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ABSTRACT. This paper makes a research into a class of stochastic set differential equations

(SSDEs) disturbed by l-dimensional Brownian motion with non-Lipschitzian coefficients. The solu-

tions of SSDEs are set-valued stochastic processes. Thus, the existence and uniqueness of solutions

to SSDEs with non-Lipschitzian coefficients is first proven. And their continuous dependence on

initial conditions and a stability property are then investigated. The main mathematical tool is the

Bihari’s inequality.
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1. INTRODUCTION

The investigations of dynamic systems have been extensively developed, in con-

nection with, among other things, set differential equations which were started in

1969 by De Blasi and Iervolino [10]. The evidence of set differential equations for

such areas as control theory, differential inclusions and fuzzy differential equations

can be found in [9, 11, 12, 19, 22, 23, 24, 36, 40], and references therein. The set

differential equations are explored in [8, 14, 38]. One of the main advantages of in-

vestigating deterministic set differential equations is that they can be used as a tool

for studying properties of solutions of differential inclusions. On the other hand, the

set-valued random processes were first introduced by Van Cutsem [41]. Since then the

subject has attracted the interest of many mathematicians and further contributions

are made from both the theoretical and applied viewpoints (see e.g. [5, 7, 15, 37, 42]).

In [28, 30, 31, 35], the set valued random differential equations are explored. The

strong solution of Itô type set-valued stochastic differential equation is analyzed in

[25].

However, although there exists enormous literature where attempts have been

made to investigate stochastic differential inclusions (see e.g. [1, 2, 3, 4, 6, 20, 21,

32, 34], and references therein), it seems, as far as we know, that the problem of
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the existence and uniqueness of solutions to the SSDEs hasn’t still been solved well.

Recently, in [28], a kind of the SDDEs disturbed by Wiener processes is investigated,

where under the Lipschitzian condition the existence and uniqueness of solutions to

the SSDEs is proven. Moreover, in our current paper, under the non-Lipschitzian

condition the existence and uniqueness of solutions the SSDEs driven by Wiener

processes as well as other typical properties are studied. The mathematical tool

employed in the paper is the notion of the set-valued stochastic integral, which is

studied in [16, 18, 26, 27, 28, 33]. By using the Bihari inequality (see e.g. [13, 29]) we

prove the existence and uniqueness of solutions to the SSDEs. The work presented

here extends results obtained both for deterministic and for random set differential

equations.

The paper is organized as follows. Section 2 gives an appropriate framework

on a set-valued analysis within which the notion of a set valued stochastic integral is

given. In order to prove the existence and uniqueness for the SSDEs, the properties of

the set valued stochastic integral are provided. The existence and uniqueness of set-

valued solutions to the SSDEs disturbed by Wiener processes is proven in Sections 3.

Moreover, the continuous dependence of the solutions for SSDEs on initial conditions

and a stability property are discussed. Finally, the conclusions are made in Section 4.

2. PRELIMINARIES

Let K(Rd) be the family of all nonempty compact and convex subsets of Rd. In

K(Rd), we define the Hausdorff metric dH of two sets A, B ∈ K(Rd) as follows

dH = max

(
sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖

)
.

Throughout this paper, let (Ω,A, P ) be complete probability space. A × B+ is

a product σ-field of Ω × R. M(Ω,A;K(Rd)) denotes the family of A-measurable

multifunctions with values in Rd. A multifunction F ∈ M(Ω,A;K(Rd)) is said

to be Lp-integrably bounded, p ≥ 1, if there exists h ∈ Lp(Ω,A, P ;R+) such that

|‖F‖| ≤ h a.s., where

|‖A‖| := dH(A, {0}) = sup
a∈A

‖a‖ for A ∈ K(Rd).

Let us denote

Lp(Ω,A, P ;K(Rd)) := {F ∈ M(Ω,A;K(Rd)) : |‖F‖| ∈ Lp(Ω,A, P ;R+)}.

