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1. INTRODUCTION

In this paper we consider homotopies H : U → 2Y where the maps Ht may have

different domains Ut. The main idea for continuation principles is to reduce the study

of the family {Ht} to that of a certain family of maps (of course depending on the

old one) from the same domain U into Y × R. This paper extends some work in [5]

and in particular we establish some continuation results motivated from initial ideas

in [1, 10].

Let X and Y be Hausdorff topological spaces. Given a class X of maps, X(X, Y )

denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X, and

Xc the set of finite compositions of maps in X. We let

F(X) = {Z : Fix F 6= ∅ for all F ∈ X(Z, Z)}

where FixF denotes the set of fixed points of F .

The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ R
n : ‖x‖ ≤ 1}.

We say F ∈ U
k
c (X, Y ) if for any compact subset K of X there is a G ∈ Uc(K, Y )

with G(x) ⊆ F (x) for each x ∈ K.

Recall Uk
c is closed under compositions. The class U

k
c contains almost all the well

known maps in the literature (see [8] and the references therein). It is also possible
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to consider more general maps (see [6, 8]) and in this paper we will consider a class

of maps which we will call A.

2. CONTINUATION PRINCIPLES

We begin this section by recalling some definitions and results from [5]. Let E

be a completely regular topological space and U an open subset of E.

We will consider a class A of maps. In some results the following condition will

be assumed:

(2.1)











for Hausdorff topological spaces X1, X2 and X3,

if F ∈ A(X1, X3) and f ∈ C(X2, X1),

then F ◦ f ∈ A(X2, X3).

Definition 2.1. We say F ∈ A(U, E) if F ∈ A(U, E) and F : U → K(E) is an

upper semicontinuous map; here U denotes the closure of U in E and K(E) denotes

the family of nonempty compact subsets of E.

Definition 2.2. We say F ∈ A∂U(U, E) if F ∈ A(U, E) with x /∈ F (x) for x ∈ ∂U ;

here ∂U denotes the boundary of U in E.

Definition 2.3. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if there exists

a map Ψ : U × [0, 1] → K(E) with Ψ ∈ A(U × [0, 1], E), x 6∈ Ψt(x) for any x ∈ ∂U

and t ∈ [0, 1], Ψ1 = F , Ψ0 = G (here Ψt(x) = Ψ(x, t)) and {x ∈ U : x ∈ Ψ(x, t) for

some t ∈ [0, 1]} is relatively compact.

Remark 2.4. We note if Φ : U × [0, 1] → K(E) is a upper semicontinuous map then

M =
{

x ∈ U : x ∈ Φ(x, t) for some t ∈ [0, 1]
}

is closed so if M is relatively compact

then M is compact. If Φ : U × [0, 1] → K(E) is an upper semicontinuous compact

map then
{

x ∈ U : x ∈ Φ(x, t) for some t ∈ [0, 1]
}

is compact.

Remark 2.5. The result below (with (2.1) removed) also holds true if we use the

following definition of ∼=. Let F, G ∈ A∂U(U, E). We say F ∼= G in A∂U(U, E) if there

exists an upper semicontinuous map Ψ : U×[0, 1] → K(E) with Ψ( . , η( . )) ∈ A(U, E)

for any continuous function η : U → [0, 1] with η(∂U) = 0, x 6∈ Ψt(x) for any

x ∈ ∂U and t ∈ [0, 1], Ψ1 = F , Ψ0 = G and
{

x ∈ U : x ∈ Ψ(x, t) for some t ∈ [0, 1]
}

is relatively compact.

The following condition will be assumed:

(2.2) ∼= is an equivalence relation in A∂U(U, E).
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Definition 2.6. Let F ∈ A∂U (U, E). We say F : U → K(E) is essential in A∂U(U, E)

if for every map J ∈ A∂U(U, E) with J |∂U = F |∂U and J ∼= F in A∂U(U, E) there

exists x ∈ U with x ∈ J(x). Otherwise F is inessential in A∂U(U, E) i.e. there exists

a fixed point free map J ∈ A∂U (U, E) with J |∂U = F |∂U and J ∼= F in A∂U (U, E).

In [5] we established the following theorem which extended and generalized results

in the literature [2, 3, 4, 7, 9, 10].

