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ABSTRACT. In this paper, we establish the upper semicontinuity of random attractors for the

stochastically perturbed reaction-diffusion equation and damped wave equation with multiplicative

noises defined on the entire space R
n as the coefficient of the white noise term tends to zero.
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1. INTRODUCTION

It is known that the asymptotic behavior of an infinite dimensional random dy-

namical system (RDS) is determined by a random attractor. Many authors studied

the existence of random attractors for the partial differential equations (PDEs) in

bounded domains [6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 23, 31, 33] and in unbounded

domains [2, 25, 26, 27, 28, 29, 30], and the ordinary differential equations (ODEs) on

infinite lattices [3, 32, 17]. Concerning the properties of attractors for parameters-

depending dynamical systems, it is important to consider the dependence of attractors

on the parameters. In the deterministic case, the upper semicontinuity of global at-

tractors with respect to some parameters were investigated in [4, 15, 16, 18, 21, 24]

and many others. For stochastic PDEs defined in bounded domains, this problem

has been studied by the authors of [6, 7, 19, 22]. Recently, Wang in [28] gave some

conditions for the upper semicontinuity of perturbed random attractors to a global

attractor of the limiting autonomous dynamical system, and then applied it to estab-

lish the upper semicontinuity of random attractors for stochastic reaction-diffusion

equation with small additive white noise defined in R
n as the coefficient of the white

noise term tends to zero, where Wang overcome the obstacles caused by the non-

compactness of embedding by using uniform estimates for far-field values of functions

inside the perturbed random attractors and showed that the values of all functions

in all perturbed random attractors are uniformly convergent to zero when spatial

variables approach infinity.
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In this paper, we consider the following stochastic reaction-diffusion equation and

damped wave equation with small multiplicative noise defined in the entire space R
n:

(1.1)




du+ (λu− ∆u)dt = (f(x, u) + g(x))dt+ εu ◦ dW, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

and

(1.2)




d(ut + αu) + (λu− ∆u+ f(u))dt = g(x)dt+ εudW, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R
n,

where ∆ is the Laplacian with respect to the variable x ∈ R
n, u = u(x, t) is a real-

valued function of x ∈ R
n and t ≥ 0; λ > 0, α > 0, ε are constants, g is a given

function defined on R
n; f is a nonlinear function satisfying certain conditions; W (t)

is a two-sided real-valued Wiener process on probability space (Ω,F ,P), where Ω is a

subset of {ω ∈ C(R,R) : ω(0) = 0}, the Borel σ-algebra F on Ω is generated by the

compact open topology, and P is the corresponding Wiener measure on F ; ◦ denotes

the Stratonovich sense in the stochastic term. W (t) acting at ω ∈ Ω is identified

with ω(t), i.e., W (t)(ω) = W (t, ω) = ω(t) for t ∈ R and ω ∈ Ω. The authors

have proved the existence of random attractors for the random dynamical systems

associated with (1.1)–(1.2) in [29, 30], respectively. Here we will study the limiting

behavior of random attractors for the stochastic equations (1.1)–(1.2) as ε → 0, and

establish the upper semicontinuity of these perturbed random attractors.

The rest of this paper is organized as follows. In the next section, we recall some

basic concepts related to random attractor for general random dynamical systems and

present some conditions for the upper semicontinuity of perturbed random attractors

to a global attractor. In section 3 and section 4, we show the upper semicontinuity of

random attractors for stochastically perturbed equations (1.1) and (1.2) to the global

attractor of corresponding limiting determined equations as ε→ 0, respectively.

2. PRELIMINARIES

Let (X, ‖ · ‖X) be a separable Banach space with the Borel σ-algebra B(X).

Let (Ω,F ,P, (θt)t∈R) be an ergodic metric dynamical system. A continuous random

dynamical system (RDS) on X over (Ω,F ,P, (θt)t∈R) is a (B(R+)×F ×B(X),B(X))-

measurable mapping:

ϕ : R
+ × Ω ×X → X, (t, ω, u) 7→ ϕ(t, ω, u)

such that the following properties hold: (i) ϕ(0, ω, ·) is the identity on X; (ii) ϕ(t+

s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)) for all s, t ≥ 0; (iii) ϕ(t, ω, ·) : X → X is continuous for

all t ≥ 0 (see [1, 8]). A set-valued mapping {D(ω)} : Ω → 2X , ω → D(ω), is said

to be a random set if the mapping ω 7→ d(u,D(ω)) is measurable for any u ∈ X.
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If D(ω) is also closed (compact) for each ω ∈ Ω, {D(ω)} is called a random closed

(compact) set. A random set {D(ω)} is said to be bounded if there exist u0 ∈ X

and a random variable R(ω) > 0 such that D(ω) ⊂ {u ∈ X : ‖u − u0‖X ≤ R(ω)}
for all ω ∈ Ω. A random set {D(ω)} is called tempered provided for P-a.e. ω ∈ Ω,

lim
t→+∞

e−βtd(D(θ−tω)) = 0 for all β > 0, where d(D) = sup{‖b‖X : b ∈ D}. Let D(X)

denote the set of all tempered random sets of X. A random set {B(ω)} is said to be

a random absorbing set if for any tempered random set {D(ω)}, and P-a.e. ω ∈ Ω,

there exists tD(ω) ≥ 0, such that ϕ(t, θ−tω,D(θ−tω)) ⊂ B(ω) for all t ≥ tD(ω). A

random set {B1(ω)} is said to be a random attracting set if for any tempered random

set {D(ω)}, and P-a.e. ω ∈ Ω, we have limt→+∞ dH(ϕ(t, θ−tω,D(θ−tω), B1(ω)) = 0,

where dH is the Hausdorff semi-distance given by dH(E,F ) = supu∈E infv∈F ‖u− v‖X

for any E,F ⊂ X. A random compact set {A(ω)} is said to be a random attractor

if it is a random attracting set and ϕ(t, ω, A(ω)) = A(θtω) for P-a.e. ω ∈ Ω and all

t ≥ 0.

