unique nonnegative (continuous) solution. We then show that this solution is the unique solution u of the problem (1.1). We prove that if u does not exist globally, then u blows up in a finite time.

2. EXISTENCE, UNIQUENESS AND BLOWUP

Green's function $G(x, t ; \xi, \tau)$ corresponding to the problem (1.1) is determined by the following system: for x and ξ in D, and t and τ in $(-\infty, \infty)$,

$$
\begin{aligned}
H G(x, t ; \xi, \tau) & =\delta(x-\xi) \delta(t-\tau) \\
G(x, t ; \xi, \tau) & =0, t<\tau \\
G(0, t ; \xi, \tau) & =0, G(x, t ; \xi, \tau) \rightarrow 0 \text { as } x \rightarrow \infty
\end{aligned}
$$

For $t>\tau$, it is given by

$$
G(x, t ; \xi, \tau)=\frac{e^{-\frac{(x-\xi)^{2}}{4(t-\tau)}}-e^{-\frac{(x+\xi)^{2}}{4(t-\tau)}}}{\sqrt{4 \pi(t-\tau)}}
$$

(cf. Duffy [2, p. 183]). To derive the integral equation from the problem (1.1), let us consider the adjoint operator H^{*}, which is given by $H^{*} u=-u_{t}-u_{x x}$. Using Green's second identity, we obtain

$$
\begin{equation*}
u(x, t)=\int_{0}^{\infty} G(x, t ; \xi, 0) \psi(\xi) d \xi+\int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \tag{2.1}
\end{equation*}
$$

Let $\bar{\Omega}$ denote the closure of Ω.
Lemma 2.1. If $r \in C([0, T])$, then $\int_{0}^{t} G(x, t ; v \tau, \tau) r(\tau) d \tau$ is continuous on $\bar{\Omega}$.
Proof. Let $R=\max _{t \in[0, T]}|r(t)|$. Since

$$
\begin{align*}
\int_{0}^{t} G(x, t ; v \tau, \tau) r(\tau) d \tau & =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} \frac{e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}-e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{\sqrt{4 \pi(t-\tau)}} r(\tau) d \tau \\
& \leq R \lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} \frac{1}{\sqrt{4 \pi(t-\tau)}} d \tau=R \sqrt{\frac{t}{\pi}} \tag{2.2}
\end{align*}
$$

the integral exists for each $t \in[0, T]$. For $t>\tau, G(x, t ; v \tau, \tau)$ is continuous in $\bar{D} \times(0, T]$. Hence for $t>\tau, G(x, t ; v \tau, \tau) r(\tau)$ is a continuous function in $\bar{D} \times(0, T]$. Let $\left(x_{0}, t_{0}\right)$ be any arbitrarily fixed point $\in \bar{D} \times(0, T]$. Then for any given positive number ε, there exists some positive number δ_{1} such that $\sqrt{\left(x-x_{0}\right)^{2}+\left(t-t_{0}\right)^{2}}<\delta_{1}$ implies

$$
\left|G(x, t ; v \tau, \tau) r(\tau)-G\left(x_{0}, t_{0} ; v \tau, \tau\right) r(\tau)\right|<\frac{\varepsilon}{2 t_{0}} .
$$

Without loss of generality, let $t \geq t_{0}$. Also, let $\delta=\min \left\{\delta_{1}, \pi \varepsilon^{2} /\left(4 R^{2}\right)\right\}$. Then for $\sqrt{\left(x-x_{0}\right)^{2}+\left(t-t_{0}\right)^{2}}<\delta$,
$\left|\int_{0}^{t} G(x, t ; v \tau, \tau) r(\tau) d \tau-\int_{0}^{t_{0}} G\left(x_{0}, t_{0} ; v \tau, \tau\right) r(\tau) d \tau\right|$
$\leq \int_{0}^{t_{0}}\left|\left(G(x, t ; v \tau, \tau)-G\left(x_{0}, t_{0} ; v \tau, \tau\right)\right) r(\tau)\right| d \tau+\int_{t_{0}}^{t}|G(x, t ; v \tau, \tau) r(\tau)| d \tau$
$<\frac{\varepsilon}{2 t_{0}} \int_{0}^{t_{0}} d \tau+R \int_{t_{0}}^{t} \frac{1}{\sqrt{4 \pi(t-\tau)}} d \tau$
$\leq \frac{\varepsilon}{2}+\frac{R}{\sqrt{\pi}} \sqrt{t-t_{0}}$
$\leq \frac{\varepsilon}{2}+\frac{R}{\sqrt{\pi}} \sqrt{\frac{\pi \varepsilon^{2}}{4 R^{2}}}=\varepsilon$.
Therefore, the lemma is proved.
We modified the techniques in proving Theorems 2.4, 2.5 and 2.6 of Chan and Tian [1] for a bounded domain to obtain the following two theorems for our unbounded domain.