Theorem 2.7. Let E be a completely regular topological space, U an open subset of E

and assume (2.1) and (2.2) hold. Suppose F and G are two maps in A∂U(U, E) with

F ∼= G in A∂U(U, E). Then F is essential in A∂U (U, E) if and only if G is essential

in A∂U(U, E).

Remark 2.8. The result in Theorem 2.7 (with (2.1) removed) holds if the definition

of ∼= is as in Remark 2.5.

Remark 2.9. If E is a normal topological space then the assumption that

{

x ∈ U : x ∈ Ψ(x, t) for some t ∈ [0, 1]
}

is relatively compact can be removed in Definition 2.3 (and Remark 2.5) and we still

obtain Theorem 2.7.

In many applications fixed point results are needed for homotopies H for which

the maps Ht may be defined on different domains. The idea is to reduce the study

of this family to that of a new family (of course depending on the old one) defined

on the same domain. For notational purposes let Z be a topological space and Ω a

subset of Z × [0, 1]. We write Ωλ = {x ∈ Z : (x, λ) ∈ Ω} to denote the section of Ω

at λ.

Let E be a completely regular topological space and let U be an open subset of

E × [0, 1]. For our next result we assume (2.1) holds and in addition

(2.3) ∼= is an equivalence relation in A∂U (U, E × [0, 1])

and

(2.4)























for Hausdorff topological spaces X1 and X2, if F ∈ A(X1, X2)

and if Ψ(y, µ) = (F (y), µ) for (y, µ) ∈ X1 × [0, 1], then

Ψµ ∈ A(X1, X2 × [0, 1]) for each µ ∈ [0, 1] and

Ψ ∈ A(X1 × [0, 1], X2 × [0, 1]); here Ψµ(x) = Ψ(x, µ).

In [5] we established the following theorem.

Theorem 2.10. Suppose N ∈ A(U, E) with

(2.5) x /∈ N(x, λ) for (x, λ) ∈ ∂U.
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Let H : U × [0, 1] → K(E× [0, 1]) be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U

and µ ∈ [0, 1]. In addition assume the following conditions hold:

(2.6)

{

H0 is essential in A∂U(U, E × [0, 1]); here

H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈ U

and

(2.7)
{

(x, λ) ∈ U : (x, λ) ∈ H(x, λ, µ) for some µ ∈ [0, 1]
}

is relatively compact.

Then H1 is essential in A∂U(U, E × [0, 1]) so in particular there exists a x ∈ U1 with

x ∈ N(x, 1); here H1(x, λ) = H(x, λ, 1) = (N(x, λ), 1) for (x, λ) ∈ U .

Remark 2.11. In fact Ht is essential in A∂U(U, E × [0, 1]) for every t ∈ [0, 1]; here

Ht(x, λ) = H(x, λ, t) = (N(x, λ), t) for (x, λ) ∈ U . If E is a normal topological space

then the assumption (2.7) can be removed in the statement of Theorem 2.10.

Remark 2.12. The result in Theorem 2.10 holds (with (2.1) and (2.4) removed) if the

definition of ∼= is as in Remark 2.5 and if the following condition holds: H(·, ·, η(·, ·)) ∈

A(U, E × [0, 1]) for any continuous function η : U → [0, 1] with η(∂U) = 0.

Let E be a completely regular topological vector space and let U be an open

subset of E× [0, 1]. Our next theorem is a special case of Theorem 2.10 where it gives

conditions so that (2.6) holds.

Theorem 2.13. Let p ∈ U0. Suppose N ∈ A(U, E) and assume (2.1), (2.3), (2.4)

and (2.5) hold. Let H : U×[0, 1] → K(E×[0, 1]) be given by H(x, λ, µ) = (N(x, λ), µ)

for (x, λ) ∈ U and µ ∈ [0, 1] and assume (2.7) holds. Let Q : U×[0, 1] → K(E×[0, 1])

be given by Q(x, λ, µ) = (µN(x, λ) + (1 − µ)p, 0) for (x, λ) ∈ U and µ ∈ [0, 1]. Now

suppose the following conditions hold:

(2.8) x /∈ µN(x, 0) + (1 − µ)p for (x, 0) ∈ ∂U and µ ∈ (0, 1)

(2.9)

{

Q0 is essential in A∂U(U, E × [0, 1]); here

Q0(x, λ) = (p, 0) for (x, λ) ∈ U

(2.10)























if F ∈ A(U, E) and if Φ(y, µ) = (µF (y) + (1 − µ)p, 0)

for (y, µ) ∈ U × [0, 1], then Φµ ∈ A(U, E × [0, 1]) for

each µ ∈ [0, 1] and Φ ∈ A(U × [0, 1], E × [0, 1]);

here Φµ(x) = Φ(x, µ)

and

(2.11)

{

{

(x, λ) ∈ U : (x, λ) ∈ Q(x, λ, µ) for some µ ∈ [0, 1]
}

is relatively compact.

