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ABSTRACT. This paper is focused on the following nonlinear impulsive neutral delay differential

equation with positive and negative coefficients






[r(t)(x(t) + c(t)x(t − τ))′]′ + p(t)f(x(t − δ) − q(t)g(x(t − σ)) = 0,

x(tk) = Ik(x(t−
k

)), x′(tk) = Jk(x′(t−
k

)), k = 1, 2, 3, . . . ,

where 0 ≤ t0 < t1 < t2 < · · · < tk · · · with lim
k→∞

tk = ∞. For this equation, oscillation criteria are

established.

AMS Subject Classification: 34C10, 34A37

Key Words and Phrases: Oscillation, Impulsive, Neutral Delay Differential Equations, positive

and negative coefficients

1. INTRODUCTION

In the last few years, there has been an increasing interest in the study of oscil-

latory behavior of solutions of second order neutral delay differential equations with

positive and negative coefficients, see for example [21, 20, 15] and the references cited

therein. Recently, there has been increasing interest on the oscillation and nonoscilla-

tion of second order neutral delay differential equations with impulses, see the paper

[1, 2, 3, 4, 5, 10, 11, 12, 17, 18], and references contained therein. However, to the

best of our knowledge, there is little in the way of results for the oscillation of im-

pulsive neutral delay differential equations with positive and negative coefficients, see

for example [13] and the references cited therein. For the theory of delay differential

equations and impulsive differential equations, see the recent books by Györi and

Ladas [6] and Lakshmikantham et al. [10], respectively.
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In this paper, we consider the second order nonlinear neutral delay differential

equations with positive and negative coefficients

(1)



















[r(t)(x(t) + c(t)x(t − τ))′]′ + p(t)f(x(t − δ)) − q(t)g(x(t − σ)) = 0,

x(tk) = Ik(x(t−k )), x′(tk) = Jk(x
′(t−k )), k = 1, 2, 3, . . . ,

x(t) = φ(t), t0 − τ ≤ t ≤ t0,

where τ, δ, σ are positive real numbers, m = max(τ, δ, σ), 0 ≤ t0 < t1 < t2 < · · · <

tk · · · with lim
k→∞

tk = ∞ and tk+1 − tk > m for all k ∈ N , c ∈ PC ′([t0,∞), R+) and

φ, φ
′

: [t0 −σ, t0] → R have at most a finite number of discontinuities of the first kind

and are right continuous at these points.

Through out this paper, we always assume that:

(H1) f, g : [t0 − m, +∞) × R × R is continuous, uf(t, u, v) > 0, ug(t, u, v) > 0 for all

uv > 0 and there exist a function M(t) > 0 such that
g(t,u,v)
f(t,u,v)

≤ M(t) for u 6= 0, where M(t) is continuous in [t0, +∞);

(H2) r, p, q ∈ (R, [t0, +∞)) with r is positive, c(t) ≥ 0 and is nondecreasing for all

t ≥ t0, q(t) ≥ 0 for all t ≥ t0 and f is nondecreasing;

(H3) Ik, Jk ∈ C(R, R) and there exist a positive constant ak, ak, bk, such that ak ≤
Ik(x)

x
≤ ak, Jk(x) = bk(x) for all x 6= 0, k = 1, 2, 3, . . .;

(H4) c(t) and c′(t) are right continuous on (tk, tk+1) with left lateral limits

c(t−k ) =
1

bk

c(tk) and c′(t−k ) =
1

bk

c′(tk)

for all k ∈ N .

Let J ⊂ R be an interval, we define PC(J, R) = {x : J → R; x(t) is continuous

everywhere except some tk’s at which x(t−k ) and x(t+k ) exist and x(t−k ) = x(tk)};

PC ′(J, R) = {x ∈ PC(J, R) : x(t) is continuously differentiable everywhere except

some tk’s at which x′(t−k ) and x′(t+k ) exist and x′(t−k ) = x′(tk)}.

By a solution of equation of (1), we mean a function x ∈ PC([t0, +∞), R)
⋂

PC ′([t0, +∞), R) which satisfies (1).

In [18], Mingshu Peng and R. P. Agarwal considered equation (1) when c(t) = 1,

p(t) = 1, and q(t) = 0 and classified all solutions of equation (1) into four classes and

established conditions for the existence and nonexistence of solutions in these classes.

