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ABSTRACT. The existence of solutions of Discontinuous Quantum Stochastic Differential Inclu-

sions (QSDI) with upper semicontinuous coefficients is our concerned in this work. A non commu-

tative generalization of Kakutani-Fan fixed point theorem is established in the work. By employing

this result, the existence of solution of upper semicontinuous QSDI is established.
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1. INTRODUCTION

The problem of existence of solutions of Lipschitzian quantum stochastic differen-

tial inclusions of Hudson and Parthasarathy quantum stochastic calculus formulation

was established in [7]. The properties of these solution sets were established in [3] and

[4]. The quantum stochastic calculus is driven by quantum stochastic processes called

annihilation, creation and gauge arising from quantum field operators. The multival-

ued generalization of this non commutative stochastic differential equation is essential

in the applications of quantum control theory, quantum evolution inclusions[9] and

differential equation with discontinuous coefficients.

For a classical differential equation with discontinuous coefficients the existence

of solutions was established via a multivalued regularization procedure [2]. This

multivalued regularization is upper semicontinuous. The existence of solutions of

upper semicontinuous differential inclusions in the classical setting was established

by using Kakutani fixed point approach [6] which is a multivalued generalization of

Schauder fixed point theorem. The aim of this work is to establish this result in

our non commutative setting. However, this result does not naturally transcends to

our upper semicontinuous quantum stochastic differential inclusions. In this work we

shall first establish a form of Kakutani-Fan fixed point theorem and then employ it to

prove the existence of solution of our quantum stochastic differential inclusions. Hence

we extend the existence of solution results in the literatures on quantum stochastic

differential inclusions [7], [8] and [10] to discontinuous case.
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The work shall be arranged as follows; in section 2 we state the definitions and

notations while section 3 shall be for results on the fixed point theorem and existence

of solutions of upper semicontinuous quantum stochastic differential inclusions via

this fixed point theorem.

2. PRELIMINARIES

2.1. Notations and Definitions. In what follows, if U is a topological space, we

denote by clos(U), the collection of all non-empty closed subsets of U.

To each pair (D,H) consisting of a pre-Hilbert space D and its completion H ,

we associate the set L+
w(D,H) of all linear maps x from D into H , with the property

that the domain of the operator adjoint contains D. The members of L+
w(D,H) are

densely-defined linear operators on H which do not necessarily leave D invariant and

L+
w(D,H) is a linear space when equipped with the usual notions of addition and

scalar multiplication.

To H corresponds a Hilbert space Γ(H) called the boson Fock space determined

by H . A natural dense subset of Γ(H) consists of linear space generated by the set

of exponential vectors(Guichardet, [11]) in Γ(H) of the form

e(f) =

∞⊕

n=0

(n!)−
1

2

n⊗
f, f ∈ H

where
⊗0

f = 1 and
⊗n

f is the n-fold tensor product of f with itself for n ≥ 1.

In what follows, D is some pre-Hilbert space whose completion is R and γ is a

fixed Hilbert. L2
γ(R+) (resp. L2

γ([0, t)), resp. L2
γ([t,∞)) t ∈ R+) is the space of square

integrable γ-valued maps on R+ (resp. [0, t), resp. [t,∞)).

The inner product of the Hilbert space R ⊗ Γ(L2
γ(R+)) will be denoted by 〈·, ·〉

and ‖ · ‖ the norm induced by 〈·, ·〉. Let E,Et and Et, t > 0 be linear spaces generated

by the exponential vectors in Fock spaces Γ(L2
γ(R+)),Γ(L2

γ([0, t))) and Γ(L2
γ([t,∞)))

respectively;

A ≡ L+
w(D⊗E,R⊗ Γ(L2

γ(R+)))

At ≡ L+
w(D⊗Et,R⊗ Γ(L2

γ([0, t)))) ⊗ I
t

At ≡ It ⊗ L+
w(Et,Γ(L2

γ([t,∞)))), t > 0

where ⊗ denotes algebraic tensor product and It (resp. It) denotes the identity map

on R⊗ Γ(L2
γ([0, t)))) (resp. Γ(L2

γ([t,∞)))), t > 0. For every η, ξ ∈ D⊗E define

‖ x ‖η,ξ=| 〈η, xξ〉 |, x ∈ A

then the family of seminorms

{‖ · ‖ηξ: η, ξ ∈ D⊗E}
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generates a topology τw, weak topology. The completion of the locally convex spaces

(A, τw), (At, τw) and (At, τw) are respectively denoted by Ã, Ãt and Ãt.