Then H1 is essential in A∂U(U, E × [0, 1]) so in particular there exists a x ∈ U1 with

x ∈ N(x, 1); here H1(x, λ) = H(x, λ, 1) = (N(x, λ), 1) for (x, λ) ∈ U .
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Proof. Note (2.10) guarantees that Q ∈ A(U × [0, 1], E × [0, 1]). Also

(2.12) (x, λ) /∈ Qµ(x, λ) for (x, λ) ∈ ∂U and µ ∈ [0, 1].

To see this suppose there exists (x, λ) ∈ ∂U and µ ∈ [0, 1] with (x, λ) ∈ (µN(x, λ) +

(1−µ)p, 0). Then λ = 0 and x ∈ µN(x, λ) + (1− µ)p = µN(x, 0) + (1−µ)p which is

a contradiction (note (2.8) is contradicted if µ ∈ (0, 1), (2.5) is contradicted if µ = 1

and p ∈ U0 (i.e. (p, 0) ∈ U) is contradicted if µ = 0). Thus (2.12) is true and note

Q0
∼= Q1 in A∂U(U, E × [0, 1]) (see above and (2.11)); here Q1(x, λ) = Q(x, λ, 1) =

(N(x, λ), 0) = H0(x, λ). Now Theorem 2.7 (note (2.1), (2.3) and (2.9)) guarantees

that

Q1(= H0) is essential in A∂U(U, E × [0, 1]).

Finally Theorem 2.10 (note (2.1), (2.3), (2.4) and (2.7)) guarantees that H1 is essential

in A∂U(U, E × [0, 1]). Thus there exists a (x, λ) ∈ U with (x, λ) ∈ (N(x, λ), 1) i.e.

x ∈ N(x, λ) with λ = 1 i.e. x ∈ U1 = {y ∈ E : (y, 1) ∈ U} and x ∈ N(x, 1).

Remark 2.14. From the proof above note that for each t ∈ [0, 1] there exists xt ∈ Ut

with xt ∈ N(xt, t). If E is a normal topological space then (2.7) and (2.11) can be

removed in the statement of Theorem 2.13.

Remark 2.15. The result in Theorem 2.13 holds (with (2.1), (2.4) and (2.10) re-

moved) if the definition of ∼= is as in Remark 2.5 and if the following condition holds:

H(·, ·, η(·, ·)) ∈ A(U, E × [0, 1]), Q(·, ·, η(·, ·)) ∈ A(U, E × [0, 1]) for any continuous

function η : U → [0, 1] with η(∂U) = 0.

Our next result is motivated by ideas in [1, 7, 10]. For convenience we let E be

a normal topological vector space, N : E × [0, 1] → K(E) an upper semicontinuous

map and we fix p ∈ E. Let

S(p) = {(x, 0) ∈ E × [0, 1] : x ∈ µN(x, 0) + (1 − µ)p for some µ ∈ [0, 1]}

and

A = {(x, λ) ∈ E × [0, 1] : x ∈ N(x, λ)}.

For our next result we consider a continuous functional φ : E × [0, 1] → R.

Theorem 2.16. Suppose there exist constants a, b with a < b such that if we set

V = φ−1(a, b) the following conditions are satisfied:

(2.13) φ(A) ∩ {a, b} = ∅

and

(2.14) S(p) ⊂ V.

Assume (2.1) and (2.4) are satisfied and in addition for any subset U of V with p ∈ U0

(and A ∩ V ⊆ U , S(p) ⊆ U) we assume N ∈ A(U, E) and (2.3), (2.9) and (2.10)

hold. Then for each λ ∈ [0, 1] there exists a fixed point of Nλ in Vλ.
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Proof. Let B = A∩φ−1[a, b]. Note B is closed since N is upper semicontinuous and φ

is continuous. In addition note (2.13) guarantees that B = A∩V (if x ∈ B then x ∈ A

and x ∈ φ−1[a, b] so if x ∈ φ−1(a, b) then trivially x ∈ A ∩ V , whereas if x ∈ φ−1(a)

then x ∈ A and φ(x) = a which contradicts (2.13), and finally if x ∈ φ−1(b) then

x ∈ A and φ(x) = b which contradicts (2.13)). Also note B ⊂ V is closed and

S(p) ⊂ V is closed. A standard result in topology (recall E is normal) guarantees

that there exists open subsets W1 and W2 of E × [0, 1] with

(2.15) B ⊆ W1 ⊆ W1 ⊆ V and S(p) ⊆ W2 ⊆ W2 ⊆ V.

