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ABSTRACT. In this paper we consider a heat equation with boundary time-varying delay or

distributed delay. Using the energy method, we prove, under suitable assumptions, that the system

in each case is uniformly stable. Our results improve earlier results existing in the literature.
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1. INTRODUCTION

In this paper we are concerned with the following problem

(1.1)



























θt(x, t) − kθxx(x, t) = 0, in (0, L) × (0,∞)

θ(0, t) = 0, θx(L, t) + k1θ(L, t) + k2θ(L, t− τ(t)) = 0, t ≥ 0

θ(x, 0) = θ0(x), x ∈ (0, L)

θ(L,−t) = f0(t), t ∈ (0, τ(0)),

a heat equation with boundary time-varying delay associated with initial data θ0

and history function f0 in suitable function spaces. Here, θ is the temperature at

time t and location x along a rod of length L, k is a positive constant, k1 and k2

are nonnegative constants, and the time-varying delay τ(t) is a positive bounded

differentiable function of t, with τ ′(t) < 1. This implies that (t − τ(t) > −τ(0))

which justifies the domain assigned in (1.1) for the history function f0. We study the

asymptotic behavior for the solution of (1.1) and look for sufficient conditions that

guarantee the uniform stability of this system.

Time delays arise in many applications because, in most instances, physical,

chemical, biological, thermal, and economic phenomena naturally depend not only

on the present state but also on some past occurrences. The stability issue of systems
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with delay is, therefore, of theoretical and practical importance. In recent years,

the control of PDEs with time delay effects has become an active area of research,

see for example [1, 19], and references therein. In many cases it was shown that

delay is a source of instability and even an arbitrarily small delay may destabilize a

system which is uniformly asymptotically stable in the absence of delay. For instance,

contrary to the exponential stability of the thermoelastic system


















autt(x, t) − duxx(x, t− τ1) + βθx(x, t) = 0, in (0, L) × (0,∞)

bθt(x, t) − kθxx(x, t− τ2) + βuxt(x, t) = 0, in (0, L) × (0,∞)

u(0, t) = u(L, t) = θx(0, t) = θx(L, t) = 0, t ≥ 0

when τ1 = τ2 = 0, Racke [17] proved that, for any constant delays τ1 > 0 or τ2 > 0,

this system is instable. In [4] and [5], the authors also showed that a small delay

in a boundary control of certain hyperbolic systems could be a source of instability,

and stabilizing these systems, involving input delay terms, requires additional control

terms. In this aspect, Datko, Lagnese and Polis [5] examined the following problem

utt(x, t) − uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, in (0, 1) × (0,∞)

u(0, t) = 0, ux(1, t) = −kut(1, t− τ), t > 0

with a, k, τ positive real numbers. Through a careful spectral analysis, they showed

that, for any a > 0 and any k satisfying

0 < k <
1 − e−2a

1 + e−2a
,

the spectrum of this system lies in Re w ≤ −β, where β is a positive constant de-

pending on the delay τ . Consequently the uniform stability of the system is obtained.

The heat equation with internal or boundary delay was treated in [3, 6, 7, 16,

20]. In particular, system (1.1), with boundary time-varying delay, was studied by

Nicaise et. al in [16] and the system






ut(x, t) − k1uxx(x, t) − k2uxx(x, t− τ(t)) = 0, in (0, L) × (0,∞)

u(0, t) = u(L, t) = 0, t > 0,

with internal time-varying delay, was studied by Caraballo et. al in [3]. In both

situations, the authors assumed that τ(t) satisfies, for some positive constants K,M, q

and for any t > 0,

0 < K ≤ τ(t) ≤M and τ ′(t) ≤ q < 1

and showed, using two different methods, that the condition

(1.2) k2 <
√

1 − qk1
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is sufficient in both cases to obtain exponential stability. The same result, under

condition (1.2), was also obtained by Zhang et. al [22] in the presence of a nonlinear

source term in (1.1).