Theorem 2.1 (See [28]). Let (X, ‖ · ‖X) be a separable Banach space with Borel σ-

algebra B(X) and {φ(t)}t≥0 be an autonomous dynamical system defined on X. Sup-

pose {φε(t, ω)}ε>0,t≥0,ω∈Ω is a family of random dynamical systems on X over metric

system (Ω,F ,P, (θt)t∈R). Suppose that (i) φ has a global attractor A0 in X which

is compact and invariant and attracts every bounded subset of X uniformly; (ii) for

any ε > 0, φε has a random attractor Aε = {Aε(ω)}ω∈Ω ∈ D and a random absorbing

set Bε = {Bε(ω)}ω∈Ω ∈ D such that for some deterministic positive constant c0 and

for P-a.e. ω ∈ Ω, limn→∞ sup ‖Bε(ω)‖X 6 c0, where ‖Bε(ω)‖X = supx∈Bε(ω) ‖x‖X;

(iii) there exists ε0 > 0 such that for P-a.e. ω ∈ Ω,
⋃

0<ε6ε0
Aε(ω) is precompact in

X; (iv) for P-a.e. ω ∈ Ω, t ≥ 0, εn → 0, and xn, x0 ∈ X with xn → x0, it holds:

limn→∞ φεn(t, ω, xn) = φ(t)x0. Then for P-a.e. ω ∈ Ω, dH(Aε(ω), A0) → 0 as ε → 0.

3. STOCHASTIC REACTION-DIFFUSION EQUATION ON R
n WITH

MULTIPLICATIVE NOISE

In this section, we consider the upper semicontinuity of random attractors for

the following initial value problem of stochastic reaction-diffusion equation (1.1) with

multiplicative noise defined in the entire space R
n (n ∈ N):

(3.1)

{
du+ (λu− ∆u)dt = (f(x, u) + g(x))dt+ εu ◦ dW,
u(x, 0) = u0(x), x ∈ R

n,

where u = u(x, t) ∈ R, x ∈ R
n, t ≥ 0; λ > 0, ε are constants, g ∈ L2(Rn); f

∈ C1(Rn × R,R) satisfies certain conditions; W (t) is a two-sided real-valued Wiener

process on the complete probability space (Ω,F ,P) defined in section 1; ◦ denotes

the Stratonovich sense in the stochastic term. Define (θt)t∈R on Ω via θtω(·) =
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ω(· + t) − ω(t), t ∈ R, then (Ω,F ,P, (θt)t∈R) is an ergodic metric dynamical system

[1, 8].

Note that Eq.(3.1) is interpreted as an integral equation:

(3.2) u(t) = u(0)−
∫ t

0

(λu(s)−∆u(s))ds+

∫ t

0

(f(x, u(s))+g(x))ds+ε

∫ t

0

u(s)◦dW,

where the stochastic integral is understood in the Stratonovich sense.

We make the following assumptions on the nonlinearity f(x, u):

(3.3)





f ∈ C1(Rn × R,R),

f(x, 0) = 0, f(x, u)u 6 0,∣∣∂f

∂u
(x, u)

∣∣ 6 κ,
∣∣∂f

∂x
(x, u)

∣∣ 6 f̃(x),

for all x ∈ R
n, u ∈ R,

where κ is a positive constant, f̃(x) ∈ L2(Rn), | · | denotes the absolute value of real

number in R.

It is convenient to convert the problem (3.1) into a deterministic system with a

random parameter. Put z(θtω) := −
∫ 0

−∞ es(θtω)(s)ds, t ∈ R, which is an Ornstein-

Uhlenbeck process and solves Itô equation dz + zdt = dW (t). Moreover, the random

variable z(ω) is tempered, and there is a θt-invariant set Ω̃ ⊂ Ω of full P measure

such that for every ω ∈ Ω̃, t 7→ z(θtω) is continuous in t; limt→±∞
|z(θtω)|

|t| = 0 and

limt→±∞
1
t

∫ t

0
z(θsω)ds = 0 (see [1, 5, 8]).

Let v(t) = e−εz(θtω)u(t), where u is a solution of problem (3.1). Then (3.1) can

be written as the following evolution equation with random coefficients but without

white noise:

(3.4)

{
dv(t)

dt
= ∆v(t) − λv(t) + e−εz(θtω)

(
f(x, eεz(θtω)v(t)) + g(x)

)
+ εz(θtω)v(t),

v(0, x) = v0(x) = e−εz(ω)u0(x), x ∈ R
n, t > 0.

We will consider (3.4) for ω ∈ Ω̃ and still write Ω̃ as Ω. Concerning the solutions

of (3.4), from [29] we knew the following results.

Theorem 3.1 (See [29].). Suppose conditions (3.3), g ∈ L2(Rn) hold and ε ∈ R.

