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ABSTRACT. In this paper, we consider the eigenvalue problem for the second order Sturm-

Liouville differential equation and the Dirichlet boundary conditions. Our setting is more general

than in the current literature in two respects: (i) the coefficients depend on the spectral parameter

λ in general nonlinearly, and (ii) the potential is merely monotone in λ and not necessarily strictly

monotone in λ, so that the usual strict normality assumption is now removed. This general setting

leads to new definitions of an eigenvalue and an eigenfunction – called a finite eigenvalue and a

finite eigenfunction. With these new concepts we show that the finite eigenvalues are isolated,

bounded from below, and establish an oscillation theorem, i.e., a result counting the zeros of the

finite eigenfunctions. The traditional theory in which the potential is linear and strictly monotone

in λ nicely follows from our results.

AMS (MOS) Subject Classification. 34C20

1. INTRODUCTION

The aim of this paper is to revive the study of classical oscillation and spectral

theory for the second order Sturm-Liouville differential equation

(SL0(λ)) −(r0(t) x′)′ − q0(t) x = λ w(t)x, t ∈ [a, b],

where r0, q0, w are real piecewise continuous functions on [a, b], r0(t) ≥ α > 0, and

w(t) > 0 on [a, b]. In particular, we generalize some of the very traditional notions

related to the simplest eigenvalue problem

(E0) (SL0(λ)), x(a) = 0 = x(b).

The main concepts and results of this classical theory are the following, see e.g.

[1, 5, 11, 15]:

(i) (definition) a number λ0 is an eigenvalue of problem (E0), if there exists a solution

x(t, λ0) 6≡ 0 of equation (SL0(λ0)) satisfying x(a, λ0) = 0 = x(b, λ0);
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(ii) (theorem) a number λ0 is an eigenvalue of (E0) if and only if x̂(b, λ0) = 0, where

x̂(t, λ) is the principal solution of (SL0(λ)), that is, it the solution starting with

the initial conditions x̂(a, λ) = 0 and x̂′(a, λ) = 1/r(a, λ);

(iii) (theorem) the eigenvalues of (E0) are (a) real, (b) isolated, (c) bounded from

below, and (d) unbounded from above;

(iv) (oscillation theorem) for every k ∈ N, the k-th eigenfunction has exactly k zeros

in the interval (a, b].

The above list does not contain further properties of (E0), such as the orthogonality

and completeness of the eigenfunctions in L2
w[a, b] with the inner product

〈x, y〉w =

∫

b

a

w(t)x(t)y(t) dt,

and the Rayleigh principle.

In this paper we consider the second order Sturm-Liouville differential equation

(SL(λ)) (r(t, λ) x′)′ + q(t, λ) x = 0, t ∈ [a, b],

whose coefficients depend in general nonlinearly on the spectral parameter λ. Such

a nonlinear dependence on λ arises in various branches of science, for example in

quantum mechanics, magnetohydrodynamics, and chemistry (see [9, Section 4]). Sev-

eral authors investigated equation (SL(λ)) in papers [2, 9, 10, 12, 16]. The eigenvalue

problem

(E) (SL(λ)), λ ∈ R, x(a) = 0 = x(b),

having the Dirichlet boundary conditions as above, or more general separated or joint

boundary conditions, has been studied in [6, Section 8.3] under the following main

monotonicity assumptions:

r(t, λ) is nonincreasing in λ,(1.1)

q(t, λ) is strictly increasing in λ,(1.2)

lim
λ→−∞

q(t, λ) = −∞ and lim
λ→∞

q(t, λ) = ∞.(1.3)