We wish to apply Theorem 2.13 with U = W1 ∪ W2. To do so we need to show (2.5)

and (2.8) hold. First note

∂U = W1 ∪ W2\(W1 ∪ W2) = (W1 ∪ W1)\(W1 ∪ W2)

⊆ V \(W1 ∪ W2) = (V \W1) ∩ (V \W2).

Thus

(2.16) ∂U ⊆ V \W1 and ∂U ⊆ V \W2.

Now S(p) ⊆ W2 from (2.15) and so S(p) ∩ ∂U = ∅ from (2.16). Thus for (y, 0) ∈ ∂U

we have (y, 0) /∈ S(p) i.e. (y, 0) ∈ E × [0, 1] with y /∈ µN(y, 0) + (1 − µ)p for all

µ ∈ [0, 1]. Consequently (2.8) holds. Also (2.15) and (2.16) imply B ∩ ∂U = ∅. Thus

for (y, λ) ∈ ∂U we have (y, λ) /∈ B = A∩V . This implies (y, λ) /∈ A since if (y, λ) ∈ A

then (y, λ) ∈ ∂U ⊆ V and (y, λ) ∈ A i.e. (y, λ) ∈ A ∩ V = B, a contradiction. Thus

(y, λ) ∈ ∂U and (y, λ) /∈ A i.e. y /∈ N(y, λ). Consequently (2.5) holds. For each

t ∈ [0, 1], Theorem 2.13 (see Remark 2.14) guarantees that there exists x ∈ Ut with

x ∈ N(x, t) i.e. x ∈ Nt(x) with x ∈ Ut ⊆ Vt.

We now show that the ideas above can be applied to other natural situations.

First let E be a completely regular topological vector space, Y a topological vector

space, and U an open subset of E. Also let L : dom L ⊆ E → Y be a linear (not

necessarily continuous) single valued map; here dom L is a vector subspace of E.

Finally T : E → Y will be a linear, continuous single valued map with L + T :

dom L → Y an isomorphism (i.e. a linear homeomorphism); for convenience we say

T ∈ HL(E, Y ).

Definition 2.17. Let F : U → 2Y . We say F ∈ A(U, Y ; L, T ) if (L + T )−1(F + T ) ∈

A(U, E).

Definition 2.18. We say F ∈ A∂U (U, Y ; L, T ) if F ∈ A(U, Y ; L, T ) with Lx /∈ F (x)

for x ∈ ∂U ∩ dom L.
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Definition 2.19. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in A∂U(U, Y ; L, T ) if

there exists a map Ψ : U × [0, 1] → 2Y with Ψ ∈ A(U × [0, 1], Y ; L, T ), Lx 6∈ Ψt(x)

for any x ∈ ∂U ∩ dom L and t ∈ [0, 1], Ψ1 = F , Ψ0 = G (here Ψt(x) = Ψ(x, t)) and
{

x ∈ U ∩ dom L : Lx ∈ Ψ(x, t) for some t ∈ [0, 1]
}

is relatively compact.

For our next result we assume the following condition holds:

(2.17)











if X2 = U or X2 = U × [0, 1] and if

F ∈ A(U × [0, 1], Y ; L, T ) and f ∈ C(X2, U × [0, 1]),

then F ◦ f ∈ A(X2, Y ; L, T ).

Remark 2.20. The result below (with (2.17) removed) also holds true if we use

the following definition of ∼=. Let F, G ∈ A∂U(U, Y ; L, T ). We say F ∼= G in

A∂U(U, Y ; L, T ) if there exists a map Ψ : U × [0, 1] → 2Y with (L + T )−1(Ψ + T ) :

U×[0, 1] → K(E) upper semicontinuous and with (L+T )−1(Ψ(·, η(·))+T ) ∈ A(U, E)

for any continuous function η : U → [0, 1] with η(∂U) = 0, Lx 6∈ Ψt(x) for any

x ∈ ∂U ∩ dom L and t ∈ [0, 1], Ψ1 = F , Ψ0 = G and
{

x ∈ U ∩ dom L : Lx ∈ Ψ(x, t) for some t ∈ [0, 1]
}

is relatively compact.

