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ABSTRACT. We establish sufficient conditions which guarantee asymptotic stability of the zero

solution and boundedness of all the solutions of the following nonlinear differential equation of third

order with the variable delay r(t)

x′′′(t) + a(t)x′′(t) + b(t)g1(x
′(t − r(t))) + g2(x

′(t)) + h(x(t − r(t)))

= p(t, x(t), x′(t), x(t − r(t)), x′(t − r(t)), x′′(t)).

By defining an appropriate Lyapunov functional, we prove two new theorems on the stability and

boundedness of the solutions of the above equation. Our results extend the results obtained in the

literature. We also give an example to illustrate our results.

AMS (MOS) Subject Classification. 34C11, 34K20

1. INTRODUCTION

Hara [6] investigated the uniform boundedness of the differential equation

x′′′(t) + a(t)x′′(t) + b(t)x′(t) + c(t)h(x) = p(t, x(t), x′(t), x′′(t)).

Tunç [15] proved stability result for solutions to the following nonlinear third order

differential equations with deviating argument r

x′′′(t) + a(t)x′′(t) + b(t)g1(x
′(t− r)) + g2(x

′(t)) + h(x(t− r))

= p(t, x(t), x′(t), x(t− r), x′(t− r), x′′(t)).

For several papers published on the qualitative behaviors of solutions of various non-

linear third order differential equations with delay or without delay, we refer the

readers to the papers [1, 6–17] and the references therein.
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The object of this paper is to consider nonlinear third order differential equation

with variable delay r(t)

(1.1)
x′′′(t) + a(t)x′′(t) + b(t)g1(x

′(t− r(t))) + g2(x
′(t)) + h(x(t− r(t)))

= p(t, x(t), x′(t), x(t− r(t)), x′(t− r(t)), x′′(t)), t ≥ 0.

Then (1.1) can be written as the following system

(1.2)































x′(t) = y(t),

y′(t) = z(t),

z′(t) = −a(t)z(t) − b(t)g1(y(t)) + b(t)
∫ t

t−r(t)
g′1(y(s))z(s)ds

−g2(y(t)) − h(x(t)) +
∫ t

t−r(t)
h′(x(s))y(s)ds

+p(t, x(t), y(t), x(t− r(t)), y(t− r(t)), z(t)),

where 0 ≤ r(t) ≤ ρ, ρ is a positive constant, and r′(t) ≤ β, 0 < β < 1; the primes

in (1.1) denote differentiation with respect to t, t ∈ R+, R+ = [0,∞); the functions

a, b, g1, g2, h and p are continuous in their respective arguments on R, R, R, R and

R+ ×R5, respectively, with g1(0) = g2(0) = h(0) = 0. The continuity of the functions

a, b, g1, g2, h and p guarantees the existence of the solution of (1.1) (see [3]). It is

assumed that the right hand side of the system (1.2) satisfies a Lipschitz condition in

x(t), y(t), x(t−r(t)), y(t−r(t)) and z(t). This assumption guarantees the uniqueness

of solutions of (1.1) (see [3]). It is also supposed that the derivatives a′(t) ≡ d
dt
a(t),

b′(t) ≡ d
dt
b(t), h′(t) ≡ d

dt
h(t), and g′1(t) ≡ d

dt
g1(t), exist and are continuous; throughout

the paper x(t), y(t), z(t), are abbreviated as x, y, z, respectively.

Our purpose is to extend and improve the results established by Tunç [15] to

equation (1.1) for the asymptotic stability of zero solution and boundedness of all

solutions, when p ≡ 0 and p 6= 0 , respectively. We also give an example to illustrate

the effectiveness of the used method. Our approach is based on the Lyapunov’s second

method.

We point out that equation (1.1) is different from that investigated in [6–15].

Throughout all the above papers, the terms g1(x
′(t)) and h(x(t)) did not include the

variable delay r(t) 6= 0. However, equation (1.1) is in the form of g1(x
′(t− r(t))) and

h(x(t − r(t))) with r(t) 6= 0. This case is a significant difference between our paper

and the above papers.