Motivated by the above observations, in this paper we divided all the solutions

of equation (1) into the following four cases: Let S denote the set of all nontrivial

solutions of equation (1). Then

M+ = {x ∈ S : there exists tx ≥ t0 such that x(t)x′(t) ≥ 0 for t ≥ tx};

M− = {x ∈ S : there exists tx ≥ t0 such thatx(t)x′(t) ≤ 0 for t ≥ tx};

OS = {x ∈ S : there exists tn → ∞ such that x(tn) = 0};
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WOS = {x ∈ S : x(t) is nonoscillates but x′(t) is oscillates}.

A nontrivial solution of equation (1) is said to be nonoscillatory, if it is eventually

positive or eventually negative; otherwise, the solution is said to be oscillatory.

This paper is organized as follows. In Section 2, we prove two interesting lemmas,

which will be used in Section 3 to prove our main theorems. To illustrate our results,

examples are provided in Section 4.

2. SOME LEMMAS

We start by presenting a lemma which is borrowed from [10] replacing the left

continuity by the right continuity of m(t) and m′(t) at tk for all k ∈ N .

Lemma 1. Suppose

(i) the sequence {tk}k∈N satisfies 0 ≤ t0 < t1 < t2 < · · · < tk · · · with lim
t→∞

tk = ∞;

(ii) m, m′ : R+ → R are right continuous on R+\{tk : k ∈ N}, there exist the lateral

limits m(t−k ), m′(t−k ), m(t+k ), m′(t+k ) and m(t+k ) = m(tk), k = 1, 2, 3, . . .;

(iii) for k = 1, 2, 3, . . . and t 6= t0, we have

m′(t) ≤ p(t)m(t) + q(t), t 6= tk,(2)

m(tk) ≤ αkm(t−k ) + βk,(3)

where p, q ∈ C(R+, R), αk and βk are real constants with αk ≥ 0. Then the following

inequality holds

(4) m(t) ≤ m(t0)
∏

t0<tk<t

αk exp

(
∫ t

t0

p(s)ds

)

+

∫ t

to

∏

s<tk<t

exp

(
∫ t

s

p(u)du

)

q(s)ds

+
∑

t0<tk<t

∏

tk<tj<t

αj exp

(
∫ t

tk

p(s)ds

)

βk, t ≥ t0.

Lemma 2. Let x(t) be a positive solution of equation (1) for all t ≥ T and bk ≥ 1.

If

(i) p(t) ≥ Mq(t) ≥ 0 for all t ≥ t0;

(ii) σ ≥ δ.

If

(5) lim
t→∞

∫ t

tj

1

r(s)

∏

tj<tk≤s

bk

max{ak, bk}
ds = +∞,

then y′(t) ≥ 0 for t ∈ [tk, tk + 1), tk ≥ T , where y(t) = x(t) + c(t)x(t − τ).

Proof. Since x(t) is positive we may assume without loss of generality that x(t−τ) > 0,

for all t ≥ T ≥ t0. Then

y(t) = x(t) + c(t)x(t − τ) > 0 for t ≥ T ≥ t0.
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At first we prove that y′(t−k ) ≥ 0 for tk ≥ T . If it is not true, then there exist some

j such that tj ≥ T , y′(t−j ) < 0. Let y′(t−j ) = −α with α > 0. Since tk+1 − tk > m ≥ τ

for each k ∈ N , we have

(6) tk < tk+1 − τ < tk+1

for all k ∈ N . Thus from the continuity of x and x′ on [tk−1, tk), inequality (6),

assumptions (H3) and (H4) and equation (1), we have y′(tk) = bky
′(t−k ).

On the other hand, if t ∈ [tk, tk+1), k ∈ N and tk ≥ T , it follows by (H1) and

equation (1) that

(r(t)y′(t))
′

= −p(t)f(x(t − δ)) + q(t)g(x(t − σ))

≤ −[p(t) − Mq(t)]f(x(t − δ)) ≤ 0.

Hence

(r(t)y′(t))′ ≤ 0, t > tj , t 6= tk, k = j + 1, j + 2, . . . .

and

y′(tk) = bky
′(t−k ), k = j + 1, j + 2, . . . .