The following condition will be assumed:

(2.18) ∼= is an equivalence relation in A∂U(U, Y ; L, T ).

Definition 2.21. Let F ∈ A∂U(U, Y ; L, T ). We say F is L-essential in A∂U(U, Y ; L, T )

if for every map J ∈ A∂U(U, Y ; L, T ) with J |∂U = F |∂U and J ∼= F in A∂U(U, Y ; L, T )

there exists x ∈ U ∩ dom L with Lx ∈ J(x). Otherwise F is L–inessential in

A∂U(U, Y ; L, T ) i.e. there exists a map J ∈ A∂U(U, Y ; L, T ) with J |∂U = F |∂U and

J ∼= F in A∂U(U, Y ; L, T ) such that Lx /∈ J(x) for x ∈ U ∩ dom L.

In [5] we established the following result.

Theorem 2.22. Let E be a completely regular topological vector space, Y a topological

vector space, U an open subset of E, L : dom L ⊆ E → Y a linear single valued

map, T ∈ HL(E, Y ), and assume (2.17) and (2.18) hold. Suppose Φ and Ψ are two

maps in A∂U(U, Y ; L, T ) with Φ ∼= Ψ in A∂U (U, Y ; L, T ). Then Φ is L–essential in

A∂U(U, Y ; L, T ) if and only if Ψ⋆ is L–essential in A∂U(U, Y ; L, T ).

Remark 2.23. The result in Theorem 2.22 (with (2.17) removed) holds if the defi-

nition of ∼= is as in Remark 2.20. If E is a normal topological vector space then the

assumption that
{

x ∈ U ∩ dom L : Lx ∈ Ψ(x, t) for some t ∈ [0, 1]
}
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is relatively compact can be removed in Definition 2.19 (and Remark 2.20) and we

still obtain Theorem 2.22.

Let E be a completely regular topological vector space, Y a topological vector

space, and U an open subset of E × [0, 1]. Also let L : dom L ⊆ E → Y be a linear

(not necessarily continuous) single valued map; here dom L is a vector subspace of E.

Now let L : domL = dom L × [0, 1] → Y × [0, 1] be given by L(y, λ) = (Ly, λ). Let

T : E → Y be a linear, continuous single valued map with L + T : dom L → Y an

isomorphism (i.e. a linear homeomorphism) and let T : E×[0, 1] → Y ×[0, 1] be given

by T(y, λ) = (Ty, 0). Notice (L+T)−1(y, λ) = ((L + T )−1y, λ) for (y, λ) ∈ Y × [0, 1].

For our next result we assume (2.17) (with Y replaced by Y × [0, 1], L replaced

by L and T replaced by T) holds and in addition

(2.19) ∼= is an equivalence relation in A∂U(U, Y × [0, 1];L,T)

and

(2.20)











if F ∈ A(U, Y ; L, T ) and if Ψ(y, µ) = (F (y), µ), (y, µ) ∈ U × [0, 1],

then Ψµ ∈ A(U, Y × [0, 1];L,T) for each µ ∈ [0, 1] and

Ψ ∈ A(U × [0, 1], Y × [0, 1];L,T); here Ψµ(x) = Ψ(x, µ).

In [5] we established the following result.

Theorem 2.24. Suppose N ∈ A(U, Y ; L, T ) with

(2.21) Lx /∈ N(x, λ) for (x, λ) ∈ ∂U ∩ domL.

Let H : U × [0, 1] → 2Y ×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and

µ ∈ [0, 1]. In addition assume the following conditions hold:

(2.22)

{

H0 is essential in A∂U(U, Y × [0, 1];L,T); here

H0(x, λ) = H(x, λ, 0) = (N(x, λ), 0) for (x, λ) ∈ U

and

(2.23)

{

{

(x, λ) ∈ U ∩ domL : L(x, λ) ∈ H(x, λ, µ) for some µ ∈ [0, 1]
}

is relatively compact.

Then H1 is essential in A∂U(U, Y ×[0, 1];L,T) so in particular there exists a x ∈ U1∩

dom L with Lx ∈ N(x, 1); here H1(x, λ) = H(x, λ, 1) = (N(x, λ), 1) for (x, λ) ∈ U .

