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1. INTRODUCTION

Since difference equations serve as mathematical models in diverse areas, such

as economy, biology, physics, mechanics, computer science, finance – see for example

[1], [6], [12] – it is of interest to know the conditions which guarantee a) the existence

of solutions, b) their uniqueness, c) dependence of solutions on parameters - this

is sometimes known as Hadamard’s programme and problems satisfying all three

conditions are called well-posed.

The question concerning the existence and multiplicity of solutions for discrete

BVPs has been investigated thoroughly lately, see for example [2], [4], [9], [10], [11],

[13], [14] by the use of various approaches ranging between topological and critical

point theory. Monotonicity theory is also applicable, see for example [19], [20]. Con-

cerning the dependence on parameters for discrete BVPs there was some research,

see [3], [7]. There are also uniqueness results in the area of boundary value problems

for discrete equations, note [16], [17], [21].

In this submission we are going to provide the uniqueness results. The approaches

which we employ are different from those used in [16], [17], [21] and involve rather

simple assumptions on the nonlinear terms and therefore may account for wider and

easier applicability. Since some discrete problems can be written in a form of a

nonlinear system, see for example [1], [20], we shall undertake the following problem

(1.1) Au = f(u), u ∈ R
n
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in case when the necessarily symmetric n× n matrix A need not be positive definite.

We will assume that f has the following form f = [f1, f2, . . . , fn] and

A1: fi : R
n → R is continuous for i = 1, 2, . . . , n and fi (0) 6= 0 for at least one

i = 1, 2, . . . , n.

We recall that a column of vector u = (u1, u2, . . . , un)
T ∈ R

n is a solution if

substitution of u into (1.1) renders it an identity. Moreover, 0 is not a solution to

(1.1) due to A1.

System (1.1) can be treated as a representation of some discrete boundary value

problem which in turn arises as discretization of some continuous models. Let us take

for example the Emden-Fowler equation

d

dt

(

tρ
du

dt

)

+ tδuγ = 0

which originated in the gaseous dynamics in astrophysics and further was used in the

study of fluid mechanics, relativistic mechanics, nuclear physics and in the study of

chemically reacting systems, see [18]. The discrete version of the generalized Emden-

Fowler equation (p(t)y′)′ + q(t)y = f(t, y) received some considerable interest lately

mainly by the use of critical point theory, see for example [9], [11], [13]. The dis-

cretization of the generalized Emden-Fowler type boundary value problem can be put

as follows

(1.2) ∆ (p (k − 1) ∆x (k − 1)) + q (k) x (k) + f (k, x (k)) = 0

with boundary conditions

(1.3) x (0) = x (n) , p (0)∆x (0) = p (n) ∆x (n)

and where f ∈ C ([1, n] × R, R), p ∈ C ([0, n + 1] , R), q ∈ C ([1, n] , R), p (n) 6= 0;

[a, b] for a < b, a, b ∈ Z denotes a discrete interval {a, a + 1, . . . , b}; ∆ is the forward

difference operator defined by ∆u(k) = u(k + 1) − u(k). The realization of the form

of (1.1) requires the following matrices, see [11]

M =























p (0) + p (1) −p (1) 0 . . . 0 −p (0)

−p (1) p (1) + p (2) −p (2) . . . 0 0

0 −p (2) p (2) + p (3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . p (n − 2) + p (n − 1) −p (n − 1)

−p (0) 0 0 . . . −p (n − 1) p (n − 1) + p (0)






















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and

Q =























−q (1) 0 0 . . . 0 0

0 −q (2) 0 . . . 0 0

0 0 −q (3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −q (n − 1) 0

0 0 0 . . . 0 −q (n)























.

Setting A = M + Q, fk (x) = f (k, x) and using the assumption that p (n) 6= 0 we see

that problem (1.2)–(1.3) has a form of a nonlinear system (1.1). Indeed, in this case

there is a 1−1 correspondence between solutions to (1.1) and solutions to (1.2)–(1.3).