Then

(1) for any v0 ∈ L2(Rn), the system (3.4) has a unique solution v(·, ω, v0) ∈ C([0,+∞),

L2(Rn))∩C([0, T ), H1(Rn)) (T > 0) and v(t, ω, v0) is continuous in v0 in L2(Rn)

for all t > 0. Furthermore, for u0 ∈ L2(Rn), t ≥ 0, ω ∈ Ω, the mapping

(3.5) ϕε : R
+ × Ω × L2(Rn) → L2(Rn), ϕε(t, ω, v0) = v(t, ω, v0)

forms a continuous RDS {ϕε(t, ω)}t≥0,ω∈Ω over (Ω,F ,P, (θt)t∈R) and

(3.6) φε(t, ω, u0) = u(t, ω, u0) = eεz(θtω)ϕε(t, ω, e−εz(ω)u0)

generates a continuous RDS {φε(t, ω)}t≥0,ω∈Ω associated with the problem (3.1)

on L2(Rn).
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(2) For any {D(ω)} ∈ D(L2(Rn))and P-a.e. ω ∈ Ω, there is TD(ω) > 0 such that

for any u0 ∈ D(θ−tω) ∩ L2(Rn),

‖φε(t, θ−tω, u0)‖2
6 e2εz(ω)

(
1 +

‖g‖2

λ

∫ 0

−∞
e−2εz(θsω)+2ε

R

0

s
z(θτω)dτ+λsds

)
(3.7)

= R(ε, ω),

‖∇φε(t, θ−tω, u0)‖2
6 e2εz(ω)(C1 + 2εeγ(ω))R0(ε, ω)(3.8)

+ e2εz(ω)

∫ 0

−1

e−2εz(θτ ω)(‖g‖2 + C2‖f̃‖2)dτ,

where C1, C2 are positive constants independent of ε and

(3.9) R0(ε, ω) = 1 +
‖g‖2

λ

∫ 0

−∞
eε(−2z(θsω)+2e max06τ61 |z(θτω)|+2

R

0

s
z(θτ ω)dτ)+λ(s+1)ds.

(3) For any η > 0, any {D(ω)} ∈ D(L2(Rn)) and P-a.e. ω ∈ Ω, there exist T1 =

T1(η, ω, B) > 0 and r1 = r1(η, ω) > 0 (independent of ε), such that the solution

φε of (3.1) satisfies for P-a.e. ω ∈ Ω, ∀ t ≥ T1,

(3.10)

∫

|x|≥r1

|φε(t, θ−tω, u0)(x)|2dx 6 η.

(4) RDS {φε(t, ω)}t≥0,ω∈Ω has a unique global random attractor {Aε(ω)} in L2(Rn).

According to Theorem 2.1, we have the following upper semicontinuity of random

attractors {Aε(ω)} when ε → 0.

Theorem 3.2. Suppose conditions (3.3) and g ∈ L2(Rn) hold. Then for P-a.e. ω ∈ Ω,

(3.11) dH(Aε(ω), A0) = sup
x∈Aε(ω)

inf
y∈A0

‖x− y‖L2(Rn) → 0 as ε→ 0,

where A0 is the global attractor of the autonomous dynamical system associated with

the limiting deterministic equation

(3.12)





du
dt

+ λu− ∆u = f(x, u) + g(x), t > 0,

u(x, 0) = u0(x), x ∈ R
n.

Proof. Let us check that RDS {φε(t, ω)}t≥0,ω∈Ω satisfies the conditions in Theorem 2.1

one by one.

(i) It is clearly that under the conditions (3.3) and g ∈ L2(Rn), the solutions of

limiting deterministic equation (3.12) determines a continuous autonomous dy-

namical system {φ0(t)}t≥0 and {φ0(t)}t≥0 has a global attractor A0 in L2(Rn)

(see [28, 29]).
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(ii) Given |ε| 6 1. By the properties of z(θtω), there exists Tλ > 0 (independent of

ε) such that

(3.13)

∣∣∣∣∣
−2z(θsω) + 2

∫ 0

s
z(θτω)dτ

s

∣∣∣∣∣ <
λ

2
, ∀ |s| ≥ Tλ.

Then

R(ε, ω) = e2εz(ω)

(
1 +

‖g‖2

λ

∫ 0

−Tλ

eε(−2z(θsω)+2ε
R

0

s
z(θτ ω)dτ)+λs

)(3.14)

+
‖g‖2

λ
e2εz(ω)

∫ −Tλ

−∞
eε(−2z(θsω)+2

R

0

s
z(θτ ω)dτ)+λsds

6 e2|z(ω)|
(

1 +
‖g‖2

λ

∫ 0

−Tλ

e|2z(θsω)+2
R

0

s
z(θτ ω)dτ|+λsds+

2‖g‖2

λ2
e−

λ

2
Tλ

)
= R1(ω),

and similarly,

(3.15)

e2εz(ω)

(
C1 + 2εeγ(ω))R0(ε, ω) +

∫ 0

−1

e−2εz(θτ ω)(‖g‖2 + C2‖f̃‖2)dτ

)
6 R2(ω),

where R1(ω), R2(ω) are independent of ε. Let

Bε(ω) =
{
u ∈ L2(Rn) : ‖u‖2

6 R(ε, ω)
}
,(3.16)

B0(ω) =
{
u ∈ L2(Rn) : ‖u‖2

6 R1(ω)
}
.

Then by (3.14), Bε = {Bε(ω)}ω∈Ω ∈ D(L2(Rn)) is a closed tempered random

absorbing set for {φε(t)}t≥0 and

(3.17)
⋃

|ε|61

Bε(ω) ⊆ B0(ω).