The same strict monotonicity assumption (1.2) is used in [9, 10] to prove the accu-

mulation or nonaccumulation of (classical) eigenvalues. In the present work we show

that replacing assumptions (1.2)–(1.3) by the weaker condition

(1.4) q(t, λ) is nondecreasing in λ

leads to new (more special) definitions of an eigenvalue and an eigenfunction for

problem (E), called a finite eigenvalue and a finite eigenfunction. With these new

concepts we prove that the finite eigenvalues are isolated and bounded from below,

and establish the corresponding oscillation theorem. Hence, we address the properties

of the eigenvalue problem (E) covering items (i), (ii), (iii–b,c), and (iv) in the list
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above. As there is no suitable inner product when the dependence on λ is nonlinear,

one has to require λ to be real in (E). Note that even in the classical case of equation

(SL0(λ)), i.e., when

(1.5) r(t, λ) = r0(t), q(t, λ) = q0(t) + λw(t),

the results of this paper are more general than the traditional ones, since under

(1.4) we allow w(t) ≥ 0 on [a, b]. However, for such a linear dependence on λ, the

corresponding theory follows from the recently developed results in [7, 8, 13, 14]. The

presented results covering the nonlinear dependence of the coefficients on λ is an

example of a more general theory of linear Hamiltonian systems developed recently

in [3].

This paper is divided as follows. In Section 2 we present our new concept of finite

eigenvalues for problem (E). We establish the oscillation theorem (Theorem 2.6) and

other properties of finite eigenvalues, such as the existence (Theorems 2.10–2.11)

and a characterization of the smallest finite eigenvalue. In Section 3 we develop the

corresponding geometric characterization of finite eigenvalues, i.e., the concept of

finite eigenfunctions. In Section 4 we provide an example of a simple Sturm-Liouville

equation which illustrates this theory.

2. FINITE EIGENVALUES

Let us begin with stating the assumptions about the coefficients of (SL(λ)). The

functions r, q : [a, b] × R → R satisfy the following conditions: there exist a partition

a = τ0 < τ1 < · · · < τm = b of [a, b] and a partition −∞ < · · · < λk < λk+1 < · · · < ∞

of R with no finite accumulation point such that

• the functions r and q are continuous on [τi, τi+1]×R for every i ∈ {0, . . . , m−1},

• r(t, λ) > 0 on [a, b] × R,

• the functions

rλ :=
∂r

∂λ
and qλ :=

∂q

∂λ

are continuous on [τi, τi+1] × [λk, λk+1] for every i ∈ {0, . . . , m − 1} and k ∈ Z,

• rλ(t, λ) ≤ 0 and qλ(t, λ) ≥ 0 on [a, b] × R.

The last condition implies that the function r(t, λ) is nonincreasing in λ and the

function q(t, λ) is nondecreasing in λ for every fixed t ∈ [a, b]. The continuity of

the coefficients r and q in (t, λ) implies the continuous dependence of solutions of

(SL(λ)) on λ, while the continuity of rλ and qλ yields that the solutions of (SL(λ))

are continuously differentiable in λ. In addition, since the functions r, q, rλ, qλ are

piecewise continuous (Cp) in t on [a, b] when λ is fixed, the solutions x of (SL(λ)) and

its derivative xλ := ∂x

∂λ
are piecewise continuously differentiable (C1

p) in t on [a, b].
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As it is used above, differentiation with respect to t and λ will be denoted by

prime and subscript λ, respectively.

For a fixed λ ∈ R, we consider two solutions y(t, λ) and x(t, λ) of (SL(λ)), whose

initial conditions

(2.1)
(i) y(a, λ), r(a, λ) y′(a, λ),

(ii) x(a, λ), r(a, λ) x′(a, λ)

}

do not depend on λ.

From equation (SL(λ)) it then follows that the Wronskian of the solutions y(t, λ) and

x(t, λ) defined by

r(t, λ)

∣

∣

∣

∣

∣

y(t, λ) x(t, λ)

y′(t, λ) x′(t, λ)

∣

∣

∣

∣

∣

is constant in t on [a, b]. If this constant is 1, then we say that the two solutions y(t, λ)

and x(t, λ) are normalized. An example of such a normalized pair is the associated

solution x̃(t, λ) and principal solution x̂(t, λ) , which are given by the initial conditions

x̃(a, λ) = x̃′(a, λ) ≡ 0, r(a, λ) x̂′(a, λ) = x̃(a, λ) ≡ 1 for all λ ∈ R.