Let T ∈ (0,∞) and denote I := [0, T ]. Let (Ω,A, {At}t∈I , P ) be a complete,

filtered probability space where the sub-σ-field family (At, t ∈ I) of A satisfies the

usual conditions. We call X : I × Ω → K(Rd) a set-valued stochastic process, if

for every t ∈ I a mapping X(t, ·) = X(t) : Ω → K(Rd) is a set-valued random

variable. If X : I × Ω → K(Rd) is {At}t∈I-adapted and measurable, then it will be
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called nonanticipating. Equivalently, the set-valued process X is nonanticipating if

and only if X is measurable with respect to the σ-algebra N , which is defined as

follows

N := {A ∈ B(I) ⊗A : At ∈ At for every t ∈ I},

where At = {ω : (t, ω) ∈ A} for t ∈ I.

Let p ≥ 1 and Lp(I × Ω,N ;Rd) denote the set of all nonanticipating Rd-valued

stochastic processes {h(t)}t∈I such that E
(∫ T

0
‖h(s)‖pds

)
< ∞. A set-valued sto-

chastic process X is called Lp-integrably bounded, if there exists a real-valued sto-

chastic process ~ ∈ Lp(I × Ω,N ;R+) such that

‖|X(t, ω)|‖ ≤ ~(t, ω) for a.a. (t, ω) ∈ I × Ω.

By Lp(I × Ω,N ;K(Rd)) we denote the set of nonanticipating and Lp-integrably

bounded set-valued stochastic processes. Let X ∈ L1(I × Ω,N ;K(Rd)). For such

X and a fixed t ∈ I, by the Fubini Theorem, we can define the Aumann’s integral∫ t

0
X(s, ω)ds, for ω ∈ Ω. Obviously, for every t ∈ I and ω ∈ Ω the Aumann integral∫ t

0
X(s, ω)ds belongs to K(Rd) (see e.g. [15, 19]).

We say that a set-valued stochastic process X is dH-continuous, if almost all its

trajectories, i.e. the mappings X(·, ω) : I → K(Rd) are dH-continuous functions. It is

easy to know that if X ∈ Lp(I ×Ω,N ;K(Rd)), then the set-valued stochastic process∫ t

0
X(s)ds is dH-continuous (see e.g. Corollary 1 in [28]).

For the integral
∫ t

0
X(s)ds we have the following proposition.

Proposition 2.1. Let p ≥ 1. If X ∈ Lp(I ×Ω,N ;K(Rd)), then
∫ t

0
X(s)ds ∈ Lp(I ×

Ω,N ;K(Rd)).

Proof. It is easy to know that the Aumann integral
∫ t

0
X(s, ω)ds is a set-valued

nonanticipating process. By the assumption we know that there exists a stochas-

tic process h ∈ Lp(I ×Ω,N ;R+) with a property ‖|X(t, ω)|‖ ≤ h(t, ω) for almost all

(t, ω) ∈ I × Ω. It follows by Hölder inequality that

∫

I

∫

Ω

d
p
H

(∫ t

0

X(s, ω)ds, {0}

)
P (dω)dt

≤

∫

I

∫

Ω

(∫ t

0

dH(X(s, ω), {0})ds

)p

P (dω)dt

≤ T p

∫

Ω

(∫

I

‖|(X(s, ω)|‖pds

)
P (dω)

≤ T p

∫

Ω

∫

I

hp(s, ω)dsP (dω) < ∞,

which shows X ∈ Lp(I × Ω,N ;K(Rd)). Thus the proof is complete.



140 W. FEI AND D. XIA

Proposition 2.2. Let p ≥ 1. Assume that X, Y ∈ Lp(I × Ω,N ;K(Rd)). Then for

every s, t ∈ I and s ≤ t it holds

E sup
u∈[s,t]

d
p
H

(∫ u

s

X(v)dv,

∫ u

s

Y (v)dv

)
≤ (t − s)p−1

∫ t

s

Ed
p
H(X(v), Y (v))dv.

Proof. For every s, t ∈ I and s ≤ t, by virtue of the Hölder inequality we have

sup
u∈[s,t]

d
p
H(

∫ u

s

X(v)dv,

∫ u

s

Y (v)dv)

≤ sup
u∈[s,t]

[∫ u

s

dH(X(v), Y (v))dv

]p

≤ sup
u∈[s,t]

[
(u − s)p−1

∫ u

s

d
p
H(X(v), Y (v))dv

]

≤ (t − s)p−1

∫ t

s

d
p
H(X(v), Y (v))dv,

which easily shows the claim. Thus the proof is complete.