Theorem 2.2. There exists some t_{b} such that for $0 \leq t<t_{b}$, the integral equation (2.1) has a unique nonnegative continuous solution u. If t_{b} is finite, then u is unbounded in $\left[0, t_{b}\right)$.

Proof. For $(x, t) \in \bar{\Omega}$, let us construct a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by

$$
u_{0}(x, t)=\int_{0}^{\infty} G(x, t ; \xi, 0) \psi(\xi) d \xi
$$

and for $n=0,1,2, \ldots$,

$$
\begin{gathered}
H u_{n+1}(x, t)=\delta(x-v t) f\left(u_{n}(x, t)\right) \text { for }(x, t) \in \Omega, \\
u_{n+1}(x, 0)=\psi(x) \text { for } x \in \bar{D}, \\
u_{n+1}(0, t)=0 \text { and } u_{n+1}(x, t) \rightarrow 0 \text { as } x \rightarrow \infty \text { for } t \in(0, T] .
\end{gathered}
$$

From (2.1),

$$
u_{n+1}(x, t)=\int_{0}^{\infty} G(x, t ; \xi, 0) \psi(\xi) d \xi+\int_{0}^{t} G(x, t ; v \tau, \tau) f\left(u_{n}(v \tau, \tau)\right) d \tau
$$

Let us show that for any $n=0,1,2, \ldots$,

$$
\begin{equation*}
u_{0}<u_{1}<u_{2}<\cdots<u_{n} \text { on } \bar{\Omega} . \tag{2.3}
\end{equation*}
$$

Since

$$
u_{1}(x, t)-u_{0}(x, t)=\int_{0}^{t} G(x, t ; v \tau, \tau) f\left(u_{0}(v \tau, \tau)\right) d \tau
$$

it follows from the positivity of $G, u_{0}(x, t)>0$ in Ω, and $f(u)>0$ for $u>0$ that the right-hand side is positive. We have $u_{1}(x, t)>u_{0}(x, t)$. Let us assume that for some positive integer $j, u_{0}<u_{1}<u_{2}<\cdots<u_{j}$ on $\bar{\Omega}$. Since $u_{j}>u_{j-1}$, and $f^{\prime}>0$, we have

$$
u_{j+1}(x, t)-u_{j}(x, t)=\int_{0}^{t} G(x, t ; v \tau, \tau)\left(f\left(u_{j}(v \tau, \tau)\right)-f\left(u_{j-1}(v \tau, \tau)\right)\right) d \tau>0
$$

By the Principle of Mathematical Induction, we have (2.3).
Let u denote $\lim _{n \rightarrow \infty} u_{n}$, and M be any positive number such that $M>\sup _{x \in \bar{D}} \psi(x)$. We would like to show that there exists a positive constant $t_{1}(\leq T)$ such that the sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ converges uniformly to u for $t \in\left[0, t_{1}\right]$. Since each u_{n} is continuous, we note that

$$
u_{n+1}(x, t)-u_{n}(x, t)=\int_{0}^{t} G(x, t ; v \tau, \tau)\left[f\left(u_{n}(v \tau, \tau)\right)-f\left(u_{n-1}(v \tau, \tau)\right)\right] d \tau
$$