In particular, the principal solution x̂(t, λ) will play a central role in the present

theory. Note that for a given solution x(t, λ) there always exists a solution y(t, λ)

such that y(t, λ) and x(t, λ) are normalized for all λ ∈ R and y(t0, λ0) 6= 0 at a given

t0 ∈ [a, b] and λ0 ∈ R. In addition, if the solution x(t, λ) satisfies (2.1)(ii), then

y(t, λ) may be chosen so that it satisfies (2.1)(i). This can be seen by taking the

initial conditions of y(t, λ) to be

y(a, λ) = r(a, λ) x′(a, λ)/k(a, λ), r(a, λ) y′(a, λ) = −x(a, λ)/k(a, λ),

where k(a, λ) := r2(a, λ) [x′(a, λ)]2 +x2(a, λ). The choice of y(t0, λ0) 6= 0 then follows

from [6, Proposition 4.1.1]. In the following result we describe the behavior in λ of

the quotient of two such normalized solutions.

Lemma 2.1. Let y(t, λ) and x(t, λ) be normalized solutions of equation (SL(λ)) such

that (2.1) holds and y(t, λ0) 6= 0 at a given t ∈ [a, b] and λ0 ∈ R. Then there exists

ε > 0 such that for all λ ∈ (λ0 − ε, λ0 + ε) we have

(

x

y

)

λ

(t, λ) =
1

y2(t, λ)

∫

t

a

{

qλ(τ, λ)

∣

∣

∣

∣

∣

x(τ, λ) x(t, λ)

y(τ, λ) y(t, λ)

∣

∣

∣

∣

∣

2

− rλ(τ, λ)

∣

∣

∣

∣

∣

x′(τ, λ) x(t, λ)

y′(τ, λ) y(t, λ)

∣

∣

∣

∣

∣

2
}

dτ ≥ 0,(2.2)

(

ry′

y

)

λ

(t, λ) = −
1

y2(t, λ)

∫

t

a

{

qλ(τ, λ) y2(τ, λ) − rλ(τ, λ) [y′(τ, λ)]2
}

dτ ≤ 0.(2.3)
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Proof. The result is derived by the differentiation of equation (SL(λ)) with respect

to λ and by using the fact that the fundamental matrix

Φ(t, λ) :=

(

y(t, λ) x(t, λ)

r(t, λ) y′(t, λ) r(t, λ) x′(t, λ)

)

has determinant equal to 1. See the details in [3, Lemma 2.1].

Formula (2.2) implies that the function (x/y)(t, λ) is nondecreasing in λ on the

interval (λ0 − ε, λ0 + ε). And since the zeros of the function (x/y)(t, λ) coincide with

the zeros of the solution x(t, λ), we have the following.

Corollary 2.2. If x(t, λ) is a solution of (SL(λ)) such that (2.1)(ii) holds, then the

kernel of x(t, λ) is piecewise constant in λ on R.

This means that for every fixed λ0 ∈ R and t ∈ [a, b] there exists δ > 0 such that

either x(t, λ) 6= 0 for all λ ∈ (λ0 − δ, λ0), or x(t, λ) ≡ 0 for all λ ∈ (λ0 − δ, λ0). And

similar conclusion also holds in the right neighborhood of λ0.

Remark 2.3. When (1.2) holds, which happens e.g. in the classical case (1.5) with

w(t) > 0 on [a, b], then formula (2.2) yields that (x/y)(t, λ) is strictly increasing on

(λ0 − ε, λ0 + ε). This means that once x(t, λ0) = 0, then x(t, λ) 6= 0 in some left and

right neighborhoods of λ0. Hence, in this case the values of λ0 ∈ R where x(t, λ0) = 0

are isolated. In particular, when t = b and x(t, λ) = x̂(t, λ) is the principal solution

of (SL(λ)), then in this case the classical eigenvalues of (E), i.e., the zeros of x̂(b, λ),

are isolated. However, when (1.4) is only assumed instead of (1.2), then the classical

eigenvalues may accumulate at a finite λ0, or even there may be a whole interval

[α, β] ⊆ R of classical eigenvalues; see the example in Section 4.