2. PRELIMINARIES AND MAIN RESULTS

We will give some basic information for the general non-autonomous delay dif-

ferential system. Firstly, we consider the general non-autonomous delay differential

system

(2.1) x′ = F (t, xt),
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where xt = x(t + τ), for t ≥ 0, −r ≤ τ ≤ 0, F : [0,∞) × CH → Rn is a continuous

mapping, F (t, 0) = 0. We suppose that F take closed bounded sets of Rn. Here

(C, ‖·‖) is the Banach space of continuous functions ψ : [−r, 0] → Rn with supremum

norm, r > 0; CH is the open H-ball in C; CH := {ψ : [−r, 0] → Rn : ‖ψ‖ < H}.
Standard existence theory (see [1]), shows that if ψ ∈ CH and t ≥ 0, then there is

at least one continuous solution x(t, t0, ψ) such that on [t0, t0 + θ) satisfying equation

(2.1) for t > t0, xt(t, ψ) = ψ and θ is a positive constant. If there is a closed subset

B ⊂ CH such that the solution remains in B, then θ = ∞. Further, the symbol | · |
will denote a convenient norm in Rn with |x| = maxt−θ≤s≤t |xi|. Let us assume that

Ct = {ψ : [t− θ, t] → Rn|ψ is continuous} and ψt denotes the ψ in the special Ct and

‖ψt‖ = maxt−θ≤s≤t |ψ(t)|. It is clear that equation (1.2) is a special case of (2.1).

Definition 2.1 (Burton [3]). A continuous function W : [0,∞) → [0,∞) with

W (0) = 0,W (s) > 0 if s > 0, and W is strictly increacing. (We denote wedges

by W or Wi, where i is an integer.)

Definition 2.2 (Burton [3]). Let D be an open set in Rn with 0 ∈ D. A function

V : [0,∞) × D → [0,∞) is called positive definite if V (t, 0) = 0 and there is a

wedge W1 with V (t, x) ≥W1(|x|), and is called decrescent if there is a wedge W2 with

V (t, x) ≤ W2(|x|).

Definition 2.3 (Burton [3]). Let F (t, 0) = 0, then

(i) the zero solution of equation (2.1) is stable if for each ε > 0 and t1 ≥ t0, there

exists δ > 0 such that [ψ ∈ C(t1), ‖ψ‖ < δ, t ≥ t1] imply that |x(t, t0, ψ)| < ε;

(ii) the zero solution of equation (2.1) is asymptotically stable if it is stable and for

each t1 ≥ t0, there is an η > 0 such that [ψ ∈ C(t1), ‖ψ‖ < δ] implies that

x(t, t0, ψ) → 0 as t→ ∞.

Definition 2.4 (Burton [3]). Let V (t, ψ) be a continuous functional defined for t ≥ 0,

ψ ∈ CH . The derivative of V along solutions of equation (2.1) will be denoted by V̇

and is defined by the following relation V̇ (t, ψ) = limh→0 sup
V (t+h,xt+h(t0,ψ))−V (t,xt(t0,ψ))

h
,

where x(t0, ψ) is the solution of equation (2.1) with xt0(t0, ψ).

Secondly, we consider the general autonomous delay differential system

(2.2) ẋ = G(xt),

which is a special case of equation (2.1), and the following lemma is given.