Remark 2.25. In fact Ht is essential in A∂U(U, Y × [0, 1];L,T) for every t ∈ [0, 1];

here Ht(x, λ) = H(x, λ, t) = (N(x, λ), t) for (x, λ) ∈ U . If E is a normal topolog-

ical vector space then the assumption (2.23) can be removed in the statement of

Theorem 2.24.
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Remark 2.26. The result in Theorem 2.24 holds (with (2.17) and (2.20) removed)

if the definition of ∼= is as in Remark 2.20 and if the following condition holds: (L +

T)−1(H(·, ·, η(·, ·)) + T) ∈ A(U, E × [0, 1]) for any continuous function η : U → [0, 1]

with η(∂U) = 0.

Our next applicable result is a special case of Theorem 2.24 and generalizes

Theorem 2.13. Let E be a completely regular topological vector space, Y a topological

vector space, and U an open subset of E×[0, 1]. Also let L, L, T and T be as described

before Theorem 2.24.

Theorem 2.27. Suppose N ∈ A(U, Y ; L, T ) and assume (2.17) (with Y replaced by

Y × [0, 1], L replaced by L and T replaced by T), (2.19), (2.20) and (2.21) hold. Let

H : U × [0, 1] → 2Y ×[0,1] be given by H(x, λ, µ) = (N(x, λ), µ) for (x, λ) ∈ U and

µ ∈ [0, 1] and assume (2.23) holds. Let G : E → 2Y and let Q : U × [0, 1] → 2Y ×[0,1]

be given by Q(x, λ, µ) = (µN(x, λ) + (1 − µ)G(x), 0) for (x, λ) ∈ U and µ ∈ [0, 1].

Now suppose the following conditions hold:

(2.24) Lx /∈ µN(x, 0) + (1 − µ)G(x) for (x, 0) ∈ ∂U ∩ domL and µ ∈ [0, 1)

(2.25)

{

Q0 is essential in A∂U(U, Y × [0, 1];L,T); here

Q0(x, λ) = (G(x), 0) for (x, λ) ∈ U

(2.26)

{

Qµ ∈ A∂U(U, Y × [0, 1];L,T) for each µ ∈ [0, 1] and

Q ∈ A∂U(U × [0, 1], Y × [0, 1];L,T); here Qµ(x, λ) = Q(x, λ, µ)

and

(2.27)

{

{

(x, λ) ∈ U ∩ domL : L(x, λ) ∈ Q(x, λ, µ) for some µ ∈ [0, 1]
}

is relatively compact.

Then H1 is essential in A∂U(U, Y ×[0, 1];L,T) so in particular there exists a x ∈ U1∩

dom L with Lx ∈ N(x, 1); here H1(x, λ) = H(x, λ, 1) = (N(x, λ), 1) for (x, λ) ∈ U .

Proof. Note (2.26) guarantees that Q ∈ A(U × [0, 1], E × [0, 1];L,T). Also

(2.28) L(x, λ) /∈ Qµ(x, λ) for (x, λ) ∈ ∂U ∩ domL and µ ∈ [0, 1].

To see this suppose there exists (x, λ) ∈ ∂U ∩ domL and µ ∈ [0, 1] with L(x, λ) ∈

(µN(x, λ) + (1 − µ)G(x), 0). Then λ = 0 and Lx ∈ µN(x, λ) + (1 − µ)G(x) =

µN(x, 0) + (1 − µ)G(x) which is a contradiction (note (2.24) is contradicted if µ ∈

[0, 1) and (2.21) is contradicted if µ = 1). Thus (2.28) is true and note Q0
∼= Q1

in A∂U(U, E × [0, 1];L,T) (see above and (2.27)); here Q1(x, λ) = Q(x, λ, 1) =

(N(x, λ), 0) = H0(x, λ). Now Theorem 2.22 (note (2.17) (with Y replaced by Y ×[0, 1],

L replaced by L and T replaced by T), (2.19) and (2.25)) guarantees that

Q1(= H0) is essential in A∂U (U, E × [0, 1];L,T).
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Finally Theorem 2.24 (note (2.17) (with Y replaced by Y × [0, 1], L replaced by

L and T replaced by T), (2.19), (2.20) and (2.23)) guarantees that H1 is essential

in A∂U(U, E × [0, 1];L,T). Thus there exists a (x, λ) ∈ U ∩ domL with L(x, λ) ∈

(N(x, λ), 1) i.e. Lx ∈ N(x, λ) with λ = 1 i.e. x ∈ dom L and x ∈ U1 = {y ∈ E :

(y, 1) ∈ U} and Lx ∈ N(x, 1).