Regarding the systems of wave equations with linear frictional damping term and

internal constant delay

(1.3)



















utt(x, t) −△u(x, t) + k1ut(x, t) + k2ut(x, t− τ) = 0, in Ω × (0,∞)

u(x, t) = 0, x ∈ Γ0, t > 0

∂u
∂v

(x, t) = 0, x ∈ Γ1, t > 0

or with boundary constant delay

(1.4)



















utt(x, t) −△u(x, t) = 0, in Ω × (0,∞)

u(x, t) = 0, x ∈ Γ0, t > 0

∂u
∂v

(x, t) = −k1ut(x, t) − k2ut(x, t− τ), x ∈ Γ1, t > 0

it is well known, in the absence of delay (k2 = 0, k1 > 0), that these systems are

exponentially stable, see [9–12, 23, 24]. In the presence of delay (k2 > 0), Nicaise

and Pignotti [13] examined systems (1.3) and (1.4) and proved under the assumption

k2 < k1 that the energy is exponentially stable. Otherwise, they produced a sequence

of delays for which the corresponding solution is instable. The main approach used

there is an observability inequality combined with a Carleman estimate. See also [2]

for treatment to these problems in more general abstract form and [15] for analogous

results in the case of boundary time-varying delay. We also recall the result by Yung

et. al [21], where the authors proved the same result as in [13] for the one space

dimension by adopting the spectral analysis approach. Said-Houari and Laskri [18]

also imposed the same condition (k2 < k1) to establish the exponential stability of

the following Timoshenko system with constant delay
{

ρ1ϕtt(x, t) −K(ϕx + ψ)x(x, t) = 0, (0, 1) × IR+

ρ2ψtt(x, t) − bψxx(x, t) +K(ϕx + ψ)(x, t) + k1ψt(x, t) + k2ψt(x, t− τ) = 0.

This result was recently extended to the case of time-varying delay by Kirane et. al

[8].

When the delay term in (1.3) or (1.4) is replaced by the distributed delay
∫ τ2

τ1

k2(s)ut(x, t− s)ds,

exponential stability results have been obtained in [14] under the condition
∫ τ2

τ1

k2(s)ds < k1.

Our aim in this work is to investigate (1.1) and establish exponential decay result

under suitable assumption (see (2.4)) on the delay term that is weaker than the
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assumption (1.2) above. In fact, we show, even if k1 = 0, that we still have uniform

stability provided k2 <
√

1−q

L
, where q is such that τ ′(t) ≤ q < 1. This extends the

stability region of the system and improves the result obtained in [16]. We also study

the heat equation with distributed delay given by

(1.5)


























θt(x, t) − kθxx(x, t) = 0, in (0, L) × (0,∞)

θ(0, t) = 0, θx(L, t) + k1θ(L, t) +
∫ τ2

τ1
k2(s)θ(L, t− s)ds = 0, t ≥ 0

θ(x, 0) = θ0(x), x ∈ (0, L)

θ(L,−t) = f0(t), t ∈ (0, τ2)

where τ2 is a positive constant, τ1 is a nonnegative constant with τ1 < τ2, and k2 :

[τ1, τ2] → IR+ is a bounded function. We similarly prove that the energy of (1.5)

decays exponentially. The paper is organized as follows. In section 2, we present our

assumptions, treat the well-posedness issue, and state and prove our main result for

system (1.1). Then, in sections 3, we establish the exponential stability of system

(1.5).

2. TIME-VARYING DELAY

2.1. The well-posedness of system (1.1). Let us introduce the following new

variable

z(ρ, t) = θ(L, t− τ(t)ρ), (ρ, t) ∈ (0, 1) × (0,∞).

Then, problem (1.1) is equivalent to

(2.1)



















































θt(x, t) − kθxx(x, t) = 0, in (0, L) × (0,∞)

τ(t)zt(ρ, t) + (1 − τ ′(t)ρ)zρ(ρ, t) = 0, in (0, 1) × (0,∞)

θ(0, t) = 0, t ≥ 0

θx(L, t) + k1θ(L, t) + k2z(1, t) = 0, z(0, t) = θ(L, t), t ≥ 0

θ(x, 0) = θ0(x), x ∈ (0, L)

z(p, 0) = f0(τ(0)ρ), ρ ∈ (0, 1).