Let $S_{n}=\sup _{(x, t) \in \bar{D} \times\left[0, t_{1}\right]}\left|u_{n}(x, t)-u_{n-1}(x, t)\right|$. By using the Mean Value Theorem and (2.2),

$$
S_{n+1} \leq f^{\prime}(M) S_{n} \int_{0}^{t} G(x, t ; v \tau, \tau) d \tau \leq f^{\prime}(M) \sqrt{\frac{t}{\pi}} S_{n}
$$

Since $\lim _{t \rightarrow 0} f^{\prime}(M) \sqrt{t / \pi}=0$, there exists some positive number $\sigma_{1}\left(\leq t_{1}\right)$ such that

$$
\begin{equation*}
f^{\prime}(M) \sqrt{\frac{t}{\pi}}<1 \text { for } t \in\left[0, \sigma_{1}\right] \tag{2.4}
\end{equation*}
$$

Then, the sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ converges uniformly to u for any $\left.(x, t) \in \bar{D}\right) \times\left[0, \sigma_{1}\right]$. Thus, the integral equation (2.1) has a nonnegative continuous solution u for $(x, t) \in$ $\bar{D} \times\left[0, \sigma_{1}\right]$. If $\sigma_{1}<t_{1}$, then we replace the initial condition $u(x, 0)=\psi(x)$ in (2.1) by $u\left(\xi, \sigma_{1}\right)$, which is known. We obtain for $(x, t) \in \bar{D} \times\left[\sigma_{1}, t_{1}\right]$,

$$
u_{n+1}(x, t)=\int_{0}^{\infty} G\left(x, t ; \xi, \sigma_{1}\right) u\left(\xi, \sigma_{1}\right) d \xi+\int_{\sigma_{1}}^{t} G(x, t ; v \tau, \tau) f\left(u_{n}(v \tau, \tau)\right) d \tau
$$

From

$$
u_{n+1}(x, t)-u_{n}(x, t)=\int_{\sigma_{1}}^{t} G(x, t ; v \tau, \tau)\left[f\left(u_{n}(v \tau, \tau)\right)-f\left(u_{n-1}(v \tau, \tau)\right)\right] d \tau
$$

we have

$$
S_{n+1} \leq f^{\prime}(M) S_{n} \int_{\sigma_{1}}^{t} G(x, t ; v \tau, \tau) d \tau \leq f^{\prime}(M) \sqrt{\frac{t-\sigma_{1}}{\pi}} S_{n}
$$

Thus, there exists $\sigma_{2}=\min \left\{\sigma_{1}, t_{1}-\sigma_{1}\right\}>0$ such that

$$
f^{\prime}(M) \sqrt{\frac{t-\sigma_{1}}{\pi}}<1 \text { for } t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{1}\right\}\right]
$$

Hence, $\left\{u_{n}\right\}_{n=0}^{\infty}$ converges uniformly to u for any $(x, t) \in \bar{D} \times\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{1}\right\}\right]$. By proceeding in this way, $\left\{u_{n}\right\}_{n=0}^{\infty}$ converges uniformly to u for any $(x, t) \in \bar{D} \times\left[0, t_{1}\right]$. Therefore, the integral equation (2.1) has a nonnegative continuous solution u on $\bar{D} \times\left[0, t_{1}\right]$.

To show that the solution u is unique, let us suppose that the integral equation (2.1) has two distinct solutions u and \widetilde{u} on the interval $\left[0, t_{1}\right]$. Let

$$
\Phi=\sup _{(x, t) \in \bar{D} \times\left[0, t_{1}\right]}|u(x, t)-\widetilde{u}(x, t)| .
$$

From

$$
|u(x, t)-\widetilde{u}(x, t)|=\left|\int_{0}^{t} G(x, t ; v \tau, \tau)[f(u(v \tau, \tau))-f(\widetilde{u}(v \tau, \tau))] d \tau\right|
$$

we obtain

$$
\Phi \leq f^{\prime}(M) \Phi \int_{0}^{t} G(x, t ; v \tau, \tau) d \tau \leq f^{\prime}(M) \sqrt{\frac{t}{\pi}} \Phi
$$

By (2.4), we have a contradiction. Thus, the integral equation (2.1) has a unique continuous solution u for any $(x, t) \in \bar{D} \times\left[0, t_{1}\right]$.