Based on the above analysis, we present the following algebraic definition of finite

eigenvalues of problem (E).

Definition 2.4 (Finite eigenvalue). A number λ0 ∈ R is a finite eigenvalue of (E) if

x̂(b, λ0) = 0 and at the same time x̂(b, λ) 6= 0 in some left neighborhood of λ0, where

x̂(t, λ) is the principal solution of (SL(λ)).

The name “finite” eigenvalue is motivated by its discrete time counterpart in the

theory of matrix pencils (see [4, Remark 1(iv)]). From Corollary 2.2 and Definition 2.4

we immediately obtain the following.

Corollary 2.5. The finite eigenvalues of (E) are isolated.

The main result of this section is contained in the next statement.
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Theorem 2.6 (Oscillation theorem). Let x̂(t, λ) be the principal solution of (SL(λ)).

Denote by

n1(λ) := the number of zeros of x̂(t, λ) in (a, b],

n2(λ) := the number of finite eigenvalues of (E) in (−∞, λ].

Then there exists m ∈ N ∪ {0} such that

(2.4) n1(λ) = n2(λ) + m for all λ ∈ R.

Moreover, for a suitable λ0 < 0 we have n2(λ) ≡ 0 and n1(λ) ≡ m for all λ ≤ λ0.

Proof. This statement is a special case of a more general result for linear Hamiltonian

systems in [3, Theorem 3.5].

Since n2(λ) ≡ 0 for all λ ≤ λ0 means that there are no finite eigenvalues of (E)

in (−∞, λ], we have the following.

Corollary 2.7. The finite eigenvalues of (E) are bounded from below (provided there

is a finite eigenvalue at all).

The total number of finite eigenvalues of (E) will now depend on the behavior of

the functions r(t, λ) and q(t, λ).

In the standard theory of second order linear differential equations, see e.g. [5,11],

it is known that n1(λ0) = 0, i.e., the nonexistence of zeros of the principal solution

x̂(t, λ0) in (a, b], is equivalent with the positivity of the quadratic functional

F(η, λ0) :=

∫

b

a

{

r(t, λ0) [η′(t)]2 − q(t, λ0) η2(t)
}

dt.

More precisely, n1(λ0) = 0 if and only if F(η, λ0) > 0 for all η ∈ C1
p with η(a) = 0 =

η(b) and η(t) 6≡ 0 (we write F(·, λ0) > 0). Hence, we obtain from Theorem 2.6 the

traditional result in the spirit of item (iv) in the list in Section 1.

Corollary 2.8 (Oscillation theorem). Let x̂(t, λ) be the principal solution of equation

(SL(λ)). The number m in Theorem 2.6 is zero, i.e., n1(λ) = n2(λ) for all λ ∈ R, if

and only if there exists λ0 < 0 such that F(·, λ0) > 0.

Remark 2.9. Under (1.2)–(1.3), or under (1.5) with w(t) > 0 on [a, b], there always

exists λ0 < 0 such that F(·, λ0) > 0. This follows from [6, pg. 246] or from [7,

Lemma 2.10]. Therefore, in this classical case the oscillation theorem is known as the

traditional equality n1(λ) = n2(λ) for all λ ∈ R.

Next we present conditions in terms of F(·, λ) related to the existence of finite

eigenvalues.
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Theorem 2.10 (Existence of finite eigenvalues: necessity). If (E) has a finite eigen-

value, then there exist λ0, λ1 ∈ R with λ0 < λ1 and m ∈ N∪{0} such that n1(λ) ≡ m

for all λ ≤ λ0 and F(·, λ1) 6> 0.