We consider the following Hilbert space

V = {v ∈ H1(0, L) : v(0) = 0}.

Then, with U = (θ, z), system (2.1) can be written in the following form

(2.2)







Ut + A(t)U = 0, t > 0

U(0) = U0 = (θ0, f0),
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where, with the Hilbert space H = L2(0, L) × L2(0, 1), the time dependent operator

A(t) : D(A(t)) → H is given by

A(t)U =

(

−kθxx,
1 − τ ′(t)ρ

τ(t)
zρ

)

with domain

D(A(t)) =

{

(θ, z) ∈ (H2(0, L) ∩ V ) ×H1(0, 1) :

θ(L) = z(0), θx(L) + k1θ(L) + k2z(1) = 0

}

which is independent of the time t, i.e. D(A(t)) = D(A(0)) for all t > 0.

We assume, for some constants (K,M,R, q) and all t > 0,

(2.3)







0 < K ≤ τ(t) ≤M, |τ ′(t)| ≤ R

τ ′(t) ≤ q < 1

and

(2.4) k2 <
√

1 − q

(

k1 +
1

L

)

Let ξ be a fixed positive constant satisfying

(2.5) max

{

k1,
k2√
1 − q

}

< ξ < k1 +
1

L
.

Then, for U = (θ, z),W = (θ, z) ∈ H , we equip H with the time dependent inner

product

(U,W )t =

∫ L

0

θθdx+ kξτ(t)

∫ 1

0

z(ρ)z(ρ)dρ.

The existence and uniqueness result reads as follows.

Theorem 2.1. For any U0 ∈ H, problem (2.2) has a unique solution U ∈ C([0,+∞);H).

Moreover, if U0 ∈ D(A(0)), then

U ∈ C([0,+∞);D(A(0)) ∩ C1([0,+∞);H).

Proof. By making the transformation

U = e
R

2K
tU,

we need to look at the problem

(2.6)

{

U t + A(t)U = 0

U(0) = U0

where

A(t) = A(t) +
R

2K
I

with the same domain of A(t). Using the semigroup method, the well-posedness

of system (2.6) can be established by following similar steps as those used in [16]
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provided we prove, for a fixed t, that the operator A(t) is monotone under the weaker

assumption (2.4). For this purpose, we find, for any U ∈ D(A(t)), that

(A(t)U,U)t = k

∫ L

0

θ2
xdx+ kk1θ

2(L) + kk2θ(L)z(1)

+ kξ

∫ 1

0

(1 − τ ′(t)ρ)z(ρ)zρ(ρ)dρ+
R

2K
(U,U)t

= k

∫ L

0

θ2
xdx+ kk1θ

2(L) + kk2θ(L)z(1) +
kξ

2
(1 − τ ′(t))z2(1)

− kξ

2
θ2(L) +

kξτ ′(t)

2

∫ 1

0

z2(ρ)dρ+
R

2K
(U,U)t.

Notice that

τ ′(t)

2τ(t)
kξτ(t)

∫ 1

0

z2(ρ)dρ+
R

2K
(U,U)t ≥

[

R

2K
− |τ ′(t)|

2τ(t)

]

kξτ(t)

∫ 1

0

z2(ρ)dρ ≥ 0.

Also, using Hölder and Young’s inequalities gives

(2.7)

∫ L

0

θ2
xdx ≥ 1

L

(
∫ L

0

θxdx

)2

=
1

L
θ2(L)

and

k2θ(L)z(1) ≥ −ξ
2
θ2(L) − 1

2ξ
k2

2z
2(1).