For each M, there exists some t_{1} such that the integral equation (2.1) has a unique nonnegative continuous solution u. Let t_{b} be the supremum of all t_{1} such that the integral equation has a unique nonnegative continuous solution u. We would like to show that if t_{b} is finite, then u is unbounded in $\left[0, t_{b}\right)$. Suppose $u(x, t)$ is bounded for any $(x, t) \in \bar{D} \times\left[0, t_{b}\right]$. We consider the integral equation (2.1) for any $(x, t) \in \bar{D} \times\left[t_{b}, \infty\right)$ with the initial condition $u(x, 0)=\psi(x)$ replaced by $u\left(x, t_{b}\right)$, which is known:

$$
u(x, t)=\int_{0}^{\infty} G\left(x, t ; \xi, t_{b}\right) u\left(\xi, t_{b}\right) d \xi+\int_{t_{b}}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau
$$

For any given positive constant $M_{1}>\sup _{x \in \bar{D}} u\left(x, t_{b}\right)$, an argument as before shows that there exists some $t_{2}>0$ such that the integral equation (2.1) has a unique continuous solution u for any $(x, t) \in \bar{D} \times\left[t_{b}, t_{2}\right]$. This contradicts the definition of t_{b}. Hence, if t_{b} is finite, then u is unbounded in $\left[0, t_{b}\right)$.

Theorem 2.3. The problem (1.1) has a unique solution for $0 \leq t<t_{b}$.

Proof. By Lemma 2.1, $\int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau$ exists for x in any compact subset of \bar{D} and t in any compact subset $\left[t_{3}, t_{4}\right]$ of $\left[0, t_{b}\right)$. Thus for any $x \in D$ and any
$t_{5} \in(0, t)$,

$$
\begin{align*}
\int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau= & \lim _{n \rightarrow \infty} \int_{t_{5}}^{t} \frac{\partial}{\partial \zeta}\left(\int_{0}^{\zeta-1 / n} G(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau\right) d \zeta \\
& +\lim _{n \rightarrow \infty} \int_{0}^{t_{5}-1 / n} G\left(x, t_{5} ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau \tag{2.5}
\end{align*}
$$

For $\zeta-\tau \geq \frac{1}{n}$,

$$
\begin{aligned}
& G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) \\
& =\left[\frac{(x-v \tau)^{2} e^{-\frac{(x-v \tau)^{2}}{4(\zeta-\tau)}}-(x+v \tau)^{2} e^{-\frac{(x+v \tau)^{2}}{4(\zeta-\tau)}}}{8 \sqrt{\pi}(\zeta-\tau)^{5 / 2}}-\frac{e^{-\frac{(x-v \tau)^{2}}{4(\zeta-\tau)}}-e^{-\frac{(x+v \tau)^{2}}{4(\zeta-\tau)}}}{4 \sqrt{\pi}(\zeta-\tau)^{3 / 2}}\right] f(u(v \tau, \tau)) \\
& \leq \frac{(x-v \tau)^{2} e^{-\frac{(x-v \tau)^{2}}{4(\zeta-\tau)}}}{8 \sqrt{\pi}(\zeta-\tau)^{5 / 2}} f(u(v \tau, \tau)) \leq \frac{x^{2}+v^{2}\left(\zeta-\frac{1}{n}\right)^{2}}{8 \sqrt{\pi}\left(\frac{1}{n}\right)^{5 / 2}} f(u(v \tau, \tau))
\end{aligned}
$$

which is integrable with respect to τ over $(0, \zeta-1 / n)$. It follows from the Leibnitz rule (cf. Stromberg [5, p. 380]) that

$$
\begin{align*}
& \frac{\partial}{\partial \zeta}\left(\int_{0}^{\zeta-1 / n} G(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau\right) \\
& =G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right) \\
& \quad+\int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \tag{2.6}
\end{align*}
$$

From (2.5) and (2.6),

$$
\begin{aligned}
& \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\lim _{n \rightarrow \infty} \int_{t_{5}}^{t} G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right) d \zeta \\
& \quad+\lim _{n \rightarrow \infty} \int_{t_{5}}^{t} \int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta \\
& \quad+\lim _{n \rightarrow \infty} \int_{0}^{t_{5}-1 / n} G\left(x, t_{5} ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau
\end{aligned}
$$