2. UNIQUENESS OF SOLUTIONS VIA MONOTONICITY THEORY

Now we recall the general existence and uniqueness principles which we further

use.

Let E be a reflexive Banach space with norm ‖·‖E. Let (·, ·) denotes the duality

pairing between E∗ and E. Let us recall that an operator K : E → E∗ is bounded

when it maps bounded sets in E into bounded sets in E∗; K is demicontinuous if for

any sequence {un} ⊂ E and any u0 ∈ E such that un → u0 it holds that Kun ⇀ Ku0

in E∗; K is monotone if for all u, v ∈ E it holds that

(Ku − Kv, u − v) ≥ 0;

when (Ku − Kv, u − v) > 0 for all u 6= v K is called a strictly monotone operator;

finally K is called coercive operator when

lim
‖u‖

E
→∞

(Ku, u)

‖u‖E

= +∞.

Theorem 2.1 (Strongly monotone operator principle [5]). Suppose that K : E → E∗

is continuous operator and there exist c > 0 such that

(Ku − Kv, u − v) ≥ c‖u − v‖2

E, u, v ∈ E,

Then K : E → E∗ is homeomorphism between E and E∗.

Theorem 2.2 (Browder’s Theorem [8]). Let K : E → E∗ be a bounded, demicontin-

uous and coercive operator. Then equation Ku = f for each f ∈ E∗ has a at least

one solution. If additionally K is strictly monotone, then the solution is unique.

We note that in case E is finite dimensional, an operator K : E → E∗ is demi-

continuous if and only if it is continuous. Moreover, when E is a finite dimensional

Euclidean space, the duality pairing is the usual scalar product.

Firstly, we apply Theorem 2.1. We assume for each k ∈ [1, n] that
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A2: (sublinear) there exist ak > 0 such that (fk(t1) − fk(t2)) (t1−t2) ≤ ak|t1−t2|
2

for t1, t2 ∈ R;

A3: (superlinear) there exist bk > 0 such that (fk(t1) − fk(t2)) (t1−t2) ≥ bk|t1−t2|
2

for t1, t2 ∈ R.

In what follows let λ1 ≤ · · · ≤ λn denote the eigenvalues of A; ‖A‖ = max1≤i≤n |λi|

denotes the norm of a matrix A and we denote

a = max
1≤i≤n

{ai}, b = min
1≤i≤n

{bi}.

Theorem 2.3. Assume that conditions A1, A2 hold and that a < λ1 or assume

that conditions A1, A3 hold and that ‖A‖ < b. Then problem (1.1) has a unique

nontrivial solution in R
n.

Proof. Assume A1, A2, let a < λ1 and define a continuous operator K : R
n → R

n

by

(2.1) Kx = Ax − f(x).

We get for x, y ∈ R
n that

(Kx − Ky, x− y) ≥ (λ1 − a) |x − y|2.

Hence the assumptions of Theorem 2.1 are satisfied and equation Ku = 0 has a

unique solution u∗ ∈ R
n which must necessarily be nontrivial. With assumptions A1,

A3 and ‖A‖ < b we define a continuous operator K1 : R
n → R

n by

(2.2) K1x = f(x) − Ax.

For x, y ∈ R
n it follows by a direct calculation that

(K1x − K1y, x − y) ≥ (b − ‖A‖) |x − y|2

We indicate some examples of nonlinearities which can be used in Theorem 2.3.

In what follows h, u : [1, n] → R
+ are arbitrary, α ∈ R is fixed, α 6= 0; t1, t2 ∈ R

denote variables; k ∈ [1, n] is arbitrarily fixed.

Example 2.4 (A1, A2). Put fk (t) = h (k) (t − α) and observe

(fk(t1) − fk(t2)) (t1 − t2) = h (k) (t1 − t2)
2.

Example 2.5 (A1, A3). Put fk (t) = h (k) t3 + u (k) t − α and note that

(fk(t1) − fk(t2)) (t1 − t2) = h (k)
(

t21 + t1t2 + t22
)

(t1 − t2)
2 + u (k) (t1 − t2)(t1 − t2)

≥ u (k) (t1 − t2)
2.