Combining all the above, we deduce that

(A(t)U,U)t ≥ k

[

k1 +
1

L
− ξ

]

θ2(L) +
k(1 − q)

2ξ

[

ξ2 − k2
2

(1 − q)

]

z2(1)

which, in view of (2.5), implies that (A(t)U,U)t ≥ 0. Therefore, A is monotone.

2.2. Uniform stability. In this subsection we state and prove our decay result for

the energy of the system (2.1).

Lemma 2.2. Assume that (2.3) and (2.4) hold and (θ, z) is the solution of (2.1).

Then the energy functional E defined by

(2.8) E(t) =
1

2

∫ L

0

θ2dx+
kξ

2
τ(t)

∫ 1

0

z2(ρ, t)dρ,

satisfies, for some positive constant m,

(2.9) E ′(t) ≤ −m
∫ L

0

θ2
xdx.
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Proof. Using equations (2.1) and integrating by parts yield

E ′(t) = k

∫ L

0

θθxxdx+
kξ

2
τ ′(t)

∫ 1

0

z2(ρ, t)dρ− kξ

∫ 1

0

(1 − τ ′(t)ρ)z(ρ, t)zρ(ρ, t)dρ

= −k
∫ L

0

θ2
xdx− kk1θ

2(L, t) − kk2θ(L, t)z(1, t) −
kξ

2
(1 − τ ′(t))z2(1, t)

+
kξ

2
θ2(L, t).

By (2.5) and (2.7), we find that µ := L [ξ − k1] satisfies 0 < µ < 1 and

−k
∫ L

0

θ2
xdx = −k(1 − µ)

∫ L

0

θ2
xdx− kµ

∫ L

0

θ2
xdx

= −k(1 − µ)

∫ L

0

θ2
xdx− kL [ξ − k1]

∫ L

0

θ2
xdx

≤ −k(1 − µ)

∫ L

0

θ2
xdx− k [ξ − k1] θ

2(L, t).

This leads to

E ′(t) ≤ −k(1 − µ)

∫ L

0

θ2
xdx−

kξ

2
θ2(L, t) − kk2θ(L, t)z(1, t) −

kξ

2
(1 − q)z2(1, t)

= −k(1 − µ)

∫ L

0

θ2
xdx−

kξ

2

[

θ(L, t) +
k2

ξ
z(1, t)

]2

− k(1 − q)

2ξ

[

ξ2 − k2
2

(1 − q)

]

z2(1, t)

≤ −k(1 − µ)

∫ L

0

θ2
xdx−

k(1 − q)

2ξ

[

ξ2 − k2
2

(1 − q)

]

z2(1, t).

Hence, using (2.5), our conclusion holds.

Theorem 2.3. Assume that (2.3) and (2.4) hold and (θ, z) is the solution of (2.1).

Then, there exist positive constants c0, c1 such that the energy functional satisfies

(2.10) E(t) ≤ c0e
−c1t.

Proof. Let us define the functional F by

F (t) := τ(t)

∫ 1

0

e−τ(t)ρz2(ρ, t)dρ.

Then,

F ′(t) = τ ′(t)

∫ 1

0

e−τ(t)ρz2(ρ, t)dρ− τ(t)τ ′(t)

∫ 1

0

ρe−τ(t)ρz2(ρ, t)dρ

+ 2τ(t)

∫ 1

0

e−τ(t)ρz(ρ, t)zt(ρ, t)dρ.
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Using the second equation of (2.1) and integrating by parts give

2τ(t)

∫ 1

0

e−τ(t)ρz(ρ, t)zt(ρ, t)dρ = −2

∫ 1

0

[1 − τ ′(t)ρ]e−τ(t)ρz(ρ, t)zρ(ρ, t)dρ

= −
∫ 1

0

[1 − τ ′(t)ρ]e−τ(t)ρ ∂

∂ρ
z2(ρ, t)dρ

= θ2(L, t) − [1 − τ ′(t)]e−τ(t)z2(1, t) − τ ′(t)

∫ 1

0

e−τ(t)ρz2(ρ, t)dρ

+ τ(t)τ ′(t)

∫ 1

0

ρe−τ(t)ρz2(ρ, t)dρ− τ(t)

∫ 1

0

e−τ(t)ρz2(ρ, t)dρ.