We define the Hausdorff topology on clos(Ã) as follows: For x ∈ Ã, M,N ∈

clos(Ã) and η, ξ ∈ D⊗E, define

ρηξ(M,N ) ≡ max(δηξ(M,N ), δηξ(N ,M))

where

δηξ(M,N ) ≡ sup
x∈M

dηξ(x,N ) and

dηξ(x,N ) ≡ inf
y∈N

‖ x− y ‖ηξ .

The Hausdorff topology which shall be employed in what follows, denoted by, τH ,

is generated by the family of pseudometrics {ρηξ(·) : η, ξ ∈ D⊗E}. Moreover, if

M ∈ clos(Ã), then ‖ M ‖ηξ is defined by

‖ M ‖ηξ≡ ρηξ(M, {0});

for arbitrary η, ξ ∈ D⊗E. For A,B ∈ clos(C) and x ∈ C, a complex number, define

d(x,B) ≡ inf
y∈B

| x− y |

δ(A,B) ≡ sup
x∈A

d(x,B)

and ρ(A,B) ≡ max(δ(A,B), δ(B,A)).

Then ρ is a metric on clos(C) and induces a metric topology on the space. Let I ⊆ R+.

A stochastic process indexed by I is an Ã-valued measurable map on I. A stochastic

process X is called adapted if X(t) ∈ Ãt for each t ∈ I. We write Ad(Ã) for the set

of all adapted stochastic processes indexed by I.

Definition 2.1. A member X of Ad(Ã) is called

(i) weakly absolutely continuous if the map t 7→ 〈η,X(t)ξ〉, t ∈ I is absolutely contin-

uous for arbitrary η, ξ ∈ D⊗E

(ii) locally absolutely p-integrable if ‖ X(·) ‖p
ηξ is Lebesgue -measurable and integrable

on [0, t) ⊆ I for each t ∈ I and arbitrary η, ξ ∈ D⊗E.

We denote by Ad(Ã)wac (resp. Lp
loc(Ã)) the set of all weakly, absolutely continuous

(resp. locally absolutely p-integrable) members of Ad(Ã).

Stochastic integrators: Let L∞
γ,loc(R+) [resp. L∞

B(γ),loc(R+)] be the linear space of

all measurable, locally bounded functions from R+ to γ [resp. to B(γ), the Banach

space of bounded endomorphisms of γ]. If f ∈ L∞
γ,loc(R+) and π ∈ L∞

B(γ),loc(R+), then

πf is the member of L∞
γ,loc(R+) given by (πf)(t) = π(t)f(t), t ∈ R+.
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For f ∈ L2
γ(R)+ and π ∈ L∞

B(γ),loc(R+); the annihilation, creation and gauge

operators, a(f), a+(f) and λ(π) in L+
w(D,Γ(L2

γ(R)+)) respectively, are defined as:

a(f)e(g) = 〈f, g〉L2
γ(R+)e(g)

a+(f)e(g) =
d

dσ
e(g + σf) |σ=0

λ(π)e(g) =
d

dσ
e(eσπf) |σ=0

g ∈ L2
γ(R)+

For arbitrary f ∈ L∞
γ,loc(R+) and π ∈ L∞

B(γ),loc(R+), they give rise to the operator-

valued maps Af , A
+
f and Λπ defined by:

Af(t) ≡ a(fχ[0,t))

A+
f (t) ≡ a+(fχ[0,t))

Λπ(t) ≡ λ(πχ[0,t))

t ∈ R+, where χI denotes the indicator function of the Borel set I ⊆ R+. The

maps Af , A
+
f and Λπ are stochastic processes, called annihilation, creation and gauge

processes, respectively, when their values are identified with their amplifications on

R ⊗ Γ(L2
γ(R+)). These are the stochastic integrators in Hudson and Parthasarathy

[12] formulation of boson quantum stochastic integration.