Next, we use Theorem 2.2 and we assume for each k ∈ [1, n] that

A4: (fk(t1) − fk(t2)) (t1 − t2) < 0 for t1, t2 ∈ R, t1 6= t2;
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A5: (fk (t1)) − fk(t2)) (t1 − t2) > 0 for t1, t2 ∈ R, t1 6= t2.

Theorem 2.6. Assume that conditions A1, A4 hold and that A is positive definite

or else assume that conditions A1, A5 hold and that A is negative definite. Then

problem (1.1) has a unique nontrivial solution in R
n.

Proof. In case of assumptions A1, A4 and that A is positive definite we use a con-

tinuous operator K given by (2.1). We get for x, y ∈ R
n, x 6= y that

(2.3) (Kx − Ky, x − y) ≥ λ1|x − y|2 − (f(x) − f(y)) (x − y) ≥ λ1|x − y|2 > 0,

so K is strictly monotone. Since for all x ∈ R
n

(Kx, x)

|x|
≥

λ1|x|
2 − (f(x) − f(0), x)

|x|
≥ λ1|x|

it also follows that K is coercive. The application of Theorem 2.2 provides the

assertion. With the second set of assumptions we use operator (2.2) and we get for

x, y ∈ R
n, x 6= y that

(K1x − K1y, x − y) ≥ (f(x) − f(y)) (x − y) − λn|x − y|2 ≥ −λn|x − y|2 > 0,

so K is strictly monotone and coercive.

The application of Theorem 2.6 puts no restriction on the value the eigenvalues

of A or on the norm of A as required by Theorem 2.3. However instead it requires the

definiteness of A. We see that with A4 function f is strictly decreasing while with

A5 it is strictly increasing.

3. UNIQUENESS OF SOLUTIONS VIA CRITICAL POINT THEORY

In the application of critical point theory, we connect critical points to a certain

action functional to the solution of (1.1). Hence, the uniqueness of a solution is

implied by the uniqueness of a critical point and this in turn is guaranteed by strict

convexity.

Theorem 3.1 ([15]). Let E be a reflexive Banach space. If the functional J : E → R,

J ∈ C1 (E, R) is weakly lower semi-continuous and coercive, i.e. lim‖x‖→∞ J(x) =

+∞, then there exist x0 such that

inf
x∈E

J(x) = J(x0)

and x0 is also a critical point of J , i.e. J ′(x0) = 0. Moreover, if J is strictly convex,

then a critical point is unique.
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When E is finite dimensional, any continuous functional is necessarily weakly

l.s.c. Let Fk (x) =
∫ x

0
fk (t) dt. With problem (1.1) we can connect the following

action functionals J , JD : R
n → R given by

J (x) =
1

2
(Ax, x) −

n
∑

k=1

Fk (x (k)) ,

JD (x) =

n
∑

k=1

Fk (x (k)) −
1

2
(Ax, x) .

Functionals J and JD correspond to (1.1) as follows: any solution to (1.1) is a critical

point to either J or JD and next any critical point to either of the functionals solves

(1.1). Since R
n is finite dimensional we do not distinguish between the weak and the

strong solutions. As far as J is concerned, we get strict convexity when either A is

positive definite and f is non-increasing or when A is positive semidefinite and f is

decreasing. We provide results for both action functionals since these involve different

assumptions on matrix A.

We assume that

A6: there exist constants ε1 > 0, ε2 ∈ R and r > 1 such that

−

n
∑

k=1

Fk (x) ≥ ε1

n
∑

k=1

|x (k)|r + ε2

for k ∈ [1, n] and |x| ≥ B, where B > 0 is certain (possibly large) constant.

Theorem 3.2. Assume that conditions A1, A4, A6 hold and that A is positively

semidefinite. Then problem (1.1) has a unique nontrivial solution in R
n.