Therefore, we obtain

F ′(t) = θ2(L, t) − [1 − τ ′(t)]e−τ(t)z2(1, t) − τ(t)

∫ 1

0

e−τ(t)ρz2(ρ, t)dρ

Next, we make use of (2.3) and (2.7) to infer

(2.11) F ′(t) ≤ L

∫ L

0

θ2
xdx− e−Mτ(t)

∫ 1

0

z2(ρ, t)dρ

Now, for N > 0, let

L(t) := NE(t) + F (t).

By combining (2.9) and (2.11), we obtain

L′(t) ≤ −(mN − L)

∫ L

0

θ2
xdx− e−Mτ(t)

∫ 1

0

z2(ρ, t)dρ.

We choose N large enough so that

γ := (mN − L) > 0.

So, we arrive at

L′(t) ≤ −γ
∫ L

0

θ2
xdx− e−Mτ(t)

∫ 1

0

z2(ρ, t)dρ

which, using Poincaré’s inequality, yields

(2.12) L′(t) ≤ −c′E(t)

for some constant c′ > 0. On the other hand, we find that

NE(t) ≤ L(t) ≤ NE(t) + τ(t)

∫ 1

0

z2(ρ, t)dρ ≤ NE(t) +
2

kξ
E(t) =

(

N +
2

kξ

)

E(t).

Therefore,

(2.13) L(t) ∼ E(t).

Hence, (2.12) and (2.13) lead to

L′(t) ≤ −c′L(t)

A simple integration on (0, t), then another use of (2.13) give (2.10).
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Remark. For the special case of a constant delay, τ(t) ≡ α and α is a positive

constant, we conclude that system (1.1) is exponentially stable under the unique

condition

k2 < k1 +
1

L
.

3. DISTRIBUTED DELAY

This section is devoted to investigating the asymptotic behavior of system (1.5).

Here, we assume that

(3.1)

∫ τ2

τ1

k2(s)ds < k1 +
1

L

and ξ is a positive constant satisfying

(3.2) k1 <

∫ τ2

τ1

k2(s)ds+ ξ(τ2 − τ1) < k1 +
1

L
.

By introducing the variable

z(ρ, s, t) = θ(L, t− ρs), (ρ, s, t) ∈ (0, 1) × (τ1, τ2) × (0,∞)

we obtain the equivalent system

(3.3)































































θt(x, t) − kθxx(x, t) = 0, in (0, L) × (0,∞)

szt(ρ, s, t) + zρ(ρ, s, t) = 0, in (0, 1) × (τ1, τ2) × (0,∞)

θ(0, t) = 0, t ≥ 0

θx(L, t) + k1θ(L, t) +
∫ τ2

τ1
k2(s)z(1, s, t)ds = 0,

z(0, s, t) = θ(L, t), t ≥ 0

θ(x, 0) = θ0(x), x ∈ (0, L)

z(ρ, s, 0) = f0(ρs), (ρ, s) ∈ (0, 1) × (τ1, τ2).

Then, writing (3.3) in abstract form and following similar arguments as in [14], one

can deduce the well posedness of this system.

On the other hand, we define the energy functional by

(3.4) E(t) =
1

2

∫ L

0

θ2dx+
k

2

∫ 1

0

∫ τ2

τ1

s(k2(s) + ξ)z2dsdρ.