We introduce the Itô type SSDEs driven by a Wiener process, which is slightly

different from those in [28]. Let {B(t)}t∈I be a one-dimensional {A}t∈I-Brownian

motion defined on a complete probability space (Ω,A, P ) with a filtration {A}t∈I

satisfying usual hypotheses. For X ∈ L2(I × Ω,N ;Rd), let
∫ T

0
X(s)dB(s) denote the

classical stochastic Itô integral (see e.g. [17, 39]). Also, the following property will be

useful in the context of SSDEs.

Proposition 2.3. (i) Let X ∈ L2(I×Ω,N ;Rd). Then the Itô type integral
∫ t

0
X(s)dB(s)

belongs to L2(I×Ω,N ;Rd). (ii) For X ∈ L2(I×Ω,N ;K(Rd)), Y ∈ L2(I×Ω,N ;Rd),

∀s ≤ t ∈ I we have

dH

(∫ t

0

X(u)du +

∫ t

0

Y (u)dB(u),

∫ s

0

X(u)du +

∫ s

0

Y (u)dB(u)

)

= dH

(∫ t

s

X(u)du +

∫ t

s

Y (u)dB(u), {0}

)
.

Proof. The claim (i) is obvious. For the claim (ii), similar to the discussion of Propo-

sition 2.4 (ii) in [13] we complete the proof.

Due to the Doob inequality and the Itô isometry for the classical Itô integrals

(see e.g. [17]) we have the following property.

Proposition 2.4. Let X, Y ∈ L2(I × Ω,N ;Rd). Then for every t ∈ I

E sup
u∈[s,t]

∥∥∥∥
∫ u

s

X(v)dB(v) −

∫ u

s

Y (v)dB(v)

∥∥∥∥
2

≤ 4E

∫ t

s

‖X(v) − Y (v)‖2dv.

The following Bihari’ inequality (see e.g. [13, 29]) will be needed in next section.
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Lemma 2.5. Let r be Borel measurable, bounded nonnegative and left limit function

on I and c > 0. Let K : R+ → R+ be a continuous nondecreasing function such that

K(u) > 0 for all u > 0.

If µ(t) is a continuous nonnegative nondecreasing function on I, then the inequal-

ity

r(t) ≤ c +

∫ t

0

K(r(s−))dµ(s), ∀t ∈ I

implies that

r(t) ≤ G−1(G(c) + µ(t))

for all t ∈ I such that

G(c) + µ(t) ∈ Dom(G−1),

where

G(u) =

∫ u

1

1

K(v)
dv, u > 0,

G−1 is the inverse function of G.

3. EXISTENCE AND UNIQUENESS THEOREM OF SOLUTIONS TO

SSDEs

In this section, by {B(t)}t∈I we denote an l-dimensional {At}t∈I-Brownian motion

defined on (Ω,A, {At}t∈I , P ), l ∈ N. The process B is defined as follows B =

(B1, . . . , Bl)⊤, where {B1(t)}t∈I , . . . , {Bl(t)}t∈I are the independent, one-dimensional

{At}t∈I-Brownian motions.

Let us consider the following SSDE of Itô type:

(3.1) dX(t)
I P.1
= f(t, X(t))dt + g(t, X(t))dB(t), X(0)

P.1
= x0,

with

f : I × Ω ×K(Rd) → K(Rd),

g : I × Ω ×K(Rd) → Rd × Rl,

x0 : Ω → K(Rd) being a set-valued random variable.

Since g = (g1, . . . , gl) where gk : I × Ω × K(Rd) → Rd (k = 1, . . . , l), one can write

(3.1) as follows

(3.2) dX(t)
I P.1
= f(t, X(t))dt +

l∑

k=1

gk(t, X(t))dBk(t), X(0)
I P.1
= x0,

where
∑

denote the addition of d-dimensional vectors. One can observe that such

equations generalize the classical stochastic differential equations.

Definition 3.1. By a solution to the equation (3.1) or (3.2) we mean a set-valued

stochastic process X : I × Ω → K(Rd) such that
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(i) X ∈ L2(I × Ω,N ;K(Rd)),

(ii) X is a dH-continuous set-valued stochastic process,

(iii) it holds

(3.3) X(t)
I P.1
= x0 +

∫ t

0

f(s, X(s))ds +
l∑

k=1

∫ t

0

gk(s, X(s))dBk(s).