Lemma 2.5 (Sinha [10]). Suppose F (0) = 0. Let V be a continuous functional defined

on CH with V (0) = 0 and let u(s) be a nonnegative and continuous function for 0 ≤
s < ∞ and u(s) → ∞ as s → ∞, with u(0) = 0. If for all ψ ∈ C, u(ψ(0)) ≤ V (ψ),

V (ψ) ≥ 0, V̇ (ψ) ≤ 0, then the solution x = 0 of equation (2.2) is stable.
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If we define Y = {ψ ∈ CH : V̇ (ψ) = 0}, then the solution x = 0 of equation (2.2)

is asymptotically stable, provided that the largest invariant set in Y is Z = {0}.
Let Ω = {(t, x, y, z) ∈ R+ × R3 : 0 ≤ t < ∞, |x| < H1, |y| < H1, |z| < H1, H1 <

H}.
Suppose there are positive constants a, α, β, b1, b2, B, c, c1 and L such that the

following assumptions hold for every t, x, y and z in Ω:

(a1) a(t) ≥ 2α + a,

(a2) B ≥ b(t) ≥ β,

(a3) g1(0) = g2(0) = h(0) = 0,

(a4) 0 < c1 ≤ h′(x) ≤ c, αβ − c > 0,

(a5)
g1(y)
y

≥ b1 ≥ 1, g2(y)
y

≥ b2 ≥ 1, (y 6= 0) and |g′1(y)| ≤ L,

(a6) [ab(t) − c]y2 ≥ 2−1αa′(t)y2 + b′(t)
∫ y

0
g1(η)dη,

(a7) |p(t, x, y, x(t− r(t)), y(t− r(t)), z)| ≤ q(t),

where q ∈ L1(0,∞), L1 is the space of Lebesgue integrable functions. Now we give

our main results.

Theorem 2.6. Suppose that the functions a, b, g1, g2 and h satisfy assumptions (a1)–

(a6). Then the zero solution of equation (1.1) with p ≡ 0 is asymptotically stable,

provided that

ρ < min

{

2α(1 − β)b2
α(1 − β)(BL+ c) + (α+ 1)c

,
2(1 − σ)(α + a)

(BL+ c)(1 − σ) + (α + 1)BL

}

.

Theorem 2.7. Suppose that the functions a, b, g1, g2, h and p satisfy assumptions

(a1)–(a7). Then there exists a positive constant M such that the solution x(t) of

equation (1.1) with p 6= 0 defined by the initial functions

x(t) = ψ(t), x′(t) = ψ′(t), x′′(t) = ψ′′(t),

satisfies the inequalities

|x(t)| ≤
√
M, |x′(t)| ≤

√
M, |x′′(t)| ≤

√
M,

for all t ≥ t0, where ψ ∈ C2([t0 − θ, t0], R), provided that

ρ < min

{

2α(1 − β)b2
α(1 − β)(BL+ c) + (α+ 1)c

,
2(1 − σ)(α + a)

(BL+ c)(1 − σ) + (α + 1)BL

}

.

We define the following Lyapunov functional for the proofs of Theorem 2.6 and

Theorem 2.7:

V (t, xt, yt, zt) =
1

2
z2 + αyz + b(t)

∫ y

0

g1(η)dη +

∫ y

0

g2(η)dη(2.3)

+
α

2
a(t)y2 + h(x)y + α

∫ x

0

h(ξ)dξ + µ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds
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+ µ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds,

where µ1, µ2 are some positive constants which will be specified later in the proofs.

The following lemmas are needed in the proofs of Theorem 2.6 and Theorem 2.7.

Lemma 2.8. Assume that all the conditions of Theorem 1 hold. Then there exist

positive constants Ei (i = 1, 2, 3) such that

(2.4) V (t, xt, yt, zt) ≥ E1x
2 + E2y

2 + E3z
2,

for all x, y and z.

Proof. From the assumptions (a1)–(a6),
g1(y)
y

≥ b1 ≥ 1, g2(y)
y

≥ b2, (y 6= 0), and

0 ≤ c1 ≤ h′(x) ≤ c, it follows that

b(t)

∫ y

0

g1(η)dη = b(t)

∫ y

0

g1(η)

η
ηdη ≥ βb1y

2

2
≥ βy2

2
,

∫ y

0

g2(η)dη =

∫ y

0

g2(η)

η
ηdη ≥ b2y

2

2
,

h2(x)

2
=

∫ x

0

h(ξ)h′(ξ)dξ ≤ c

∫ x

0

h(ξ)dξ.