Using equations (3.3) and integrating by parts yield

E ′(t) = −k
∫ L

0

θ2
xdx− kk1θ

2(L, t) − kθ(L, t)

∫ τ2

τ1

k2(s)z(1, s, t)ds

− k

2

∫ τ2

τ1

(k2(s) + ξ)z2(1, s, t)ds+
k

2
θ2(L, t)

[
∫ τ2

τ1

(k2(s)ds+ ξ(τ2 − τ1)

]

.
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By (2.7) and (3.2), we find that µ := L
[

∫ τ2

τ1
k2(s)ds+ ξ(τ2 − τ1) − k1

]

satisfies 0 <

µ < 1 and

−k
∫ L

0

θ2
xdx = −k(1 − µ)

∫ L

0

θ2
xdx− kµ

∫ L

0

θ2
xdx

= −k(1 − µ)

∫ L

0

θ2
xdx− kL

[
∫ τ2

τ1

(k2(s)ds+ ξ(τ2 − τ1) − k1

]
∫ L

0

θ2
xdx

≤ −k(1 − µ)

∫ L

0

θ2
xdx− k

[
∫ τ2

τ1

(k2(s)ds+ ξ(τ2 − τ1) − k1

]

θ2(L, t).

Also, Young’s inequality gives

−kθ(L, t)
∫ τ2

τ1

k2(s)z(1, s, t)ds ≤
k

2
θ2(L, t)

∫ τ2

τ1

k2(s)ds+
k

2

∫ τ2

τ1

k2(s)z
2(1, s, t)ds.

Combining all the above, we conclude that

E ′(t) ≤ −k(1 − µ)

∫ L

0

θ2
xdx−

k

2
ξ(τ2 − τ1)θ

2(L, t) − kξ

2

∫ τ2

τ1

z2(1, s, t)ds.

Therefore, for some constant d > 0,

(3.5) E ′(t) ≤ −d
∫ L

0

θ2
xdx.

We are now ready to state and prove the following exponential decay result.

Theorem 3.1. Assume that
(

∫ τ2

τ1
k2(s)ds < k1 + 1

L

)

. Then, there exist positive con-

stants d0, d1 such that the energy functional of system (3.3) satisfies

(3.6) E(t) ≤ d0e
−d1t.

Proof. Let us define the functional I by

I(t) :=

∫ 1

0

∫ τ2

τ1

se−sρ(k2(s) + ξ)z2(ρ, s, t)dsdρ.

Then, we exploit the second equation of (3.3) to get

I ′(t) = −2

∫ τ2

τ1

(k2(s) + ξ)

∫ 1

0

e−sρzzρdρds = −
∫ τ2

τ1

(k2(s) + ξ)

∫ 1

0

e−sρ ∂

∂ρ
z2dρds

= −
∫ τ2

τ1

(k2(s) + ξ)

[

e−sz2(1, s, t) − z2(0, s, t) + s

∫ 1

0

e−sρz2dρ

]

ds

≤ θ2(L, t)

∫ τ2

τ1

(k2(s) + ξ)ds−
∫ 1

0

∫ τ2

τ1

se−sρ(k2(s) + ξ)z2dsdρ.

This, using (2.7), yields, for some positive constants c, δ,

(3.7) I ′(t) ≤ c

∫ L

0

θ2
xdx− δ

∫ 1

0

∫ τ2

τ1

s(k2(s) + ξ)z2dsdρ.

Now, For M > 0, let

R(t) := ME(t) + I(t).
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Making use of (3.5) and (3.7), we infer

R′(t) ≤ −(dM − c)

∫ L

0

θ2
xdx− δ

∫ 1

0

∫ τ2

τ1

s(k2(s) + ξ)z2dsdρ.

Next, choosing M large enough so that (dM − c) > 0 and using Poincaré’s inequality

imply

(3.8) R′(t) ≤ −d′E(t)

for some constant d′ > 0. On the other hand, we easily find that

(3.9) R(t) ∼ E(t).

Then, (3.8) and (3.9) clearly lead to (3.6).

REFERENCES

[1] Abdallah C., Dorato P., Benitez-Read J., and Byrne R., Delayed positive feedback can stabilize

oscillatory system, ACC. San Francisco (1993), 3106–3107.

[2] Ait Benhassi E. M., Ammari K., Boulite S., and Maniar L., Feedback stabilization of a class

of evolution equations with delay, J. Evol. Equ. 9 (2009), 103–121.