For processes p, q, u, v ∈ L2
loc(Ã), the quantum stochastic integral:

∫ t

t0

(
p(s)dΛπ(s) + q(s)dAf(s) + u(s)dA+

g (s) + v(s)ds
)
, t0, t ∈ R+

is interpreted in the sense of Hudson-Parthasarathy[12]. The definition of Quantum

stochastic differential Inclusions follows as in [7]. A relation of the form

dX(t) ∈ E(t, X(t))dΛπ(t) + F (t, X(t))dAf(t)

+G(t, X(t))dA+
g (t) +H(t, X(t))dt almost all t ∈ I

X(t0) = x0

(2.1)

is called Quantum stochastic differential inclusions(QSDI) with coefficients E,F,G,H

and initial data (t0, x0). Equation(2.1) is understood in the integral form:

X(t) ∈ x0 +

∫ t

t0

(
E(s,X(s))dΛπ(s) + F (s,X(s))dAf(s)

+G(s,X(s))dA+
g (s) +H(s,X(s))ds

)
, t ∈ I
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called a stochastic integral inclusion with coefficients E,F,G,H and initial data

(t0, x0). An equivalent form of (2.1) has been established in [7], Theorem 6.2 as:

(µE)(t, x)(η, ξ) = {〈η, µαβ(t)p(t, x)ξ〉 : p(t, x) ∈ E(t, x)}

(νF )(t, x)(η, ξ) = {〈η, νβ(t)q(t, x)ξ〉 : q(t, x) ∈ F (t, x)}

(σG)(t, x)(η, ξ) = {〈η, σα(t)u(t, x)ξ〉 : u(t, x) ∈ G(t, x)}

P(t, x)(η, ξ) = (µE)(t, x)(η, ξ) + (νF )(t, x)(η, ξ)

+ (σG)(t, x)(η, ξ) +H(t, x)(η, ξ)

H(t, x)(η, ξ) = {v(t, x)(η, ξ) : v(·, X(·))

is a selection of H(·, X(·))∀ X ∈ L2
loc(Ã)}

(2.2)

Then Problem (2.1) is equivalent to

d

dt
〈η,X(t)ξ〉 ∈ P(t, X(t))(η, ξ)

X(t0) = x0

(2.3)

for arbitrary η, ξ ∈ D⊗E, almost all t ∈ I. Hence the existence of solution of (2.1)

implies the existence of solution of (2.3) and vice-versa. As explained in [7], for the

map P,

P(t, x)(η, ξ) 6= P̃(t, 〈η, xξ〉)

for some complex-valued multifunction P̃ defined on I × C for t ∈ I, x ∈ Ã, η, ξ ∈

D⊗E.

Definition 2.2. Let D ⊂ Ã be a non-empty bounded subset of Ã. For each η, ξ ∈

D⊗E, supx∈D ‖ x ‖ηξ< ∞. We define the diameter of D with respect to η, ξ ∈ D⊗E

by,

diam.(D) = sup
x,y∈D

‖ x− y ‖ηξ .

Definition 2.3. For arbitrary η, ξ ∈ D⊗E, let

Bηξ = {D ⊂ Ã : sup
x,y∈D

‖ x− y ‖ηξ<∞}

Then the map: αηξ : Bηξ → R+, defined by

αηξ(D) = inf{d > 0 : D admits a finite cover by sets of diameter ≤ d}, D ∈ Bηξ

is called (Kuratowski-)measure of non compactness.

The following are properties of αηξ, established in [5]

Proposition 2.4. Suppose αηξ : Bηξ → R+, then

(a) αηξ(D) = 0 if and only if D is compact



126 M. O. OGUNDIRAN AND E. O. AYOOLA

(b) αηξ is a seminorm, that is; for λ > 0,

αηξ(λD) =| λ | αηξ(D) and αηξ(D1 +D2) ≤ αηξ(D1) + α(D2)

(c) D1 ⊂ D2 implies

αηξ(D1) ≤ αηξ(D2), αηξ(D1 ∪D2) = max{αηξ(D1), αηξ(D2)}

(d) αηξ(coD) = αηξ(D).