Moreover, a solution X : I × Ω → K(Rd) to the equation (3.1) is said to be

unique, if X(t)
I P.1
= Y (t), where Y : I × Ω → K(Rd) is any solution of (3.1).

In [28], the existence and uniqueness of solution to the SSDE driven by a Wiener

process is stated under the assumption that the coefficients f, g satisfy both the uni-

form Lipschitzian condition and the boundedness condition. In the present paper, we

will study the existence and uniqueness theorem under assumptions that the coeffi-

cients only satisfy a non-Lipschitzian condition and a boundedness condition, where

the disturbed term in (3.1) slightly differs from the one in [28].

Throughout this paper we will assume that f : I × Ω × K(Rd) → K(Rd), gk :

I×Ω×K(Rd) → Rd (k = 1, . . . , l) satisfy: the mapping f : (I×Ω)×K(Rd) → K(Rd)

is N × BdH
\ BdH

-measurable and gk : (I × Ω) × K(Rd) → Rd is N ⊗ BdH
\ B(Rd)-

measurable.

We will give the non-Lipschitzian condition of coefficients of SSDE (3.1). Let us

first introduce the following hypotheses:

(H3.1) x0 is an A0-measurable set-valued random variable such that Ed2
H(x0, {0}) < ∞.

(H3.2) Both f(t, {0}) and gk(t, {0}) are bounded, i.e.,

max{d2
H(f(t, {0}), {0}), ‖gk(t, {0})‖2} ≤ C, k = 1, . . . , l,

where C is a constant.

(H3.3) The non-Lipschitzian condition, i.e., for ∀x, y ∈ K(Rd),

max{d2
H(f(t, x), f(t, y)), ‖gk(t, x) − gk(t, y)‖2}

≤ CK(d2
H(x, y)), k = 1, . . . , l

with C as in (H3.2). And K(u) is a continuous increasing concave function on

R+ such that (i)
∫ 1

0
du

K(u)
= +∞; (ii) K(0) = 0 and K(u) > 0, ∀u > 0.

From the definition of K(u) in (H3.3), we easily show that G(u) defined in Lemma

2.5 is strictly increasing, G(u) → −∞ as u ↓ 0 and G−1(u) → 0 as u → −∞.

We state the following existence and uniqueness theorem of SSDE (3.1) or (3.3).

Theorem 3.2. Let (H3.1)–(H3.3) hold. Then there exists a unique solution X(t) to

equation (3.1), and

(3.4) E sup
t∈I

d2
H(X(t), {0}) < ∞.
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Moreover

(3.5) lim
n→∞

E sup
t∈I

dH(Xn(t), X(t)) = 0,

where Xn(t), t ≥ 0 and n ≥ 1, are defined as follows:

Xn(0) = x0,(3.6)

Xn(t) = Xn(
i

n
) +

∫ t

i/n

f(s, X̃n(s))ds +

l∑

k=1

∫ t

i/n

gk(s, X̃n(s))dBk(s)

if
i

n
< t ≤

i + 1

n
, i = 0, 1, . . . ,

X̃n(t) =

∞∑

i=0

Xn(
i

n
)1[i/n,(i+1)/n)(t) being a simple function.

In order to prove the theorem, we need to prepare several lemmas. We notice

that (3.6) can be rewritten as

(3.7) Xn(t) = x0 +

∫ t

0

f(s, X̃n(s))ds +

l∑

k=1

∫ t

0

gk(s, X̃n(s))dBk(s).

Lemma 3.3. Let (H3.1) hold. Assume that f(t, x) and gk(t, x) (k = 1, . . . , l) satisfy

the linear growth condition, i.e., there exists a positive constant L such that for all

x ∈ K(Rd), ∀t ∈ I,

(3.8) max
(
d2

H(f(t, x), {0}), ‖gk(t, x)‖2
)
≤ L(1 + d2

H(x, {0})) a.s.

Then there exists a C̄ > 0 such that

Ed2
H(Xn(t), X̃n(t)) ≤

C̄

n
, ∀n ∈ N.

Proof. By virtue of the definition of X̃n(t), we have X̃n(t) ∈ L2(I × Ω,N ;K(Rd)).