By (3.7),

lim
ε→0

supR(ε, ω)(3.18)

= lim
ε→0

sup e2εz(ω)

(
1 +

‖g‖2

λ

∫ 0

−∞
eε(−2z(θsω)+2

R

0

s
z(θτ ω)dτ)+λsds

)

= 1 +
‖g‖2

λ2
.

So, for P-a.e. ω ∈ Ω,

lim
ε→0

sup ‖Bε(ω)‖ = lim
ε→0

sup sup
u∈Bε(ω)

‖u‖(3.19)

6 lim
ε→0

sup
√
R(ε, ω) 6

(
1 +

‖g‖2

λ2

) 1

2

.
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By Theorem 3.1 (4), the random attractor Aε = {Aε(ω)}ω∈Ω ∈ D(L2(Rn)) for

{φε(t, ω)}t≥0,ω∈Ω satisfies that for P-a.e. ω ∈ Ω,

(3.20) Aε(ω) ⊆ Bε(ω),
⋃

|ε|61

Aε(ω) ⊆
⋃

|ε|61

Bε(ω) ⊆ B0(ω).

(iii) Given |ε| ≤ 1. By (3.7), (3.8), (3.14) and (3.15), for P-a.e. ω ∈ Ω, there is

TB0(ω) > 0 (independent of ε) such that

‖φε(t, θ−tω,B
0(θ−tω))‖2

H1(Rn)(3.21)

= ‖φε(t, θ−tω,B
0(θ−tω))‖2 + ‖∇φε(t, θ−tω,B

0(θ−tω))‖2

6 R1(ω) +R2(ω), t ≥ TB0(ω).

Thus, by (3.20), we have that
⋃

|ε|61A
ε(θ−tω) ⊆ B0(ω) and for |ε| ≤ 1,

(3.22) ‖φε(t, θ−tω,A
ε(θ−tω))‖2

H1(Rn) 6 R1(ω) +R2(ω), t ≥ TB0(ω).

By the invariance of the random attractor Aε(ω), it follows that for P-a.e. ω ∈ Ω

and t ≥ 0,

(3.23) φε(t, θ−tω,A
ε(θ−tω)) = Aε(ω).

By (3.22),

(3.24) sup
u∈S

|ε|61
Aε(ω)

‖u‖2
H1(Rn) 6 R1(ω) +R2(ω).

Now let us show that the precompactness of
⋃

|ε|61A
ε(ω) in L2(Rn), i.e., given

any η > 0, find a finite covering of balls of radius less than η for
⋃

|ε|61A
ε(ω) in

L2(Rn). Let r > 0, and write

(3.25) Qr = {x ∈ R
n : |x| < r}, Q̄r = {x ∈ R

n : |x| ≥ r} = R
n\Qr.

By Theorem 3.1 (3), for P-a.e. ω ∈ Ω, there exist T2 = T2(η, ω, B
0) > 0 and

r2 = r2(η, ω) > 0 (independent of ε), such that for ∀t ≥ T2 and u0 ∈ Aε(θ−tω))∩
L2(Rn) ⊆ B0(θ−tω),

(3.26)

∫

|x|≥r2

|φε(t, θ−tω, u0)(x)|2dx 6
η2

16
.

From the invariance of Aε(ω), for P-a.e. ω ∈ Ω,

(3.27) sup
u∈

S

|ε|61
Aε(ω)

‖u‖L2(Q̄r2 ) = sup
u∈

S

|ε|61
Aε(ω)

(∫

|x|≥r2

|u(x)|2dx
) 1

2

6
η

4
.

By (3.24), for P-a.e. ω ∈ Ω,

(3.28) sup
u∈

S

|ε|61
Aε(ω)

‖u‖2
H1(Qr2 ) 6 R1(ω) +R2(ω),

implying that
⋃

|ε|61A
ε(ω) is bounded inH1(Qr2). Since the embedding H1(Qr2) →֒

L2(Qr2) is compact,
⋃

|ε|61A
ε(ω) is a compact subset of L2(Qr2), hence,

⋃
|ε|61A

ε(ω)
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has a finite covering of balls of radii less than η

4
in L2(Qr2). Combining with

(3.27),
⋃

|ε|61A
ε(ω) can be covered by finite balls with radii less than η in L2(Rn).

Therefore, for P-a.e. ω ∈ Ω,
⋃

|ε|61Aε(ω) is precompact in L2(Rn).

(iv) Let vε and u be the solutions of (3.4) and (3.12) with initial data vε
0 and u0,

respectively. Set w = vε − u, then

(3.29)





dw
dt

+ λw − ∆w = e−εz(θtω)f(x, eεz(θtω)vε(t)) − f(x, u)

+(e−εz(θtω) − 1)g(x) + εz(θtω)vε, t > 0,

w(0, x) = vε
0(x) − u0(x), x ∈ R

n.

Taking the inner product of (3.29) with w in L2(Rn), we find that

1

2

d

dt
‖w‖2 + ‖∇w‖2 + λ‖w‖2(3.30)

=

∫

Rn

(
e−εz(θtω)f(x, eεz(θtω)vε) − f(x, u)

)
wdx

+ ((e−εz(θtω) − 1)g, w) + (εz(θtω)vε, w).