(e) αηξ is continuous with respect to the Hausdorff distance; that is

| αηξ(D1) − αηξ(D2) |≤ ρηξ(D1, D2)

for arbitrary η, ξ ∈ D⊗E where

ρηξ(D1, D2) = max
{

sup
x∈D1

dηξ(x,D2), sup
x∈D2

dηξ(x,D1)
}
, D1, D2 ⊂ Bηξ

Definition 2.5. (a) Let v0, v1, . . . , vn be an affinely independent set of n + 1 points

in a vector space E. The convex hull

{x ∈ E : x =
n∑

i=0

λivi, 0 ≤ λi ≤ 1,
n∑

i=0

λi = 1}

is called (closed)n-simplex and is denoted by v0v1 . . . vn. The points v0, v1, . . . , vn are

called the vertices of the simplex. For 0 ≤ k ≤ n and 0 ≤ i0 < i1 < · · · < ik ≤ n,

the k-simplex vi0vi1 . . . vik is a subset of the n-simplex v0v1 . . . vn; it is called a k-

dimensional face(or simply k-face) of v0v1 . . . vn. In addition , if y =
∑n

i=0 λivi we let

χ(y) = {i : λi > 0}

(b) A real-valued function φ on Ã is lower (resp. upper) semicontinuous if the set

{x ∈ Ã : φ(x) ≤ λ} (resp. {x ∈ Ã : φ(x) ≥ λ}) is closed in Ã for each λ ∈ R. If

Q is a convex set in a vector space then a real-valued function φ on Q is said to be

quasiconcave (resp. quasiconvex) if {x ∈ Q : φ(x) > λ} (resp. {x ∈ Q : φ(x) < λ}) is

convex for each λ ∈ R

(c) Let K be a non empty set, and Φ : K → 2K a multifunction, an element x ∈ K is

said to be a fixed point of Φ if x ∈ Φ(x).

(d) Let Q be a convex set in a vector space X, A a non-empty subset of Q and

F : A → 2Q, a multivalued map. The family {F (x) : x ∈ A} is said to be a

KKM covering for Q if

co{x : x ∈ N} ⊆
⋃

x∈N

F (x)

for any finite set N ⊆ A
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2.2. Preliminary results. In the Locally convex spaces, Schauder-Tychonoff fixed

point theorem is the generalization of Schauder fixed point theorem on Banach

spaces[13]. For the case of multifunctions, Kakutani fixed point theorem is the multi-

valued analogue of Schauder fixed point theorem and Kakutani-Fan fixed point theo-

rem is the generalization of Schauder-Tychonoff theorem[1]. The following theorems

due to Knaster, Kuratowski and Mazurkiewicz (KKM) shall be employed.

Theorem 2.6. [1] Let {F0, . . . , Fn} be a family of n+1 closed subsets of an n-simplex

v0v1 . . . vn. Suppose that for each 0 ≤ k ≤ n and 0 ≤ i0 < i1 < · · · < ik ≤ n we have

vi0vi1 . . . vik ⊆ Fi0 ∪ Fi1 ∪ · · · ∪ Fik

Then
n⋂

i=0

Fi 6= ∅

The infinite dimensional version of the KKM theorem, Theorem 2.1, above is:

Theorem 2.7. [1] Let Q be a convex set in Ã, N a non-empty subset of Q, F : N →

2Q a multivalued map and {F (x) : x ∈ N} a KKM covering for Q. If there exists an

a ∈ N with F (a) compact, then
⋂

x∈N

F (x) 6= ∅

The following is a non commutative analogue of the Ky Fan’s minimax theorem,

as established in[1]

Theorem 2.8. Let K 6= ∅, convex and compact subset in Ã and φ a real-valued

function on the product space K ×K satisfying the following conditions;

(2.4) for each fixed x ∈ K,φ(x, ·) is lower semicontinuous on K and

(2.5) for each fixed y ∈ K,φ(·, y) is quasiconcave on K

Then there exists y∗ ∈ K with

φ(x, y∗) ≤ sup
z∈K

φ(z, z) for all x ∈ K

(and therefore miny∈K supx∈K φ(x, y) ≤ supx∈K φ(x, x))

Proof. Let λ = supx∈K φ(x, x). We may assume that λ 6= ∞. For each x ∈ K let

F (x) = {y ∈ K : φ(x, y) ≤ λ}

condition 2.4 guarantees that each F (x) is closed and hence compact in K (note that

K is compact). We claim that {F (x) : x ∈ K} is a KKM covering for K. If the claim

is true then Theorem 2.2 guarantees that
⋂

x∈K F (x) 6= ∅. Take y∗ ∈
⋂

x∈K F (x) and

the proof is concluded.
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To prove the claim . Suppose it is not true. Then there exists {x1, . . . , xn} ⊂ K

and αi > 0 (i = 0, 1, . . . , n) with
∑n

i=0 αi = 1 such that

w =

n∑

i=0

αixi ∈
( n⋃

i=0

F (xi)
)′

This together with the definition of F (x) yields

(2.6) φ(xi,

n∑

i=0

αixi) = φ(xi, w) > λ, for i = 0, 1, . . . , n

Finally (2.4) together with the quasiconcavity of φ(·, w) guarantees that φ(w,w) > λ,

a contradiction.