Let us consider the problem,

$$
\begin{gathered}
H w=0 \text { for } x \text { and } \xi \text { in } D, 0 \leq \tau<t \\
w(0, t ; \xi, \tau)=0, w(x, t ; \xi, \tau) \rightarrow 0 \text { as } x \rightarrow \infty \text { for } 0 \leq \tau<t<T, \\
\lim _{t \rightarrow \tau^{+}} w(x, t ; \xi, \tau)=\delta(x-\xi \tau)
\end{gathered}
$$

Using Green's second identity, we obtain for $t>\tau$,

$$
w(x, t ; \xi, \tau)=\int_{0}^{\infty} G(x, t ; y, \tau) \delta(y-\xi \tau) d y=G(x, t ; \xi \tau, \tau)
$$

It follows that

$$
\lim _{t \rightarrow \tau^{+}} G(x, t ; \xi \tau, \tau)=\delta(x-\xi \tau)
$$

This implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)=\delta(x-v \zeta) \tag{2.7}
\end{equation*}
$$

Since for $x \neq v \zeta$,

$$
G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right)
$$

converges uniformly to zero with respect to ζ as n tends to infinity, it follows that for $x \neq v \zeta$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{t_{5}}^{t} G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right) d \zeta \\
& =\int_{t_{5}}^{t} \lim _{n \rightarrow \infty} G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right) d \zeta
\end{aligned}
$$

For $x=v \zeta$,

$$
\begin{aligned}
& \frac{\partial}{\partial n} G\left(v \zeta, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) \\
& =\frac{e^{-\frac{v^{2}\left(1+4 n^{2} \zeta^{2}\right)}{4 n}}\left[e^{n v^{2} \zeta^{2}}\left(2 n+v^{2}\right)+e^{v^{2} \zeta}\left(-2 n-v^{2}+4 n^{2} v^{2} \zeta^{2}\right)\right]}{8 n^{3 / 2} \sqrt{\pi}}
\end{aligned}
$$

It follows that for sufficiently large $n, G(v \zeta, \zeta ; v(\zeta-1 / n), \zeta-1 / n)$ is an increasing function of n. Thus for large n,

$$
G\left(v \zeta, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right)
$$

is an increasing sequence of nonnegative functions with respect to n. By the Monotone Convergence Theorem (cf. Stromberg [5, p. 288]),

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{t_{5}}^{t} G\left(v \zeta, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right) d \zeta \\
& =\int_{t_{5}}^{t} \lim _{n \rightarrow \infty} G\left(v \zeta, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right) d \zeta .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\int_{t_{5}}^{t} \lim _{n \rightarrow \infty}\left[G\left(x, \zeta ; v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right) f\left(u\left(v\left(\zeta-\frac{1}{n}\right), \zeta-\frac{1}{n}\right)\right)\right] d \zeta \\
& \quad+\lim _{n \rightarrow \infty} \int_{t_{5}}^{t} \int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta \\
& \quad+\lim _{n \rightarrow \infty} \int_{0}^{t_{5}-1 / n} G\left(x, t_{5} ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau \tag{2.8}
\end{align*}
$$

Since f and u are continuous, we have from (2.7) and (2.8) that

$$
\begin{align*}
& \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\int_{t_{5}}^{t} \delta(x-v \zeta) f(u(v \zeta, \zeta)) d \zeta \\
& \quad+\lim _{n \rightarrow \infty} \int_{t_{5}}^{t} \int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta \\
& \quad+\int_{0}^{t_{5}} G\left(x, t_{5} ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau \tag{2.9}
\end{align*}
$$

Let

$$
g_{n}(x, \zeta)=\int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau
$$

Without loss of generality, let $n>l$. We have

$$
g_{n}(x, \zeta)-g_{l}(x, \zeta)=\int_{\zeta-1 / l}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau
$$