We find by condition (3.3) that
∫

Rn

(
e−εz(θtω)f(x, eεz(θtω)vε) − f(x, u)

)
wdx(3.31)

= e−εz(θtω)

∫

Rn

(
f(x, eεz(θtω)vε) − f(x, eεz(θtω)u)

)
wdx

+ e−εz(θtω)

∫

Rn

(
f(x, eεz(θtω)u) − f(x, u)

)
wdx

+
(
e−εz(θtω) − 1

) ∫

Rn

f(x, u)wdx

=

∫

Rn

∂f

∂u
(x, ξ1)w

2dx+
(
1 − e−εz(θtω)

) ∫

Rn

∂f

∂u
(x, ξ2)uwdx

+
(
e−εz(θtω) − 1

) ∫

Rn

∂f

∂u
(x, ξ3)uwdx

6 κ‖w‖2 + 2κ
∣∣1 − e−εz(θtω)

∣∣
∫

Rn

|u| · |w|dx

6 κ‖w‖2 + κ
∣∣1 − e−εz(θtω)

∣∣ (2‖u‖2 + ‖vε‖2),

(3.32) ((e−εz(θtω) − 1)g, w) 6
‖g‖2

λ
(e−εz(θtω) − 1)2 +

λ

4
‖w‖2,

(3.33) (εz(θtω)vε, w) 6
ε2

λ
|z(θtω)|2‖vε‖2 +

λ

4
‖w‖2.

Since

(3.34) ‖u(t, u0)‖2
6 e−λt‖u0‖2 +

‖g‖2

λ

∫ t

0

e−λ(t−s)ds = P1(t).
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and for |ε| 6 1,

‖vε(t, ω, vε
0(x))‖2

6 e2
R

t

0
εz(θsω)ds−λt‖vε

0(x)‖2(3.35)

+
‖g‖2

λ
e2ε

R

t

0
z(θsω)ds−λt

∫ t

0

e−2εz(θsω)−2ε
R

s

0
z(θτ ω)dτ+λsds

6 P2(t, ω),

where P1(t), P2(t, ω) are positive-valued and continuous in t but independent of

ε.

By (3.30)–(3.35), we get

d

dt
‖w‖2

6 (2κ− λ) ‖w‖2 +
2‖g‖2

λ

∣∣1 − e−εz(θtω)
∣∣2(3.36)

+ 2κ
∣∣1 − e−εz(θtω)

∣∣ (2P1(t) + P2(t, ω)) +
2ε2

λ
|z(θtω)|2P2(t, ω).

By the Gronwall inequality to (3.36),

‖vε(t, ω, vε
0) − u(t, u0)‖2 = ‖w(t, ω, w(0))‖2

(3.37)

6 e(2κ−λ)t‖vε
0 − u0‖2 +

∫ t

0

e(λ−2κ)(t−s) 2ε
2

λ
|z(θsω)|2P2(s, ω)ds

+

∫ t

0

e(λ−2κ)(t−s)
(‖g‖2

λ

∣∣1 − e−εz(θsω)
∣∣2

+ 2κ
∣∣1 − e−εz(θsω)

∣∣(2P1(s) + P2(s, ω)
))
ds.

From (3.37), we see that for P-a.e. ω ∈ Ω, t ≥ 0, εn → 0, and vεn

0 , u0 ∈ L2(Rn)

with vεn

0 → u0, it holds: limn→∞ vεn(t, ω, vεn

0 ) = u(t, u0). Thus, for P-a.e. ω ∈ Ω,

t ≥ 0, εn → 0, and uεn

0 , u0 ∈ L2(Rn) with uεn

0 = eεnz(ω)vεn

0 → u0,

(3.38) lim
n→∞

φεn(t, ω, uεn

0 ) = lim
n→∞

vεn(t, ω, vεn

0 ) = u(t, u0) = φ0(t)u0.

By Theorem 2.1, the proof is completed.

4. STOCHASTIC DAMPED WAVE EQUATION ON R
n WITH

MULTIPLICATIVE NOISE

Consider the following stochastic damped wave equation (1.2) with multiplicative

noise defined in the entire space R
n:

(4.1)




d(ut + αu) + (λu− ∆u+ f(u))dt = g(x)dt+ εudW, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R
n,
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where u = u(x, t) ∈ R, x ∈ R
n and t ≥ 0; α > 0, λ > 0, ε are constants, g is a given

function defined on R
n; f is a nonlinear function satisfying the following conditions:

(4.2) f ∈ C1(R,R), |f ′(u)| 6 c0, |f(u)| 6 c1, ∀ u ∈ R,

where c0, c1 are non-negative constants, W (t) is as in section 3.

Let ξ = ut + σu, then (4.1) can be rewritten as the following equivalent system

(4.3)





du = (ξ − σu)dt,

dξ = ((σ − α)ξ + (ασ − λ− σ2)u+ ∆u− f(u) + g(x)) dt+ εξdW,

u(x, 0) = u0(x), ξ(x, 0) = ξ0(x) = u1(x) + σu0(x), x ∈ R
n.

Let the metric dynamical system (Ω,F ,P, (θt)t∈R) be defined as in section 3. Put

the Ornstein-Uhlenbeck process as

z̃(θtω) := −α
∫ 0

−∞
eαs(θtω)(s)ds, t ∈ R,

which solves the Itô equation dz̃ + αz̃dt = dW (t) [5]. From [2, 11, 13], it is known

that the random variable |z̃(ω)| is tempered, and there is a θt-invariant set Ω̃1 ⊂ Ω

of full P measure such that for every ω ∈ Ω̃1, t 7→ z̃(θtω) is continuous in t and

(4.4) lim
t→±∞

|z̃(θtω)|
|t| = lim

t→±∞

1

t

∫ t

0

z̃(θsω)ds = 0,

(4.5) lim
t→±∞

1

t

∫ t

0

|z̃(θsω)|ds =
1√
πα

, lim
t→±∞

1

t

∫ t

0

|z̃(θsω)|2ds =
1

2α
.