Taking into account the above discussion, we have

V (t, xt, yt, zt) ≥
1

2
(z + αy)2 + α

∫ x

0

h(ξ)dξ − h2(x)

2β
+
β[y + β−1h(x)]2

2
+
b2y

2

2

+ µ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ µ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds,

≥ 1

2
(z + αy)2 + α

∫ x

0

h(ξ)dξ − c
∫ x

0
h(ξ)dξ

β
+
β[y + β−1h(x)]2

2
+
b2y

2

2

+ µ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ µ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds.

It is clear that

α

∫ x

0

h(ξ)dξ − c
∫ x

0
h(ξ)dξ

β
= β−1(αβ − c)

∫ x

0

h(ξ)dξ ≥ 2−1c1β
−1(αβ − c)x2.

Hence

V (t, xt, yt, zt) ≥
1

2
(z + αy)2 +

β[y + β−1h(x)]2

2
+
b2y

2

2
+ 2−1c1β

−1(αβ − c)x2

+ µ1

∫ 0

−r(t)

∫ t

t+s

y2(θ)dθds+ µ2

∫ 0

−r(t)

∫ t

t+s

z2(θ)dθds.

It follows from the terms of the above inequality that there exist sufficiently small

positive constants Ei (i = 1, 2, 3) such that

V (t, xt, yt, zt) ≥ E1x
2 + E2y

2 + E3z
2.
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Lemma 2.9. Assume that all the conditions of Theorem 2.6 hold. Then there exist

positive constants E4 and E5 such that

d

dt
V (t, xt, yt, zt) ≤ −E4y

2 − E5z
2,

for any solution (x(t), y(t), z(t)) of (1.2).

Proof. Differentiate (2.3) to obtain

d

dt
V (t, xt, yt, zt) = −[αb(t)g1(y)y

−1 + αg2(y)y
−1 − h′(x) − 2−1αa′(t)]y2

+ b′(t)

∫ y

0

g1(η)dη − [a(t) − α]z2 + zb(t)

∫ t

t−r(t)

g′1(y(s))z(s)ds

+ z

∫ t

t−r(t)

h′(x(s))y(s)ds+ αyb(t)

∫ t

t−r(t)

g′1(y(s))z(s)ds

+ αy

∫ t

t−r(t)

h′(x(s))y(s)ds+ µ1y
2r(t)

+ µ2z
2r(t) − µ1{1 − r′(t)}

∫ t

t−r(t)

y2(s)ds

− µ2{1 − r′(t)}
∫ t

t−r(t)

z2(s)ds.

Applying the assumptions of Lemma 2.9 and the inequality 2|st| ≤ s2 + t2, we get

− [ab(t)g1(y)y
−1 + αg2(y)y

−1 − h′(x) − 2−1αa′(t)]y2 + b′(t)

∫ y

0

g1(η)dη

≤ −{[ab(t) − c]y2 − 2−1αa′(t)y2 + b′(t)

∫ y

0

g1(η)dη} − αb2y
2 ≤ −αb2y2,

−[a(t) − α]z2 ≤ −(α + a)z2,

zb(t)

∫ t

t−r(t)

g′1(y(s))z(s)ds ≤
BL

2
ρz2 +

BL

2

∫ t

t−r(t)

z2(s)ds,

αyb(t)