Since $G_{\zeta}(x, \zeta ; v \tau, \tau) \in C(D \times(\tau, T])$, and $f(u(v \tau, \tau))$ is nonnegative and integrable with respect to τ over ($\zeta-1 / l, \zeta-1 / n$), it follows from the First Mean Value Theorem for Integrals (cf. Stromberg [5, p. 328]) that for x in any compact subset of D and ζ in any compact subset of $\left(0, t_{b}\right)$, there exists some real number r such that $\zeta-r \in(\zeta-1 / l, \zeta-1 / n)$ and

$$
g_{n}(x, \zeta)-g_{l}(x, \zeta)=G_{\zeta}(x, \zeta ; v(\zeta-r), \zeta-r) \int_{\zeta-1 / l}^{\zeta-1 / n} f(u(v \tau, \tau)) d \tau
$$

Since

$$
\begin{aligned}
& G_{\zeta}(x, \zeta ; v(\zeta-\varepsilon), \zeta-\varepsilon) \\
& =G_{\zeta}(x, \varepsilon ; v(\zeta-\varepsilon), 0) \\
& =\frac{\left(\varepsilon v^{2}+v x-v^{2} \zeta\right) e^{-\frac{[x-(v \zeta-v \varepsilon)]^{2}}{4 \varepsilon}}+\left(-\varepsilon v^{2}+v x+v^{2} \zeta\right) e^{-\frac{[x+(v \zeta-v \varepsilon)]^{2}}{4 \varepsilon}}}{4 \sqrt{\pi}(\varepsilon)^{3 / 2}}
\end{aligned}
$$

which converges to 0 with respect to ζ as $\varepsilon \rightarrow 0$, it follows that $\left\{g_{n}\right\}$ is a Cauchy sequence, and hence, $\left\{g_{n}\right\}$ converges uniformly with respect to ζ in any compact subset $\left[t_{6}, t_{7}\right]$ of $\left(0, t_{b}\right)$. Hence,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{t_{5}}^{t} \int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta \\
& =\int_{t_{5}}^{t} \lim _{n \rightarrow \infty} \int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta \\
& =\int_{t_{5}}^{t} \int_{0}^{\zeta} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta
\end{aligned}
$$

From (2.9) and (2.10),

$$
\begin{aligned}
& \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\int_{t_{5}}^{t} \delta(x-v \zeta) f(u(v \zeta, \zeta)) d \zeta+\int_{t_{5}}^{t} \int_{0}^{\zeta} G_{\zeta}(x, \zeta ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \zeta \\
& \quad+\int_{0}^{t_{5}} G\left(x, t_{5} ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& \quad=\delta(x-v t) f(u(v t, t))+\int_{0}^{t} G_{t}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \tag{2.11}
\end{align*}
$$

For $t-\tau>\varepsilon$,

$$
\begin{gathered}
G_{x}(x, t ; v \tau, \tau)=\frac{(v \tau-x) e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}+(v \tau+x) e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{4 \sqrt{\pi}(t-\tau)^{3 / 2}} \\
G_{x x}(x, t ; v \tau, \tau)=\frac{\frac{(x-v \tau)^{2} e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}-(x+v \tau)^{2} e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{4(t-\tau)^{2}}}{2 \pi \sqrt{t-\tau}}-\frac{e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}-e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{2(t-\tau)}
\end{gathered} .
$$

Thus for each fixed $(\xi, \tau) \in D \times[0, T), G_{x}(x, t ; \xi, \tau)$ and $G_{x x}(x, t ; \xi, \tau)$ are in $C(D \times(\tau, T])$. For $t-\tau>\varepsilon$,

$$
\begin{aligned}
G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) & =\frac{(v \tau-x) e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}+(v \tau+x) e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{4 \sqrt{\pi}(t-\tau)^{3 / 2}} f(u(v \tau, \tau)) \\
& \leq \frac{(v \tau-x) e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}+(v \tau+x) e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}}{4 \sqrt{\pi}(t-\tau)^{3 / 2}} f(u(v \tau, \tau)) \\
& =\frac{v \tau e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}}{2 \sqrt{\pi}(t-\tau)^{3 / 2}} f(u(v \tau, \tau))
\end{aligned}
$$

which is integrable with respect to τ over $(0, t-\varepsilon)$. For $t-\tau>\varepsilon$,