Let

(4.6) v(x, t) = ξ(x, t) − εu(x, t)z̃(θtω) = ut(x, t) + σu(x, t) − εu(x, t)z̃(θtω),

then (4.3) can be rewritten as the following equivalent random system with random

coefficients but without white noise

(4.7)






du
dt

= v − σu+ εuz̃(θtω),

dv
dt

= (σ(α− σ) − λ−A)u+ (α− σ)v − ε(v − 2σu+ εuz̃(θtω))z̃(θtω)

+g(x) − f(u),

u(x, 0) = u0(x), v(x, 0) = v0(x) = u1(x) + σu0(x) − εu0(x)z̃(ω), x ∈ R
n,

where A = −∆. In the following, we still write Ω̃1 as Ω.

Let E = H1(Rn) × L2(Rn) be the phase space endowed with the usual norm

‖Y ‖H1×L2 = (‖∇u‖2 + ‖u‖2 + ‖v‖2)
1

2 for Y = (u, v)⊤ ∈ E, where ‖ · ‖ denotes the

usual norm in L2(Rn). It is known from [30] that the following statements hold.
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Theorem 4.1 (See [30]). (1) Under condition (4.2) and g ∈ L2(Rn), for any ψ0 =

(u0, v0)
⊤ ∈ E, (4.7) has a unique solution ψε(t, ω, ψ0) = (u(t, ω, u0), v(t, ω, v0))

⊤

with ψε(0, ω, ψ0) = ψ0 and ψε(t, ω, ψ0) is continuous with respect to ψ0in E for

all t > 0, furthermore, the solution mapping

(4.8) ψε(t, ω) : ψ0 7→ ψε(t, ω, ψ0) = (u(t, ω, u0), v(t, ω, v0))
⊤, E → E

generates a continuous RDS to (4.7), and Ψε(t, ω) = P (θtω)ψε(t, ω)P−1(θtω)

generates a continuous RDS associated with (4.3), where P (θtω) : (u, ξ) →
(u, ξ+εuz̃(θtω)), (u, ξ)⊤ ∈ E is a homeomorphism on E and P−1(θtω) : (u, ξ) →
(u, ξ − cuz̃(θtω)).

(2) Take a sufficient small number σ > 0 such that λ + σ2 − ασ > 0, α − 3σ > 0.

Let

(4.9) ε0 =
4σ

√
πα

(
1+σγ

α
+

√
(1+σγ

α
)2 + 8σγ√

πα

) , γ = 1 +
1

λ+ σ2 − ασ
.

Define a new norm ‖ · ‖E, which is equivalent to the usual norm ‖ · ‖H1×L2, by

(4.10) ‖ψ‖E = (‖v‖2 + (λ+ σ2 − ασ)‖u‖2 + ‖∇u‖2)
1

2 , ψ = (u, v)⊤ ∈ E.

Then for |ε| ≤ ε0, there exists a random ball {Bε(ω)} ∈ D(E) :

(4.11) Bε(ω) = {ϕ ∈ E : ‖ψ‖E 6 ̺(ε, ω)}

centered at 0 with random radius ̺(ε, ω) > 0, where

̺2(ε, ω) =
4

α− σ
(c2

1
+ ‖g‖2)(4.12)

∫ 0

−∞
e2

R

0

s
(−σ+|ε|·|z(θτω)|+γ

2
(σ|ε|·|z(θτω)|+ 1

2
ε2|z(θτω)|2))dτds,

such that {Bε(ω)} is a closed random absorbing set for ψε(t, ω) in D(E), that

is, for any {D(ω)} ∈ D(E) and P-a.e. ω ∈ Ω, there is TD(ω) > 0 such that

(4.13) ψε(t, θ−tω,B(θ−tω)) ⊆ Bε(ω) for all t > TD(ω).

(3) Given |ε| ≤ ε0. Let ψ0(ω) ∈ Bε(ω). Then, for every η > 0, there exist T3 =

T3(B, η, ω) > 0 and r3 = r3(η, ω) ≥ 1 (independent of ε) such that the solution

ψ of (4.7) satisfies that for P-a.e. ω ∈ Ω, ∀ t ≥ T̃ , r ≥ R̃,

(4.14) ‖ψε(t, θ−tω, ψ0(θ−tω))‖2
E(Rn\Qr) 6 η.

(4) Define a smooth decreasing function ρ ∈ C1(R+, [0, 1]) satisfying

(4.15)





ρ(s) = 1, 0 6 s 6 1,

0 < ρ(s) < 1, 1 < s < 2,

ρ(s) = 0, s ≥ 2.
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Fix r ≥ 1 and set

(4.16) ψ̂ = ρ(
|x|2
r2

)ψ = (û, v̂) = ρ(
|x|2
r2

)(u, v).