Let m(t) = r(t)y′(t). Then

m′(t) ≤ 0, t > tj , t 6= tk, k = j + 1, j + 2, . . .(7)

m(tk) = bkm(t−k ), k = j + 1, j + 2, . . . .(8)

Using Lemma 1 in (7) and (8), we obtain

m(t) ≤ m(t−j )
∏

tj<tk<t

bk

or

y′(t) ≤
r(t−j )y′(t−j )

r(t)

∏

tj<tk<t

bk.(9)

For k = j + 1, j + 2, . . .

y(tk) = x(tk) + c(tk)x(τ(tk − τ))

≤ ak(x(t−k )) + bkc(t
−
k )x(τ(t−k − τ))

(10) y(tk) ≤ max{ak, bk}y(t−k ), k = j + 1, j + 2, . . . .

Again by using Lemma 1 in (9) and (10), we have

y(t) ≤ y(t−j )
∏

tj<tk<t

max{ak, bk} +

∫ t

tj

∏

s<tk<t

max{ak, bk}





r(tj)y
′(t−j )

r(s)

∏

tj<tk<s

bk



 ds

≤
∏

tj<tk<t

max(ak, bk)



y(t−j ) − αr(tj)

∫ t

tj

1

r(s)

∏

tj<tk≤s

bk

max{ak, bk}
ds



 .
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Letting t → ∞ in the last inequality, we see that by condition (5), y(t) → −∞ which

is a contradiction. Therefore y′(t−k ) ≥ 0 for all tk ≥ T . Since r(t) y′(t) is nonincreasing

on [tk, tk+1), it is clear that

y′(t) ≥
r(t−k+1)y

′(t−k+1)

r(t)
≥ 0 for t ∈ [tk, tk+1), t ≥ T.

The proof is now complete.

3. MAIN RESULTS

In this section, we present some sufficient conditions for the existence and nonex-

istence of solutions of equation (1) in the four classes.

Theorem 1. Assume that

(i) x(t−k − δ) = x(tk − δ);

(ii) σ ≥ δ.

If

(11) lim
t→∞

∫ t

tj

∏

tj<tk≤s

1

bk

[p(s) − Mq(s)]ds = +∞,

then M+ = ∅.

Proof. Suppose that equation (1) has a solution x ∈ M+. Without loss of generality

we may assume that x(t) > 0 for t ≥ t0 (the proof is similar for the case x(t) < 0).

Then x′(t) ≥ 0 for t ≥ T1 ≥ t0. It follows from Lemma 2 that y′(t) ≥ 0 for t ∈

[tk, tk+1), k = 1, 2, . . .. Define

w(t) =
r(t)y′(t)

f(x(t − δ))
, t 6= tk ≥ T1.

Then w(t−k ) ≥ 0 (k = 1, 2, 3, . . .) and w(t) ≥ 0 for t ≥ T1. Using (H1) and the

equation (1) for t 6= tk, we have

w′(t) =
(r(t)y′(t))′

f(x(t − δ))
−

r(t)y′(t)f ′(x(t − δ))x′(t − δ)

f 2(x(t − δ))

≤ −p(t) + q(t)
g(x(t − σ))

f(x(t − σ))

≤ −(p(t) − Mq(t)).

Also

w(tk) =
r(tk)y

′(tk)

f(x(tk − δ))
=

bkr(tk)y
′(t−k )

f(x(t−k − δ))
= bkw(t−k ).

Therefore w(t) satisfies the following differential inequalities:

w′(t) ≤ −(p(t) − Mq(t)), t > tj, t 6= tk, k = j + 1, j + 2, . . .

w(tk) = bkw(t−k ), k = j + 1, j + 2, . . . .
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Using Lemma 1, we have,

w(t) ≤ w(t−j )
∏

tj<tk<t

bk −

∫ t

tj

∏

s<tk<t

bk(p(s) − Mq(s))ds

≤
∏

tj<tk<t

bk



w(t−j ) −

∫ t

tj

∏

tj<tk≤s

1

bk

(p(s) − Mq(s))ds



 ,

which, in view of condition (11) and w(t) ≥ 0, leads to contradiction as t → ∞. The

proof of the theorem is complete.

Theorem 2. Assume that

(i) τ ≤ σ ≤ δ;

(ii)
∫ α

0
du

f(u)
< ∞ and

∫ 0

−α
du

f(u)
> −∞;

(iii) f is sub multiplicative, i.e., f(uv) ≤ f(u)f(v) for uv > 0.