In the following result, we shall employ the notation: 〈x, g〉 to denote the duality

pairing for each g ∈ Ã′ and x ∈ Ã

Theorem 2.9. Let X : I → Ã, Q a non-empty subset of Ã and Φ : Q → 2Q

be upper semicontinuous with Φ(X(t)) non-empty and bounded for each X(t) ∈

Q. Then for any g ∈ Ã′(dual), the map φg : Q → R, defined by φg(Y (t)) =

supX(t)∈Φ(Y (t))Re〈X(t), g〉 is upper semicontinuous in the sense of real-valued func-

tion.

Proof. Fix y0 ∈ Q. Let ǫ > 0 be given and let

Uǫ = {X(t) ∈ Q :| 〈X(t), g〉 |<
ǫ

2
}

Notice that Uǫ is an open neighbourhood of 0. Since Φ(y0) + Uǫ is an open set

containing Φ(y0), it follows from the upper semicontinuity of Φ at y0 that there exists

a neighbourhood N(y0) of y0 in Q with

Φ(Y (t)) ⊆ Φ(y0) + Uǫ for all Y (t) ∈ N(y0)

Thus for each Y (t) ∈ N(y0) we have that

φg(Y (t)) = sup
X(t)∈Φ(Y (t))

Re〈X(t), g〉 ≤ sup
X(t)∈Φ(y0)+Uǫ

Re〈X(t), g〉

≤ sup
X(t)∈Φ(y0)

Re〈X(t), g〉+ sup
X(t)∈Uǫ

Re〈X(t), g〉

< φg(y0) + ǫ

therefore φg is upper semicontinuous.

The following separation theorem shall be employed in what follows:

Theorem 2.10. [1] Suppose that A and B are disjoint, non-empty, convex sets in Ã.

If in addition A is compact and B is closed, then there exist f :∈ Ã′ and γ ∈ R with

maxRef(A) < γ ≤ inf Ref(B)
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3. MAIN RESULTS

Theorem 3.1. Suppose K 6= ∅, K ⊂ Ã is a convex and compact subset of Ã, such

that the following conditions hold:

(i) X(t) is a stochastic process; X : I → Ã such that X(t) ∈ K, ∀t ∈ I

(ii) The map Φ : K → 2K is upper semicontinuous with respect to a pair η, ξ ∈ D⊗E,

with Φ(X(t)) a non-empty closed and convex subset of K for each X(t) ∈ K. Then

there exists a y(t) ∈ K with y(t) ∈ Φ(y(t)).

Proof. Suppose that the result is not true, that is suppose y(t) 6∈ Φ(y(t)) for such

y(t) ∈ K. Now for each y(t) ∈ K, Theorem 2.4 guarantees that there exists fy(t) ∈ Ã′

with

(3.1) Re〈y(t), fy(t)〉 − sup
X(t)∈Φ(y(t))

Re〈X(t), fy(t)〉 > 0.

For each g ∈ Ã′, let

V (g) = {y(t) ∈ K : Re〈y(t), g〉 − sup
X(t)∈Φ(y(t))

〈X(t), g〉 > 0}

We observe that (3.1) ensures that K =
⋃

g∈ eA′ V (g). In addition Theorem 2.2 im-

plies that V (g) is open in K. The compactness of K guarantees the existence of

g1, g2, . . . , gn ∈ Ã′ with K =
⋃n

i=1 V (gi). Let {λ1, . . . , λn} be a partition of unity on

K subordinate to the covering {V (g1), . . . , V (gn)} (let Vi = V (gi) for i − 1, . . . , n),

that is λ1, . . . , λn are continuous non negative real valued functions on K with λi

vanishing on K \ Vi for each i = 1, . . . , n and
∑n

i=1 λi(X(t)) = 1 for all X(t) ∈ K.