$$
\begin{aligned}
& G_{x x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) \\
& =\frac{\frac{(x-v \tau)^{2} e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}-(x+v \tau)^{2} e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{4(t-\tau)^{2}}-\frac{e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}-e^{-\frac{(x+v \tau)^{2}}{4(t-\tau)}}}{2 \pi \sqrt{t-\tau}}}{2 \pi-\tau)} f(u(v \tau, \tau)) \\
& \leq \frac{\frac{(x-v \tau)^{2} e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}}{4(t-\tau)^{2}}}{2 \pi \sqrt{t-\tau}} f(u(v \tau, \tau)) \\
& =\frac{(x-v \tau)^{2} e^{-\frac{(x-v \tau)^{2}}{4(t-\tau)}}}{8 \pi(t-\tau)^{5 / 2}} f(u(v \tau, \tau))
\end{aligned}
$$

which is integrable with respect to τ over $(0, t-\varepsilon)$. Using the Leibnitz rule, we have for any x in any compact subset of D and t in any compact subset of $\left(0, t_{b}\right)$,

$$
\begin{aligned}
\frac{\partial}{\partial x} \int_{0}^{t-\epsilon} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau & =\int_{0}^{t-\epsilon} G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
\frac{\partial}{\partial x} \int_{0}^{t-\epsilon} G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau & =\int_{0}^{t-\epsilon} G_{x x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau
\end{aligned}
$$

For any x_{1} in any compact subset of D,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
&= \lim _{\varepsilon \rightarrow 0} \int_{x_{1}}^{x}\left(\frac{\partial}{\partial \eta} \int_{0}^{t-\varepsilon} G(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau\right) d \eta \\
&+\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G\left(x_{1}, t ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau \\
&= \lim _{\varepsilon \rightarrow 0} \int_{x_{1}}^{x} \int_{0}^{t-\varepsilon} G_{\eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
&+\int_{0}^{t} G\left(x_{1}, t ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau
\end{aligned}
$$

We would like to show that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{x_{1}}^{x} \int_{0}^{t-\varepsilon} G_{\eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
& \quad=\int_{x_{1}}^{x} \lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G_{\eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \tag{2.13}
\end{align*}
$$

By the Fubini Theorem (cf. Stromberg [5, p. 352]),

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{x_{1}}^{x} \int_{0}^{t-\varepsilon} G_{\eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon}\left(f(u(v \tau, \tau)) \int_{x_{1}}^{x} G_{\eta}(\eta, t ; v \tau, \tau) d \eta\right) d \tau \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} f(u(v \tau, \tau))\left(G(x, t ; v \tau, \tau)-G\left(x_{1}, t ; v \tau, \tau\right)\right) d \tau \\
& =\int_{0}^{t} f(u(v \tau, \tau))\left(G(x, t ; v \tau, \tau)-G\left(x_{1}, t ; v \tau, \tau\right)\right) d \tau
\end{aligned}
$$

which exists by Lemma 2.1. Therefore,

$$
\begin{aligned}
& \int_{0}^{t} f(u(v \tau, \tau))\left(G(x, t ; v \tau, \tau)-G\left(x_{1}, t ; v \tau, \tau\right)\right) d \tau \\
& \quad=\int_{x_{1}}^{x} \int_{0}^{t} G_{\eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta
\end{aligned}
$$

and we have (2.13). From (2.12),

$$
\begin{equation*}
\frac{\partial}{\partial x} \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau=\int_{0}^{t} G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \tag{2.14}
\end{equation*}
$$

For any x_{2} in any compact subset of D,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\lim _{\varepsilon \rightarrow 0} \int_{x_{2}}^{x} \frac{\partial}{\partial \eta}\left(\int_{0}^{t-\varepsilon} G_{\eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau\right) d \eta \\
& \quad+\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G_{\eta}\left(x_{2}, t ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau \\
& =\lim _{\varepsilon \rightarrow 0} \int_{x_{2}}^{x} \int_{0}^{t-\varepsilon} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
& \quad+\int_{0}^{t} G_{\eta}\left(x_{2}, t ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau
\end{aligned}
$$

We would like to show that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{x_{2}}^{x} \int_{0}^{t-\varepsilon} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
& \quad=\int_{x_{2}}^{x} \lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \tag{2.16}
\end{align*}
$$