If (7) holds and

(12)

+∞
∑

k=0

∫ tk+1

t−
k

1

r(s)f(1 + c(s))

[

lim
t→∞

∫ t

s

∏

s<tk≤v

1

bk

(p(v) − Mq(v))dv

]

ds = +∞,

then M− = ∅.

Proof. Suppose that equation (1) has a solution x ∈ M−. Without loss of generality

we assume that there exist t ≥ T1 ≥ t0 such that x(t) > 0, x′(t) ≤ 0, x(t − m) > 0

and x′(t − m) ≤ 0 for t ≥ T1. Then y(t) = x(t) + c(t)x(t − τ) > 0 and y′(t) ≤ 0 for

t ∈ [tk, tk+1), tk ≥ T1. Define

w(t) =
r(t)y′(t)

f(x(t − δ))
, t 6= tk ≥ T1.

Since σ ≤ δ and x′(t) ≤ 0, using the argument in Theorem 1, we obtain the inequality

w(t) ≤ w(s)
∏

s<tk<t

bk −

∫ t

tj

∏

v<tk<t

bk(p(v) − Mq(v))dv.

From the above inequality, we have

w(s) ≥
w(t)

∏

s<tk<t bk

+

∫ t

s

∏

v<tk<t bk (p(v) − Mq(v))dv
∏

s<tk<t bk

≥

∫ t

s

∏

s<tk≤v

1

bk

(p(v) − Mq(v))dv

or

y′(s)

f(x(s − δ))
≥

1

r(s)

∫ t

s

∏

s<tk≤v

1

bk

(p(v) − Mq(v))dv.(13)

Since x(t) is nonincreasing and τ ≤ δ, we see that

y(t) ≤ (1 + c(t)x(t − δ)), for t ∈ [tk, tk+1),
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and

f(y(t)) ≤ f(1 + c(t))f(x(t − δ)), for t ∈ [tk, tk+1).

Then

(14)
y′(t)

f(1 + c(t))f(x(t − δ))
≥

y′(t)

f(y(t))
.

From (13) and (14), we obtain

y′(s)f(1 + c(s))

f(y(s))
≥

1

r(s)

∫ t

s

∏

s<tk≤v

1

bk

(p(v) − Mq(v))dv,

or

y′(s)

f(y(s))
≥

1

r(s)f(1 + c(s))

∫ t

s

∏

s<tk≤v

1

bk

(p(v) − Mq(v))dv.

For s ∈ (tk, tk+1], k = 1, 2, . . ., we have by condition (ii),

+∞
∑

k=0

∫ tk+1

t−
k

1

r(s)f(1 + c(s))

[

lim
t→∞

∫ t

s

∏

s<tk≤v

1

bk

(p(v) − Mq(v))dv

]

ds

≤
+∞
∑

k=0

∫ tk+1

t−
k

y′(s)

f(y(s))
ds ≤

+∞
∑

k=0

∫ y(tk+1)

y(t−
k

)

du

f(u)
< ∞.

This contradicts (12) and the proof is complete.

Theorem 3. Assume that (11) holds. If equation (1) has a nonoscillatory solution

x(t) ∈ M−, then lim
t→∞

x(t) = 0.

Proof. We may assume that x(t) > 0 for t ≥ t0. Then x′(t) ≤ 0, which implies there

exist a constant β such that lim
t→∞

x(t) = β.

If β = 0, then the proof is complete. If not, then β > 0 and x(t − σ) ≥ β and

f(x(t − δ)) ≥ f(β). From equation (1),

(r(t)y′(t))
′

≤ −(p(t) − Mq(t))f(x(t − δ))

≤ −(p(t) − Mq(t))f(β).

Let m(t) = r(t)y′(t). In view of Lemma 2, m(t) > 0 and m(t) satisfying the following

differential inequality

m′(t) ≤ −(p(t) − Mq(t))f(β), t > tj , t 6= tk, k = j + 1, j + 2, . . .

and

m(tk) = bkm(t−k ), k = j + 1, j + 2, . . . .