Therefore K is a non-empty,convex and compact subset of Ã. Let φ : K ×K → R

be given by

φ(X(t), y(t)) =

n∑

i=1

λi(y(t))Re〈y(t)−X(t), gi〉

For each X(t) ∈ K φ(X(t), ·) is lower semicontinuous on K and for each y(t) ∈

K, λ ∈ R the set, {X(t) ∈ K : φ(X(t), y(t)) > λ} is convex, then by Ky Fan’s

minimax theorem (Theorem 2.5), there exists y0 ∈ K with

φ(X(t), y0) ≤ 0, for all X(t) ∈ K

that is,

(3.2)
n∑

i=1

λi(y0)Re〈y0 −X(t), gi〉 ≤ 0 for all X(t) ∈ K

Suppose that i ∈ {1, 2, . . . , n} is such that λi(y0) > 0. Then yi ∈ V (gi) (since λi

vanishes on K \ Vi) and consequently,

Re〈y0, gi〉 > sup
X(t)∈Φ(y0)

Re〈X(t), gi〉 ≥ Re〈x0, gi〉
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for all x0 ∈ Φ(y0) (that is, Re〈y0 −x0, gi〉 > 0 for all x0 ∈ Φ(y0)). Thus λi(y0)Re〈y0 −

x0, gi〉 > 0 whenever λi(y0) > 0 (for i = 1, . . . , n) for all x0 ∈ Φ(y0). Since λi(y0) > 0

for at least one i ∈ {1, 2, . . . , n}, it follows that

n∑

i=1

λi(y0)Re〈y0 − x0, gi〉 > 0

for all x0 ∈ Φ(y0). This contradicts (3.2). Therefore the conclusion of the theorem is

true.

Theorem 3.2. Assume that the maps E,F,G,H ∈ L2
loc(I × Ã)mvs and P : I × Ã →

2sesq(D⊗E)2, a sesquilinear form valued map with closed and convex values such that

(a) t 7→ P(t, X(t))(η, ξ) has a measurable selection,

(b) X 7→ P(t, X(t))(η, ξ) is upper semicontinuous,

(c) ρ(P(t, X(t))(η, ξ), {0}) ≤ c(t)(1+ ‖ X ‖ηξ) on I × Ã with c ∈ L1
loc(I),

(d) limτ→0+ αηξ

(
P(It,τ × B)(η, ξ)

)
≤ k(t)αηξ(B) on I, where P(It,τ × B)(η, ξ) =

{P(t, X(t))(η, ξ) : (t, X) ∈ It,τ × B}, It,τ = [t− τ, t+ τ ] ∩ I for B ∈ Bηξ, η, ξ ∈ D⊗E

and k ∈ L1
loc(I). Then the quantum stochastic differential inclusion

d

dt
〈η,X(t)ξ〉 ∈ P(t, X(t))(η, ξ) X(t0) = x0 a.e. on I

has a solution on I.

Proof. If v ∈ Ad(Ã)wac ∩ L2
loc(Ã), by (a), for an arbitrary pair of η, ξ ∈ D⊗E,

P(·, v(·))(η, ξ) has a measurable selection. That is there exists ωηξ(·) ∈ P(·, v(·))(η, ξ),

such that t → ωηξ(t) is measurable. By (c) we find that there exists ψ1(t) and

ψ2(t) = c(t)(1 + ψ1(t)). Now we define K as:

K = {v ∈ Ad(Ã)wac ∩ L
2
loc(Ã) : v(t0) = x0, ‖ v(t) ‖ηξ≤ ψ1(t) and

‖ v(t) − v(s) ‖ηξ≤|

∫ t

s

ψ2(τ)dτ | ∀η, ξ ∈ D⊗E}

Also, since ωηξ(·) ∈ P(·, v(·))(η, ξ), there exists ω : I → Ã such that ωηξ(·) =

〈η, ω(·)ξ〉, for arbitrary η, ξ ∈ D⊗E. Let K̂ ⊂ K be defined as

K̂ = {u ∈ K : there exist v(·) ∈ Ad(Ã)wac ∩ L
2
loc(Ã), ωηξ(·)

= 〈η, ω(·)ξ〉 ∈ P(·, v(·))(η, ξ),

with 〈η, u(t)ξ〉 = 〈η, x0ξ〉 +

∫ t

0

ωηξ(s)ds}(3.3)

and a multivalued map G : K̂ → K̂ defined by

G(v) = {u ∈ Ad(Ã)wac ∩ L
2
loc(Ã) : 〈η, u(t)ξ〉 = 〈η, x0ξ〉 +

∫ t

0

ωηξ(s)ds,

ωηξ(·) = 〈η, ω(·)ξ〉 ∈ P(·, v(·))(η, ξ)∀ηξ ∈ D⊗E}.
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G maps K̂ into itself, since for any u ∈ G(v); 〈η, u(t)ξ〉 = 〈η, x0ξ〉 +
∫ t