Proof. The result follows from the oscillation theorem (Theorem 2.6; compare with [3,

Theorem 4.5]). If there is a finite eigenvalue of (E), then n2(λ1) ≥ 1 for some

λ1 ∈ R. From Theorem 2.6 we know that n1(λ) ≡ m for all λ ≤ λ0 for some

λ0 < 0 and m ∈ N ∪ {0}. By shifting λ0 to the sufficiently negative numbers, if

needed, we may choose λ0 < λ1. Finally, from equality (2.4) of Theorem 2.6 we get

n1(λ1) = n2(λ1) + m ≥ 1, so that the principal solution of (SL(λ1)) has at least

one zero in the interval (a, b]. This is however equivalent with F(·, λ1) 6> 0, which

completes the proof.

Theorem 2.11 (Existence of finite eigenvalues: sufficiency). If there exist λ0, λ1 ∈ R

with λ0 < λ1 such that F(·, λ0) > 0 and F(·, λ1) 6> 0, then the eigenvalue problem

(E) has at least one finite eigenvalue. Moreover, the smallest finite eigenvalue λmin

lies in the interval (λ0, λ1], and

−∞ < λmin = sup{λ ∈ R, F(·, λ) > 0} = min{λ ∈ R, F(·, λ) 6> 0}.

Proof. This result follows from the oscillation theorem (Corollary 2.8); see the details

in [3, Theorem 4.6].

3. FINITE EIGENFUNCTIONS

In this section we develop the geometric notion – a finite eigenfunction – cor-

responding to a finite eigenvalue λ0 of (E). It is clear from Definition 2.4 that the

definition of such a finite eigenfunction must depend on the behavior of the solu-

tions of (E) for λ near (to the left of) λ0. In particular, the notion of a classical

eigenfunction needs to be narrowed.

Definition 3.1 (Degenerate solution). Let λ0 ∈ R be given. A solution x(t, λ0) of

(E) with λ = λ0 is said to be degenerate at λ0 (or it is a degenerate solution at λ0)

if there exists δ > 0 such that for all λ ∈ (λ0 − δ, λ0] the solution x(t, λ) of equation

(SL(λ)) given by the initial conditions

(3.1) x(a, λ) = x(a, λ0), r(a, λ) x′(a, λ) = r(a, λ0) x′(a, λ0)

satisfies

(3.2) rλ(t, λ) x′(t, λ) ≡ 0, qλ(t, λ) x(t, λ) ≡ 0 for all t ∈ [a, b].

In the opposite case we say that x(t, λ0) is nondegenerate at λ0.
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This means that, while fixing the initial conditions of x(t, λ) at t = a to be those

of x(t, λ0) as in (3.1), we examine the solutions x(t, λ) of a family of equations (SL(λ))

in which λ varies in some small left neighborhood of λ0. If those solutions x(t, λ) are

compared with rλ(t, λ) and qλ(t, λ) so that the conditions in (3.2) are satisfied, then

we say that the solution x(t, λ0) is degenerate at λ0.

Remark 3.2. It is easy to see that the trivial solution x(t, λ0) ≡ 0 on [a, b] is degen-

erate at every λ0.

Definition 3.3 (Finite eigenfunction). Every nondegenerate solution x(t, λ0) at λ0

of (E) is called a finite eigenfunction corresponding to the finite eigenvalue λ0.

Remark 3.4. (i) Under (1.5), a degenerate solution x(t, λ0) at λ0 is determined by

the condition w(t) x(t, λ0) ≡ 0 on [a, b]. Therefore, the finite eigenfunctions are in

this case given by the condition w(t) x(t, λ0) 6≡ 0 on [a, b]. This definition can be

found in [7, 8, 14].

(ii) Under (1.2)–(1.3), the trivial solution x(t, λ0) ≡ 0 on [a, b] is the only degen-

erate solution at each λ0 ∈ R. Thus, the finite eigenfunctions coincide in this case

with the usual eigenfunctions of problem (E), and in view of the second part of (3.2)

they are determined by the condition x(t, λ0) 6≡ 0 on [a, b].