Then applying Lemma 1, we obtain

m(t) ≤ m(t−j )
∏

tj<tk<t

bk − f(β)

∫ t

tj

∏

s<tk<t

bk(p(s) − Mq(s))ds,



664 E. THANDAPANI, R. SAKTHIVEL, AND E. CHANDRASEKARAN

or

m(t) ≤
∏

tj<tk<t

bk



m(t−j ) − f(β)

∫ t

tj

∏

tj<tk≤s

1

bk

(p(s) − Mq(s))ds



 .

In view of (11), the right side of the above inequality is eventually negative,

whereas the left side is nonnegative, which is a contradiction. This completes the

proof.

Theorem 4. Assume that

(i) c(t) is bounded;

(ii) x(t−k − δ) = x(tk − δ).

If

(15) lim
t→∞

∫ t

tj

∏

tj<tk<s

1

bk

[

(p(s) − Mq(s))

∫ t

T

1

r(ξ)
dξ

]

ds = +∞,

then every solution in the class M+ is unbounded.

Proof. Let x be a solution of equation (1), such that x ∈ M+. Without loss of

generality, we may assume that x(t) ≥ 0, x′(t) ≥ 0, x(t − m) ≥ 0 and x′(t − m) ≥ 0

for t ≥ T1 ≥ t0.

Let y(t) = x(t) + c(t)x(t − τ). Then by Lemma 2, y(t) > 0 and y′(t) > 0 for

t ∈ [tk, tk+1). Define

w(t) = −
r(t)y′(t)

f(x(t − δ))

∫ t

T

1

r(s)
ds, t 6= tk ≥ T1,

Then w(t−k ) ≤ 0 (k = 1, 2, . . .) and w(t) ≤ 0 for t ≥ T1. For t 6= tk, we have

w′(t) =

[

−
(r(t)y′(t))′

f(x(t − δ)
+

r(t)y′(t)f ′(x(t − δ))x′(t − δ)

f 2(x(t − δ))

]
∫ t

T

1

r(s)
ds −

y′(t)

f(x(t − δ)
,

or

w′(t) ≥ (p(t) − Mq(t))

∫ t

T

1

r(s)
ds −

y′(t)

f(x(t − δ)
.

Now for t = tk, we have,

w(tk) = −
r(tk)y

′(tk)

f(x(tk − δ))

∫ tk

T

1

r(s)
ds = bkw(t−k ).

Therefore w(t) satisfies the following differential inequality

w′(t) ≥ v(t), t > tj , t 6= tk, k = j + 1, j + 2, . . .

and

w(tk) = bkw(t−k ), t = tk, k = j + 1, j + 2, . . .
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where

v(t) = (p(t) − Mq(t))

∫ t

T

1

r(s)
ds −

y′(t)

f(x(t − δ)
.

Using Lemma 1, we obtain

w(t) ≥ w(t−j )
∏

tj<tk<t

bk +

∫ t

tj

∏

s<tk<t

bkv(s)ds,

≥
∏

tj<tk<t

bk



w(t−j ) +

∫ t

tj

∏

tj<tk≤s

1

bk

(

(p(s) − Mq(s))

∫ t

T

1

r(ξ)
dξ −

y′(s)

f ′(x(s − δ))

)

ds



 ,

or

w(t) ≥
∏

tj<tk<t

bk

[

w(t−j ) +

∫ t

tj

∏

tj<tk≤s

1

bk

(

(p(s) − Mq(s))

∫ t

T

1

r(ξ)
dξ

)

ds

−

∫ t

tj

∏

tj<tk≤s

1

bk

y′(s)

f ′(x(s − δ))
ds

]

.

Since y′(t)
f(x(t−δ))

is positive in [tk, tk+1), the limit as t → ∞ of the last integral on the

right hand side of the last inequality exists. Assume that
∫ t

tj

∏

tj<tk≤s

1

bk

y′(s)

f ′(x(s − δ))
ds = M1 < ∞.

This gives lim
t→∞

w(t) = ∞, which contradicts w(t) being negative. Thus

(16) lim
t→∞

∫ t

tj

∏

tj<tk≤s

1

bk

y′(s)

f ′(x(s − δ))
ds = ∞.

Since f(x) is nondecreasing, we have

f(x(t − δ)) ≥ f(x(t1 − δ))

or

1

f(x(t − δ))
≤

1

f(x(t1 − δ))
= M2.

Therefore
∫ t

tj

∏

tj<tk≤s

1

bk

y′(s)

f ′(x(s − δ))
ds ≤ M2

∫ t

tj

∏

tj<tk≤s

1

bk

y′(s)ds.