It is known that the eigenvalue problem “Aû = µû in Q2r with û = 0 on ∂Q2r”

has a family of eigenfunctions {ei}i∈N with the eigenvalues {λi}i∈N : λ1 6 λ2 6

· · · 6 λi 6 · · · , λi → +∞ (i→ +∞), such that {ei}i∈N is an orthonormal basis

of L2(Q2r). Given n, let Xn = span{e1, · · · , en} and Pn : L2(Q2r) → Xn be

the projection operator. Let ψ0(ω) ∈ Bε(ω). Then, for given |ε| ≤ ε0 and any

η > 0, there exist T4 = T4(B, η, ω) > 0, r4 = r4(η, ω) ≥ 1 and N = N(η, ω) > 0

(independent of ε) such that the solution ψof (4.7) satisfies that for P-a.e. ω ∈
Ω, ∀ t ≥ T4, r ≥ r4 and n ≥ N ,

(4.17) ‖(I − Pn)ψ̂(t, θ−tω, ψ0(θ−tω))‖2
E(Q2r) 6 η.

(5) {ψε(t, ω)}t≥0,ω∈Ωhas a unique global random attractor {Aε(ω)} ∈ D(E) in E.

Theorem 4.2. If conditions (4.2) and g ∈ L2(Rn) hold, then for P-a.e. ω ∈ Ω,

(4.18) dH(Aε(ω), A0) = sup
x∈Aε(ω)

inf
y∈A0

‖x− y‖E → 0 as ε→ 0,

where A0 is the global attractor for the autonomous dynamical system associated with

the limiting deterministic equation

(4.19)






du
dt

= v − σu,

dv
dt

= (σ(α− σ) − λ− A)u+ (α− σ)v + g(x) − f(u),

u(x, 0) = u0(x), v(x, 0) = v0(x) = u1(x) + σu0(x), x ∈ R
n.

Proof. The proof is based on Theorem 2.1, we then check that {ψε(t, ω)}t≥0,ω∈Ω sat-

isfies the conditions of Theorem 2.1.

(i) Let (4.2) and g ∈ L2(Rn), then the solutions of limiting deterministic equa-

tion (4.19) generates a continuous autonomous dynamical system {ψ(t)}t≥0 and

{ψ(t)}t≥0 has a global attractor A0 in L2(Rn) (see [27, 30, 24]).

(ii) Given |ε| ≤ ε0. By the properties (4.4)-(4.5) of z(θtω),

̺2(ε, ω) 6
4

α− σ
(c2

1
+ ‖g‖2)

∫ 0

−∞
e2

R

0

s
(−σ+ε0|z̃(θτ ω)|+γ

2
(σε0|z̃(θτ ω)|+ 1

2
ε2

0
|z̃(θτ ω)|2))dτds

(4.20)

= R4(ε0, ω).

Let

(4.21) B0(ω) =
{
ϕ ∈ E : ‖ϕ‖2

E 6 R4(ε0, ω)
}
.
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Then by (4.11), (4.20)-(4.21),

(4.22)
⋃

|ε|6ε0

Aε(ω) ⊆
⋃

|ε|6ε0

Bε(ω) ⊆ B0(ω) ⊂ E, P-a.e. ω ∈ Ω.

By (4.12),

lim
ε→0

sup ̺2(ε, ω) = lim
ε→0

sup
4

α− σ
(c2

1
+ ‖g‖2)

∫ 0

−∞
e2σsds(4.23)

=
2

σ(α− σ)
(c2

1
+ ‖g‖2),

implying that for P-a.e. ω ∈ Ω,

lim
ε→0

sup ‖Aε(ω)‖ = lim
ε→0

sup sup
u∈Aε(ω)

‖u‖(4.24)

6

(
2

σ(α− σ)
(c2

1
+ ‖g‖2)

) 1

2

.

(iii) Let {ψn(ω)}∞n=1 ⊂
⋃

|ε|6ε0
Aε(ω) be a given sequence of

⋃
|ε|6ε0

Aε(ω) in E. Then

{ψn(ω)}∞n=1 ⊂ B0(ω) is bounded and there exist |εn| 6 ε0, such that ψn(ω) ∈
Aεn

(ω) = ψεn
(t, θ−tω,Aεn

(θ−tω)), n = 1, 2, . . ., thus there exist {tn}∞n=1 ⊂ R
+

and ψn,0(θ−tnω) ∈ Aεn
(θ−tnω) ⊂ B0(ω), n = 1, 2, . . ., such that tn → ∞ and

ψn(ω) = ψεn
(tn, θ−tnω, ψn,0(θ−tnω)), and

‖ψn(ω)‖E = ‖ψεn
(tn, θ−tnω, ψn,0(θ−tnω))‖E(4.25)

6 R4(ε0, ω), n = 1, 2, . . . .

By the proof of Lemma 4.2 and Lemma 4.3 of [30], for P-a.e. ω ∈ Ω and any

η > 0, there exist N1 = N1(η, ω) > 0, r5 = r5(η, ω) > 0 and M1 = M1(η, ω) > 0

(independent of ε) such that for every n ≥M1,

(4.26) ‖ψεn
(tn, θ−tnω, ψn,0(θ−tnω))‖2

E(Rn\Qr5 ) 6 η.

and

(4.27) ‖(I − PN)ψ̂εn
(tn, θ−tnω, ψn,0(θ−tnω))‖2

E(Q2r5) 6 η.