0
ωηξ(s)ds,

u(0) = x0, ‖ u(t) ‖ηξ≤ ψ1(t) and

| 〈η, (u(t) − u(s))ξ〉 | =|

∫ t

0

ωηξ(s)ds−

∫ s

0

ωηξ(s)ds |

=|

∫ t

s

ωηξ(s)ds |

≤|

∫ t

s

c(τ)(1+ | ψ1(τ) |)dτ |

≤|

∫ t

s

ψ2(τ)dτ |

K̂ is bounded and weakly-equicontinuous, since for any v ∈ K̂; v ∈ Ad(Ã)wac∩L2
loc(Ã,

t, s ∈ I, given ǫ > 0, there exists δ > 0 such that ‖ v(t)−v(s) ‖ηξ< ǫ whenever | t−s |<

δ. The weak equicontinuity follows by setting δ = ǫ
λ

where λ = maxτ∈[s,t] | ψ2(τ) |.

Moreover let αηξ,0(·) = αηξ(·) for Ad(Ã)wac ∩ L2
loc(Ã and B(t) = {v(t) : v ∈ B},

then αηξ,0(B) = maxI αηξ(B(t)) for B ⊆⊆ K̂. Let K0 = K̂, K̂n+1 = convG(K̂n) for

n ≥ 0 and K̂∞ =
⋂

n≥0 K̂n. Then
(
K̂n

)
is a decreasing sequence of closed convex sets.

To show that K̂∞ is compact. Let ρηξ,n(t) = αηξ(K̂n(t)) and γηξ,n(t) = αηξ(G(K̂n)(t)).

γηξ,n is absolutely continuous with γηξ,n(0) = 0 and for 0 < t− τ < t ≤ T , we have

γηξ,n(t) − γηξ,n(t− τ) ≤ αηξ

(
{

∫ t

t−τ

ωηξ(s)ds; 〈η, ω(·)ξ〉 ∈ P(·, v(·))(η, ξ), v ∈ K̂n

)
.

Using ∫ t

t−τ

ωηξ(s)ds ∈ τconvP(It,τ ×∪It,τ0
Kn(s))(η, ξ) for τ ≤ τ0,

we obtain
d

dt
γηξ,n(t) ≤ K(t)αηξ(

⋃

It,τ0

K̂n(s))

almost everywhere, from condition (c) and therefore

d

dt
γηξ(t) ≤ K(t)ρn a.e.

by letting τ0 → 0+, since K̂n is equicontinuous. But (convA)(t) = convA(t), then

ρn+1(t) ≤

∫ t

0

K(s)ρn(s)ds

hence ρn(t) → 0 uniformly, since (ρn) is decreasing. Consequently, αηξ,0(K∞) =

maxI αηξ(K∞(t)) = 0 that is K̂∞ is compact with respect to τwac and convex. We

also have K̂∞ 6= ∅, since we may pick vn ∈ K̂n and proceed in the same way to

get vm → v0 for some subsequence, hence v0 ∈ K̂∞. Now, G : K̂∞ → 2
bK∞ \ ∅

and has convex values. If (un) ⊂ G(v) then the corresponding (ωn) has a weakly

convergent subsequence. Hence G(v) is also compact, moreover G |K∞
has closed
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graph, hence G |K∞
is Upper semicontinuous and therefore G has a fixed point in K∞

by Kakutani-Fan fixed point theorem (Theorem 3.1).

Let ϕ ∈ K̂∞ be a fixed point of G. Then ϕ ∈ Ad(Ã)wac ∩ L2
loc(Ã) and

〈η, ϕ(t)ξ〉 = 〈η, x0ξ〉 +

∫ t

0

ωηξ(s)ds

But, ωηξ(·) ∈ P(·, ϕ(·))(η, ξ). Therefore,

d

dt
〈η, ϕ(t)ξ〉 = 〈η, ω(t)ξ〉 ∈ P(t, ϕ(t))(η, ξ)

and ϕ(t0) = x0, a.e. t ∈ I. Hence the fixed point of G is a solution of the problem
d
dt
〈η,X(t)ξ〉 ∈ P(t, X(t))(η, ξ) X(t0) = x0 a.e. on I.
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