[3] Caraballo T., Real J., and Shaikhet L., Method of Lyapunov functionals construction in sta-

bility of delay evolution equations, J. Math. Anal. Appl. 334(2) (2007), 1130–1145.

[4] Datko R., Not all feedback stabilized hyperbolic systems are robust with respect to small time

delays in their feedbacks, SIAM J. Control Optim. 26(3) (1988), 697–713.

[5] Datko R., Lagnese J., and Polis M. P., An example on the effect of time delays in boundary

feedback stabilization of wave equations, SIAM J. Control Optim. 24(1) (1986), 152–156.

[6] Fridman E. and Orlov Y., On stability of linear parabolic distributed parameter systems with

time-varying delays, CDC 2007, December 2007, New Orleans.

[7] Huang C. and Vandewalle S., An analysis of delay-dependent stability for ordinary and partial

differential equations with fixed and distributed delays, SIAM J. Sci. Comp. 25 (5) (2004),

1608–1632.

[8] Kirane M., Said-Houari B., and Anwar M. N., Stability result for the Timoshenko system

with a time-varying delay term in the internal feedbacks, Comm. Pure Appl. Anal. 10 (2011),

667–686.

[9] Komornik V. and Zuazua E., A direct method for the boundary stabilization of the wave

equation, J. Math. Pures Appl. 69 (1990), 33–54.

[10] Lasiecka I., Global uniform decay rates for the solution to the wave equation with nonlinear

boundary conditions, Appl. Anal. 47 (1992), 191–212.

[11] Lasiecka I., Stabilization of wave and plate-like equations with nonlinear dissipation on the

boundary, J. Differential Equations 79 (1989), 340–381.

[12] Liu K., Locally distributed control and damping for the conservative systems, SIAM J. Control

Optim., 35 (1997), 1574–1590.

[13] Nicaise S. and Pignotti C., Stability and instability results of the wave equation with a delay

term in the boundary or internal feedbacks, SIAM J. Control Optim., 45(5) (2006), 1561–1585.

[14] Nicaise S. and Pignotti C., Stabilization of the wave equation with boundary or internal

distributed delay, Diff. Int. Equ. 21(9-10) (2008), 935–958.



136 M. I. MUSTAFA

[15] Nicaise S., Pignotti C., and Valein J., Exponential stability of the wave equation with boundary

time-varying delay, Discrete Contin. Dyn. Syst.Series S 4 (3) (2011), 693–722.

[16] Nicaise S., Valein J., and Fridman E., Stability of the heat and the wave equations with

boundary time-varying delays, Discrete Contin. Dyn. Syst. 2 (3) (2009), 559–581.

[17] Racke R., Instability of coupled systems with delay, Konstanzer Schriften in Mathematik 276

(2011).

[18] Said-Houari B. and Laskri Y., A stability result of a Timoshenko system with a delay term in

the internal feedback, Appl. Math. Comp. 217 (2010), 2857–2869.

[19] Suh I. H. and Bien Z., Use of time delay action in the controller design, IEEE Trans. Automat.

Control., 25 (1980), 600–603.

[20] Wang T., Exponential stability and inequalities of solutions of abstract functional differential

equations, J. Math. Anal. Appl. 324 (2006), 982–991.

[21] Yung S. P., Xu C. Q., and Li L. K., Stabilization of the wave system with input delay in the

boundary control, ESAIM: Control Optim. Calc. Var. 12 (2006), 770–785.

[22] Zhang Z., Liu Z., Miao X., and Chen Y., Stability analysis of heat flow with boundary time-

varying delay effect, Nonlinear Anal. 73 (2010) 1878–1889.

[23] Zuazua E., Exponential decay for the semi-linear wave equation with locally distributed damp-

ing, Comm. Partial Differential Equations 15 (1990), 205–235.

[24] Zuazua E., Uniform Stabilization of the wave equation by nonlinear boundary feedback, SIAM

J. Control Optim. 28 (2) (1990), 466–477.