From (16), we obtain

(17) lim
t→∞

y(t) = ∞.

Since y(t) = x(t) + c(t)x(t − τ) and x′(t) ≥ 0, we have y(t) ≤ (1 + c(t))x(t). In

view of (15), and the fact that c(t) is bounded, this implies that lim
t→∞

x(t) = ∞. This

completes the proof.
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The following result is an immediate consequence of Theorem 1, Theorem 2 and

Theorem 3.

Theorem 5. If (5) and (11) hold with x(t−k − τ) = x(tk − τ) and σ = δ, then every

solution of equation (1) is either oscillatory or weakly oscillatory.

4. EXAMPLES

In this section we present some examples to illustrate the main results.

Example 1. Consider the following second order impulsive type neutral delay dif-

ferential equation











[1
t
x(t) + x(t − 1)]′′ + tx(t)

−(t − 1)x(t − 1) = 0, t ≥ 1, t 6= 2k, k = 1, 2, 3, . . .

x(2k) = (k+1
k

)x((2k)−), x′(2k) = (k+1
k

)x′((2k)−), k = 1, 2, 3, . . . .

(18)

Here r(t) = 1
t
, c(t) = 1, ak = bk = k+1

k
, p(t) = t, q(t) = t − 1, tk = 2k, t0 = 1,

τ = 1, σ = 1, δ = 0, f(u) = g(u) = u, and M = 1. Clearly conditions (i) and (ii) of

Theorem 1 are satisfied. Further a straightforward calculation shows that

lim
t→∞

∫ t

t0

∏

t0<tk<s

1

bk

[p(s) − Mq(s)]ds =

∫ t

t0

∏

t0<tk<s

1

bk

ds

=

∫ t1

1

∏

1<tk<s

1

bk

ds +

∫ t2

t1

∏

1<tk<s

1

bk

ds + · · ·

=

∫ t1

1

∏

1<tk<s

k

k + 1
ds +

∫ t2

t1

∏

1<tk<s

k

k + 1
ds + · · ·

= 1 +
1

2
× 2 +

1

2
×

2

3
× 22 +

1

2
×

2

3
×

3

4
× 23

= +∞.

Therefore all the conditions of Theorem 1 are satisfied and hence M+ = ∅.

Example 2. Consider the following second order impulsive type neutral delay dif-

ferential equation











[t2(t − 1)2(x(t) + x(t − 1))
′

]
′

+ 4t(t − 2)3x
1

3 (t − 2)

−2(t − 1)3x
1

3 (t − 1) = 0, t ≥ 1, t 6= 2k, k = 1, 2, 3, . . .

x(2k) = x((2k)−), x′(2k) = x′((2k)−), k = 1, 2, 3, . . .

(19)

Here r(t) = t2(t − 1)2, c(t) = 1, ak = bk = 1, p(t) = 4t(t − 2)3, q(t) = 2(t − 1)3,

tk = 2k, t0 = 1, τ = 1, σ = 1, δ = 2, f(u) = g(u) = u
1

3 , and M = 1. It is easy to see

that all conditions of Theorem 2 are satisfied, therefore M− = ∅.
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Example 3. Consider the following second order impulsive type neutral delay dif-

ferential equation










[1
t
(x(t) + x(t − 1))

′

]
′

+ 1
t2

x(t)

− t−1
t3

x(t − 1) = 0, t ≥ 1, t 6= 2k, k = 1, 2, 3, . . .

x(2k) = (k+1
k

)x((2k)−), x′(2k) = (k+1
k

)x′((2k)−), k = 1, 2, 3, . . .

(20)

Here r(t) = 1
t
, c(t) = 1, ak = bk =

k + 1

k
, p(t) = 1

t2
, q(t) = t−1

t3
, tk = 2k, t0 = 1, τ = 1,

σ = 1, δ = 0, f(u) = g(u) = u, and M = 1. It can be easily see that all conditions of

Theorem 4 are satisfied. Hence every solution in the class M+ is unbounded.

We conclude this paper with the following remark.

Remark: It would be interesting to extend the results of this paper to equation (1)

when the function c(t) is negative.

Acknowledgements: The authors thank the referee for his/her comments and sug-

gestions which improved the content of the paper.
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