The meaning of the above definition is justified by the following result, which

provides a geometric interpretation of the finite eigenvalues.

Theorem 3.5 (Geometric characterization of finite eigenvalues). A number λ0 ∈ R is

a finite eigenvalue of (E) if and only if there exists a corresponding finite eigenfunction

x(t, λ0).

Proof. The proof utilizes the monotonicity formula (2.2) from Lemma 2.1 with t = b

and a uniqueness argument for solutions of equation (SL(λ)). In particular, a solution

x(t, λ) of (E) satisfies x(b, λ) ≡ 0 in some left neighborhood of λ0 if and only if

condition (3.2) holds for λ in this neighborhood. The details can be found in [3,

Theorem 5.5].

4. EXAMPLE

The aim of this section is to provide a simple example illustrating the new notions

of finite eigenvalues and finite eigenfunctions, which were developed in the previous

sections.

Example 4.1. Let [a, b] = [0, π] and define for t ∈ [0, π] the coefficients as follows

r(t, λ) :=
1

q(t, λ)
, where q(t, λ) :=















1, for λ ∈ (−∞, 0),

λ + 1, for λ ∈ [0, 3],

4, for λ ∈ (3,∞).
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Then for t ∈ [0, π] we have rλ(t, λ) = qλ(t, λ) = 0 when λ ∈ (−∞, 0) ∪ (3,∞), while

for λ ∈ (0, 3) we have rλ(t, λ) = −1/(λ + 1)2 and qλ(t, λ) = 1. Thus, we can see that

the main assumptions on the functions r(t, λ) and q(t, λ) stated at the beginning of

Section 2 are satisfied. The principal solution of equation (SL(λ)) is in this case

x̂(t, λ) =















sin t, for λ ∈ (−∞, 0],

sin (λ + 1) t, for λ ∈ (0, 3],

sin 4t, for λ ∈ (3,∞).

Therefore, at t = π we have

x̂(π, λ) =

{

0, for λ ∈ (−∞, 0] ∪ (3,∞),

sin (λ + 1) π, for λ ∈ (0, 3].

Consequently, the finite eigenvalues are, according to Definition 2.4, located at the

points λ ∈ {1, 2, 3}. Note that the number λ = 0 is not a finite eigenvalue of (E),

since x̂(π, λ) ≡ 0 for λ < 0.

The number m in the oscillation theorem (Theorem 2.6) is m = 1. Indeed, for

example, for λ = 1

2
, we have x̂(t, 1

2
) = sin 3

2
t, which has just one zero at t = 2

3
π in

(0, π], that is, n1(
1

2
) = 1, while there is no finite eigenvalue of (E) in the interval

(−∞, 1

2
], that is, n2(

1

2
) = 0. With the value λ = 1, we have x̂(t, 1) = sin 2t, which

has two zeros at t = π

2
and t = π in (0, π], that is, n1(1) = 2, while the problem (E)

has one finite eigenvalue at λ = 1 in the interval (−∞, 1], that is, n2(1) = 1.

According to Definition 3.1, we can see that the solution x(t, λ0) = sin t of

(SL(λ)) is degenerate at λ0 = 0 as well as at every λ0 < 0. Similarly, the solu-

tion x(t, λ0) = sin 4t of (SL(λ)) is degenerate at every λ0 > 3. Therefore, these

functions do not represent finite eigenfunctions of problem (E) according to Defini-

tion 3.3. On the other hand, for n ∈ {1, 2, 3} the functions x̂(t, n) = sin (n + 1) t are

the finite eigenfunctions corresponding to the finite eigenvalues λ = n of (E).

Remark 4.2. The above example shows that this theory works also in the case when

λ is restricted to some compact interval [α, β] ⊆ R. In this case we can extend the

coefficients r(t, λ) and q(t, λ) for λ outside of the interval [α, β] as constants and apply

the results to this new modified eigenvalue problem. The resulting finite eigenvalues

are then located inside the interval (α, β]. In Example 4.1 this would be [α, β] = [0, 3].
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