∫ t

t−r(t)

g′1(y(s))z(s)ds ≤
αBL

2
ρy2 +

αBL

2

∫ t

t−r(t)

z2(s)ds,

z

∫ t

t−r(t)

h′(x(s))y(s)ds ≤ c

2
ρz2 +

c

2

∫ t

t−r(t)

y2(s)ds,

αy

∫ t

t−r(t)

h′(x(s))y(s)ds ≤ αc

2
ρy2 +

αc

2

∫ t

t−r(t)

y2(s)ds,

µ1y
2r(t) + µ2z

2r(t) ≤ µ1y
2ρ+ µ2z

2ρ,

− µ1{1 − r′(t)}
∫ t

t−r(t)

y2(s)ds− µ2{1 − r′(t)}
∫ t

t−r(t)

z2(s)ds

≤ −µ1{1 − σ}
∫ t

t−r(t)

y2(s)ds− µ2{1 − σ}
∫ t

t−r(t)

z2(s)ds.
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These estimates imply that

d

dt
V (t, xt, yt, zt) ≤−

{

αb2 − (
αBL

2
+
αc

2
+ µ1)ρ

}

y2

−
{

α+ a− (
αBL

2
+
c

2
+ µ2)ρ

}

z2

+

{

(α + 1)BL

2
− µ2(1 − σ)

}
∫ t

t−r(t)

z2(s)ds

+

{

(α + 1)c

2
− µ1(1 − σ)

}
∫ t

t−r(t)

y2(s)ds.

Let µ1 = (α+1)c
2(1−β)

and µ2 = (α+1)c
2(1−β)

. We have

d

dt
V (t, xt, yt, zt) ≤−

{

αb2 − (
αBL

2
+
αc

2
+ µ1)ρ

}

y2

−
{

α + a− (
αBL

2
+
c

2
+ µ2)ρ

}

z2.

The preceding inequality implies

d

dt
V (t, xt, yt, zt) ≤ −E4y

2 − E5z
2,

for some positive constants E4 and E5 provided that

ρ < min

{

2α(1 − σ)b2
α(1 − σ)(BL+ c) + (α + 1)c

,
2(1 − σ)(α + a)

(BL+ c)(1 − σ) + (α + 1)BL

}

.

Lemma 2.10. Assume that all the conditions of Theorem 2.7 hold. Then there exists

a positive constant E6 such that

(2.5)
d

dt
V (t, xt, yt, zt) ≤ E6(2 + y2 + z2)q(t),

for any solution (x(t), y(t), z(t)) of (1.2) with p 6= 0.

Proof. Since p 6= 0, calculating the total derivative of the functional V (t, xt, yt, zt)

with respect to t along the trajectories of the system (1.2) and using the conditions

of Lemma 2.10, we get

d

dt
V (t, xt, yt, zt) ≤ −E4y

2 − E5z
2 + (αy + z)p(t, x, y, x(t− r(t)), y(t− r(t)), z).

Hence
d

dt
V (t, xt, yt, zt) ≤ E6(|y|+ |z|)q(t).

where E6 = max{1, α}. By |y| < 1 + y2 and |z| < 1 + z2, we have

d

dt
V (t, xt, yt, zt) ≤ E6(2 + y2 + z2)q(t).
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3. PROOFS OF MAIN RESULTS

Proof of Theorem 2.6. By utilizing (2.4), it follows that

V (t, xt, yt, zt) ≥ E7(x
2 + y2 + z2),

where E7 = min{E1, E2, E3}. The existence of a continuous function u(s) ≥ 0 with

u(|ψ(0)|) ≥ 0 such that u(|ψ(0)|) ≤ V (ψ) is now readily verified.

It also followed that the largest invariant set in Y is Z = {0}, where Y =

{ψ ∈ CH : V̇ (ψ) = 0}. That is the only solution of equation (1.1) for which
d
dt
V (t, xt, yt, zt) = 0 is the solution x ≡ 0. This discussion guarantees that the null

solution of equation (1.1) is asymptotically stable. �

Proof of Theorem 2.7. By using the inequality (2.4) and (2.5), it follows that

d

dt
V (t, xt, yt, zt) ≤ E6(2 + E−1

7 V (t, xt, yt, zt))q(t)

= 2E6q(t) + E6E
−1
7 V (t, xt, yt, zt)q(t).