Remark 2.28. From the proof above note that for each t ∈ [0, 1] there exists xt ∈

Ut ∩ dom L with Lxt ∈ N(xt, t). If E is a normal topological space then (2.23) and

(2.27) can be removed in the statement of Theorem 2.27.

Remark 2.29. The result in Theorem 2.27 holds (with (2.17) (with Y replaced

by Y × [0, 1], L replaced by L and T replaced by T), (2.20) and (2.26) removed)

if the definition of ∼= is as in Remark 2.20 and if the following condition holds:

(L + T)−1(H(·, ·, η(·, ·)) + T), (L + T)−1(Q(·, ·, η(·, ·)) + T) ∈ A(U, E × [0, 1]) for

any continuous function η : U → [0, 1] with η(∂U) = 0.

For our final result for convenience let E be a normal topological vector space,

Y a topological vector space, U an open subset of E × [0, 1], G : E → 2Y and

N : E× [0, 1] → 2Y . Also let L, L, T and T be as described before Theorem 2.24. We

will also assume (L +T)−1(N +T) and (L + T)−1(G+ T) are upper semicontinuous

maps; here G(x, λ) = (G(x), 0) for (x, λ) ∈ E × [0, 1]. Let

S = {(x, 0) ∈ E × [0, 1] ∩ domL : Lx ∈ µN(x, 0) + (1 − µ)G(x) for some µ ∈ [0, 1]}

and

A = {(x, λ) ∈ E × [0, 1] ∩ domL : Lx ∈ N(x, λ)}.

For our next result we consider a continuous functional φ : E × [0, 1] → R.

Theorem 2.30. Suppose there exist constants a, b with a < b such that if we set

V = φ−1(a, b) the following conditions are satisfied:

(2.29) φ(A) ∩ {a, b} = ∅

and

(2.30) S ⊂ V.

In addition for any subset U of V with A ∩ V ⊆ U and S ⊆ U we assume N ∈

A(U, Y ; L, T ) and (2.17) (with Y replaced by Y ×[0, 1], L replaced by L and T replaced

by T), (2.19), (2.20), (2.25) and (2.26) hold. Then for each λ ∈ [0, 1] there exists a

xλ ∈ Vλ ∩ dom L with Lxλ ∈ Nλ(xλ).

Proof. Let B = A∩φ−1[a, b] and as in Theorem 2.16 we note B = A∩V . Also B ⊂ V

and S ⊂ V are closed so there exists open subsets W1 and W2 of E × [0, 1] with

(2.31) B ⊆ W1 ⊆ W1 ⊆ V and S ⊆ W2 ⊆ W2 ⊆ V.
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Let U = W1 ∪ W2. As in Theorem 2.16 we have

(2.32) ∂U ⊆ V \W1 and ∂U ⊆ V \W2.

Now (2.31) and (2.32) imply S ∩ ∂U = ∅. Thus for (y, 0) ∈ ∂U we have (y, 0) /∈ S

i.e. (y, 0) ∈ E × [0, 1] ∩ domL with Ly /∈ µN(y, 0) + (1 − µ)G(y) for all µ ∈ [0, 1].

Consequently (2.24) holds. Also (2.31) and (2.32) imply B ∩ ∂U = ∅. Thus for

(y, λ) ∈ ∂U we have (y, λ) /∈ B = A ∩ V . This implies (y, λ) /∈ A since if (y, λ) ∈ A

then (y, λ) ∈ ∂U ⊆ V and (y, λ) ∈ A i.e. (y, λ) ∈ A ∩ V = B, a contradiction. Thus

(y, λ) ∈ ∂U and (y, λ) /∈ A i.e. (y, λ) ∈ ∂U and (y, λ) ∈ domL and Ly /∈ N(y, λ).

Consequently (2.21) holds. For each t ∈ [0, 1], Theorem 2.27 guarantees that there

exists x ∈ Ut ∩ dom L with Lx ∈ N(x, t) i.e. Lx ∈ Nt(x) with x ∈ Vt ∩ dom L.
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