By the Fubini Theorem,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{x_{2}}^{x} \int_{0}^{t-\varepsilon} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon}\left(f(u(v \tau, \tau)) \int_{x_{2}}^{x} G_{\eta \eta}(\eta, t ; v \tau, \tau) d \eta\right) d \tau \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} f(u(v \tau, \tau))\left(G_{\eta}(x, t ; v \tau, \tau)-G_{\eta}\left(x_{2}, t ; v \tau, \tau\right)\right) d \tau \\
& =\int_{0}^{t} f(u(v \tau, \tau))\left(G_{\eta}(x, t ; v \tau, \tau)-G_{\eta}\left(x_{2}, t ; v \tau, \tau\right)\right) d \tau,
\end{aligned}
$$

which exists by (2.14). Therefore,

$$
\begin{aligned}
& \int_{0}^{t} f(u(v \tau, \tau))\left(G_{\eta}(x, t ; v \tau, \tau)-G_{\eta}\left(x_{1}, t ; v \tau, \tau\right)\right) d \tau \\
& =\int_{x_{2}}^{x} \int_{0}^{t} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta \\
& =\int_{x_{2}}^{x} \lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta,
\end{aligned}
$$

where we have (2.16). From (2.15),

$$
\begin{aligned}
& \int_{0}^{t} G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\int_{x_{2}}^{x} \int_{0}^{t} G_{\eta \eta}(\eta, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau d \eta+\int_{0}^{t} G_{\eta}\left(x_{2}, t ; v \tau, \tau\right) f(u(v \tau, \tau)) d \tau
\end{aligned}
$$

Thus,

$$
\frac{\partial}{\partial x} \int_{0}^{t} G_{x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau=\int_{0}^{t} G_{x x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau
$$

Therefore,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau=\int_{0}^{t} G_{x x}(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \tag{2.17}
\end{equation*}
$$

It follows from the integral equation (2.1), (2.11) and (2.17) that for $x \in D$ and $0<t<t_{b}$,

$$
\begin{aligned}
H u & =\frac{\partial}{\partial t}\left(\int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau\right)-\frac{\partial^{2}}{\partial x^{2}}\left(\int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau\right) \\
& =\delta(x-v t) f(u(v t, t))+\int_{0}^{t} H G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau \\
& =\delta(x-v t) f(u(v t, t))+\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} \delta(x-v \tau) \delta(t-\tau) f(u(v \tau, \tau)) d \tau \\
& =\delta(x-v t) f(u(v t, t)) \\
& =\delta(x-v t) f(u(x, t)) .
\end{aligned}
$$

From (2.1), $\lim _{t \rightarrow 0} u(x, t)=\psi(x)$ for $x \in \bar{D}$. Since $G(0, t ; \xi, \tau)=0$, we have $u(0, t)=$ 0. By Lemma 2.1,

$$
\lim _{x \rightarrow \infty} \int_{0}^{t} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau=\int_{0}^{t} \lim _{x \rightarrow \infty} G(x, t ; v \tau, \tau) f(u(v \tau, \tau)) d \tau=0
$$

Thus, the nonnegative continuous solution u of the integral equation (2.1) is a solution of the problem (1.1). Since a solution of the latter is a solution of the former, the theorem is proved.

We remark that from the above two theorems, if t_{b} is finite, then u blows up at t_{b}.

REFERENCES

[1] C. Y. Chan and H. Y. Tian, Single-point blow-up for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math., 61: 363-385, 2003.
[2] D. G. Duffy, Green's Functions with Applications, Chapman \& Hall/CRC, Boca Raton, FL, 2001, p. 183.
[3] C. M. Kirk and W. E. Olmstead, Blow-up in a reactive-diffusive medium with a moving heat source, Z. Angew. Math. Phys., 53: 147-159, 2002.
[4] W. E. Olmstead, Critical speed for the avoidance of blow-up in a reactive-diffusive medium, Z. Angew. Math. Phys., 48: 701-710, 1997.
[5] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth International Group, Belmont, CA, 1981, pp. 288, 328, 352 and 380.