It follows from (4.16) and (4.26) that {PN ψ̂εn
(tn, θ−tnω, ψn,0(θ−tnω))} is a bounded

in PNE(Q2r5), and {ψ̂εn
(tn, θ−tnω, ψn,0(θ−tnω))} is precompact in H1(Q2r5) ×

L2(Q2r5). Note that ρ( |x|
2

r2

5

) = 1 for |x| 6 r5, this implies that {ψεn
(tn, θ−tnω,

ψn,0(θ−tnω))} is precompact in E(Qr5), along with (4.14) shows that the pre-

compactness of {ϕn(ω)}∞n=1 in E. Therefore
⋃

|ε|6ε0
Aε(ω) is precompact in E.
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(iv) Let ψε and ψ be the solutions of (4.7) and (4.19) with initial data ψε,0 and ψ0,

respectively. Set y = ψε − ψ = (ζ, ς) = (uε − u, vε − v), then

(4.28)






dζ

dt
= ς − σζ + εuεz̃(θtω),

dς
dt

= (σ(α− σ) − λ−A)ζ + (α− σ)ς − ε(vε − 2σuε + εuεz̃(θtω))z̃(θtω)

−f(uε) + f(u),

ζ(x, 0) = vε,0(x) − u0(x),

ς(x, 0) = uε,1(x) + σuε,0(x) − εuε,0(x)z̃(ω) − u1(x) − σu0(x), x ∈ R
n.

Taking the inner product of the second equation of (4.28) with ς in L2(Rn), we

have

1

2

d

dt
‖ς‖2 = (σ − α)‖ς‖2 − (λ+ σ2 − ασ)(ζ, ς) − (Aζ, ς)(4.29)

− (ε(vε − 2σuε + εuεz̃(θtω))z̃(θtω), ς) − (f(uε) − f(u), ς).

For the terms in the right side of (4.29), we find that

(ζ, ς) =

(
ζ,
dζ

dt
+ σζ − εuεz̃(θtω)

)
≥ 1

2

d

dt
‖ζ‖2 +

(
σ − 1

2

)
‖ζ‖2 − 1

2
|ε|2|z̃(θtω)|2‖uε‖2,

− (ε(vε − 2σuε + εuεz̃(θtω))z̃(θtω), ς)(4.30)

≤ |ε| · |z̃(θtω)| · ‖vε − uε(2σ − εz̃(θtω))‖ · ‖ς‖

6 |ε|2 · |z̃(θtω)|2[‖vε‖2 + ‖uε‖2(2σ − εz̃(θtω))2] +
1

2
‖ς‖2,

(4.31) −(f(uε) − f(u), ς) 6 c0‖ζ‖ · ‖ς‖ 6
c0

2
(‖ζ‖2 + ‖ς‖2).

By (4.29)–(4.31), it follows that

d

dt
(‖ς‖2 + (λ+ σ2 − ασ)‖ζ‖2 + ‖∇ζ‖2)(4.32)

6 c0‖ς‖2 + 2

(
(λ+ σ2 − ασ)(

1

2
− σ) +

1

2
+
c0

2

)
‖ζ‖2 + (1 − 2σ)‖∇ζ‖2

+ 2|ε|2 · |z̃(θtω)|2
[
‖vε‖2 + ‖uε‖2

(
(2σ − εz̃(θtω))2 + 1

)]
.

By the inequality (4.13) in [30], for |ε| 6 ε0,

‖vε‖2 + (λ+ σ2 − ασ)‖uε‖2(4.33)

6 e2
R

t

0
(−σ+|ε|·|z̃(θτ ω)|+γ

2
(σ|ε|·|z̃(θτ ω)|+ 1

2
ε2|z̃(θτ ω)|2))dτ‖ψ0(ω)‖2

E

+
2

α− σ
(c2

1
+ ‖g‖2)

∫ t

0

e2
R

t

s
(−σ+|ε|·|z̃(θτ ω)|+γ

2
(σ|ε|·|z̃(θτ ω)|+ 1

2
ε2|z̃(θτ ω)|2))dτds

6 P3(t, ω), (independent of ε).

Thus,

(4.34) |z̃(θtω)|2
[
‖vε‖2 + ‖uε‖2

(
(2σ − εz̃(θtω))2 + 1

)]
6 P4(t, ω),
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where P4(t, ω) is continuous in t but independent of ε. By (4.32) and (4.34),

(4.35)
d

dt
‖y‖2

E 6 C1‖y‖2
E + 2|ε|2 · P4(t, ω), t ≥ 0,

where C1 depends on c0, λ, σ, α but independent of ε. By the Gronwall inequal-

ity,

‖ψε(t, ω, ψε,0) − ψ(t, ψ0)‖2
E(4.36)

= ‖y(t, ω, w(0))‖2
E

6 eC1t‖ψε,0 − ψ0‖2
E + 2|ε|2

∫ t

0

eC1(t−s)P4(s, ω)ds.

From (4.36), we see that for P-a.e. ω ∈ Ω, t ≥ 0, εn → 0, and ψεn,0, ψ0 ∈ E with

ψεn,0 → ψ0, it holds:

(4.37) lim
n→∞

ψεn
(t, ω, ψεn,0) = ψ(t, ψ0) and lim

n→∞
Ψεn

(t, ω,Ψεn,0) = ψ(t)ψ0.

By Theorem 2.1, the proof is completed.

5. CONCLUSION

In this paper, we establish the upper semicontinuity of random attractors for the

stochastically perturbed reaction-diffusion equation and damped wave equation with

multiplicative noise defined in the entire space R
n as the coefficient of the white noise

term tends to zero. The method here can also be applied to other types of stochastic

evolution equations.
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