Let L0 =
∫ ∞

0
q(s)ds. Integrating the above inequality from 0 to t and using the

assumption q ∈ L1(0,∞) we get

V (t, xt, yt, zt) ≤ V (x0, y0, z0) + 2E6L0 + E6E
−1
7

∫ t

0

V (t, xs, ys, zs)q(s)ds.

Hence making use of the Gronwall-Bellman inequality, we obtain

V (t, xt, yt, zt) ≤ {V (x0, y0, z0) + 2E6L0} exp(E6E
−1
7

∫ t

0

q(s)ds)

= {V (x0, y0, z0) + 2E6L0} exp(E6E
−1
7 L0) = M1 <∞,

where M1 > 0 is a constant.

It follows that

x2 + y2 + z2 ≤ E−1
7 V (t, xt, yt, zt) ≤M,

where M = E−1
7 M1. This inequality implies that |x| ≤

√
M , |y| ≤

√
M , |z| ≤

√
M ,

for all t ≥ t0.

Hence |x| ≤
√
M , |x′| ≤

√
M , |x′′| ≤

√
M for all t ≥ t0. �

4. EXAMPLE

In order to illustrate our main results, we consider the nonlinear third order delay

differential equation

x′′′(t) + (13 + (2 + t2)−1)x′′(t) + 4(1 + e−t)x′(t− r(t)) + 8x′′(t) + x(t− r(t))(4.1)

= p(t, x(t), x′(t), x(t− r(t)), x′(t− r(t)), x′′(t)).

Equation (4.1) may be expressed as the following system

x′ = y,
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y′ = z,

z′ = −(13 + (2 + t2)−1)z − 4(1 + e−t)y − 8y − x

+ 4(1 + e−t)

∫ t

t−r(t)

z(s)ds +

∫ t

t−r(t)

y(s)ds+ p(t, x, y, x(t− r(t)), y(t− r(t)), z).

Let

p(t, x, y, x(t− r(t)), y(t− r(t)), z)

=
8

1 + t2 + x2(t) + x2(t− r(t)) + x′4(t) + x′4(t− r(t)) + x′′2(t)
.

We have

a(t) = 13 + (2 + t2)−1 ≥ 2 × 6 + 1, α = 6, a = 1,

1 ≤ b(t) = 1 + e−t ≤ 2, β = 1, B = 2,

g1(y) = 4y, g0(y) = 0,

g1(y)

y
= 4 = b1 > 1, (y 6= 0), g′1(y) = 4 = L,

∫ y

0

g1(η)dη = 2y2,

g2(y) = 8y, g2(0) = 0,
g2(y)

y
= 8 = b2, (y 6= 0),

h(x) = x, h(0) = 0, h′(x) = 1,

0 < 2−1 < h′(x) ≤ 1, c1 = 2−1, c = 1,

a′(t) =
−2t

(2 + t2)2
, (t ≥ 0), b′(t) =

−1

et
, (t ≥ 0),

p(t, x, y, x(t− r(t)), y(t− r(t)), z) = p(t) ≤ 1

1 + t2
= q(t).

In view of the above discussions, it follows that

[αb(t) − c]y2 = [6 + 5e−t]y2, (t ≥ 0), αβ − c = 5 > 0,

2−1αa′(t)y2 + b′(t)

∫ y

0

g(η)dη = − 6t

(2 + t2)
y2 − e−ty2, (t ≥ 0),

[αb(t) − c]y2 = [6 + 5e−t]y2 ≥ − 6t

(2 + t2)
y2 − e−ty2 = 2−1αa′(t)y2 + b′(t)

∫ y

0

g(η)dη,

∫ ∞

0

q(s)ds =

∫ ∞

0

8

1 + s2
ds = 4π <∞,

that is q ∈ L1(0,∞).

Hence, all the assumptions of Theorem 2.6 and Theorem 2.7 hold. That is the

zero solution of (4.1) with p ≡ 0 is asymptotically stable and all the solutions of (4.1)

with p 6= 0 are bounded.
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