Proof. We observe that functional J1 : R
n → R defined by J1 (x) = 1

2
(Ax, x) is

convex, while J2 : R
n → R defined by J2 (x) = −

∑n
k=1

Fk (x (k)) is strictly convex.

Then, J = J1 + J2 is strictly convex. Since for x ∈ R
n such that |x| ≥ B we have

J (x) ≥ ε1

n
∑

k=1

|x (k)|r + ε2n

it is also coercive and by continuity we get the assertion.

Note that functional J1 is not coercive.

Corollary 3.3. Assume that conditions A1, A4 hold and that A is positively definite.

Then problem (1.1) has a unique nontrivial solution in R
n which is a critical point to

functional J .

Proof. Indeed, in this case functional J1 is coercive and since J2 is strictly convex it

is bounded from the below, functional J1 + J2 must also be coercive.



UNIQUENESS OF SOLUTIONS FOR DISCRETE BOUNDARY VALUE PROBLEMS 111

The requirement that F is convex with respect to the second variable for each

k ∈ [1, n], or in other words that f in nondecreasing with respect to the second

variable for each k ∈ [1, n], can be weakened. Recalling that λ1 denotes the first

eigenvalue of matrix A we assume

A7: there exists a constant ε ∈ (0, 1) such that

(

fk(t1) + ελ1t
2

1 − fk(t2) − ελ1t
2

2

)

(t1 − t2) ≤ 0

for t1, t2 ∈ R and each k ∈ [1, n].

Theorem 3.4. Assume that conditions A1, A7 hold and that A is positively definite.

Then problem (1.1) has a unique nontrivial solution in R
n.

Proof. We put J1 : R
n → R, J2 : R

n → R by

J1 (x) =
1

2
(Ax, x) − ελ1

n
∑

k=1

x2 (k)

and

J2 (x) = ελ1

n
∑

k=1

x2 (k) −
n

∑

k=1

Fk (x (k)) .

We observe that J1 is coercive and strictly convex, while J2 is convex. Hence, J1 +J2

must also be coercive and strictly convex.

Similarly as with Theorems 3.2, 3.4 and Corollary 3.3 we can argue with func-

tional JD which would require somehow opposite monotonicity, i.e. f being nonde-

creasing and A negative definite, or else f being increasing and A negative semidefinite

with some growth assumptions on the term f in the latter case. We state the results

omitting their proofs. Instead of A6, A7 we assume that

A8: there exist constants ε1 > 0, ε2 ∈ R and r > 1 such that

n
∑

k=1

Fk (x) ≥ ε1

n
∑

k=1

|x (k)|r + ε2

for k ∈ [1, n] and |x| ≥ B, where B > 0 is certain (possibly large) constant;

A9: there exists ε ∈ (0, 1) such that for k ∈ [1, n]

(

fk(t1) + ελnt
2

1 − fk(t2) − ελnt
2

2

)

(t1 − t2) ≥ 0

for t1, t2 ∈ R.

Proposition 3.5. Assume that conditions A1, A5, A8 hold and that A is negatively

semidefinite or assume that conditions A1, A5 hold and that A is negatively definite

or else assume that conditions A1, A9 hold and that A is negatively definite. Then

problem (1.1) has a unique nontrivial solution in R
n.
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We give some examples of nonlinear terms investigated with the critical point

theory.

Example 3.6 (A1, A4, A6). Assumption A4 pertains to strict monotonicity (it

requires f to be decreasing), while A6 puts some restrictions on its anti-derivative.

Put

fk (x) = −h (k)x3 + w (k) ,

where w : [1, n] → R, h : [1, n] → R
+. Then fk for k ∈ [1, n] satisfies A4 and

x →
∑n

k=1

∫ x

0
fk (t) dt satisfies A6.

Example 3.7 (A1, A7). Let h, u : [1, n] → R
+. We observe that function

fk (x) = −h (t)x3 + u (t) x −
λ1

2
x2

is not monotone for while it satisfies A7 for k ∈ [1, n].
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