Thus, we have:

• the composition f(·, ·, X̃n(·, ·)) : I × Ω → K(Rd) is nonanticipating set-valued

stochastic process, and the composition gk(·, ·, X̃n(·, ·)) : I × Ω → Rd is nonan-

ticipating Rd-valued stochastic process,

• the composition f(·, ·, X̃n(·, ·)) ∈ L2(I ×Ω,N ;K(Rd)), gk(·, ·, X̃n(·, ·)) ∈ L2(I ×

Ω,N ;Rd), k = 1, . . . , l,

• due to Propositions 2.1 and 2.3 that the process Xn defined as in (3.6) belongs

to L2(I × Ω,N ;K(Rd)), and is dH-continuous.

In terms of Propositions 2.2 and 2.4, it follows from (3.7) and (3.8) that

E sup
0≤s≤t

d2
H(Xn(s), {0})

≤ (l + 2)

[
Ed2

H(x0, {0}) + E sup
0≤s≤t

d2
H(

∫ s

0

f(u, X̃n(u))du, {0})
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+
l∑

k=1

E sup
0≤s≤t

‖

∫ s

0

gk(u, X̃n(u))dBk(u)‖2

]

≤ (l + 2)

[
Ed2

H(x0, {0}) + tL

∫ t

0

(1 + Ed2
H(X̃n(u), {0}))du

+4lL

∫ t

0

(1 + Ed2
H(X̃n(u), {0}))du

]

≤ c1 + c2

∫ t

0

E sup
0≤s≤u

d2
H(Xn(s), {0})du,

where c1 = (l+2)[Ed2
H(x0, {0})+T 2L+4lLT ], c2 = (l+2)(T +4l)L, the last inequality

is from the definition of the simple function X̃n(t). Thus, by using Gronwall inequality,

we obtain

(3.9) E sup
0≤s≤t

d2
H(Xn(s), {0}) ≤ c1e

c2t, ∀t ∈ I.

From Propositions 2.2-2.4, (3.8) and (3.9), we therefore have that, if 0 ≤ s ≤ t ≤ T ,

t − s ≤ 1
n
,

Ed2
H(Xn(t), Xn(s))

= Ed2
H

(∫ t

s

f(u, X̃n(u))du +
l∑

k=1

∫ t

s

gk(u, X̃n(u))dBk(u), {0}

)

≤ (l + 1)

[
Ed2

H(

∫ t

s

f(u, X̃n(u))du, {0})

+

l∑

k=1

E

∥∥∥∥
∫ t

s

gk(u, X̃n(u))dBk(u)

∥∥∥∥
2
]

≤ (l + 1)

[
(t − s)

∫ t

s

Ed2
H(f(u, X̃n(u)), {0})du

+4

l∑

k=1

E

∫ t

s

∥∥∥gk(u, X̃n(u))
∥∥∥

2

du

]

≤ (l + 1)L

[
(t − s)

∫ t

s

(1 + Ed2
H(X̃n(u), {0}))du + 4l

∫ t

s

(1 + Ed2
H(X̃n(u), {0}))du

]

≤ (l + 1)L

[
(t − s)2 + 4l(t − s) + (t − s + 4l)

∫ t

s

Ed2
H(X̃n(u), {0})du

]

≤ (l + 1)L[T + 4l + (T + 4l)c1e
c2T ](t − s) := C̄(t − s) ≤

C̄

n
.

Thus, the required inequality follows by the definition of X̃n(t). The proof is complete.

Lemma 3.4. Let (H3.1)-(H3.3) hold. Then we have

E sup
t∈I

d2
H(Xm(t), Xn(t)) → 0 as m, n → ∞.
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Proof. By the definition of K(u), we can choose two positive constants κ and ρ such

that K(u) ≤ κ + ρu, ∀u ≥ 0. From (H3.2), we obtain

d2
H(f(t, x), {0}) ≤ 2(d2

H(f(t, x), f(t, {0})) + d2
H(f(t, {0}), {0}))

≤ 2CK(d2
H(x, {0})) + 2C ≤ 2Cκ + 2C + 2Cρd2

H(x, {0}),

which shows that f(t, x) satisfies the linear growth condition (3.8). Similarly, gk(t, x),

(k = 1 . . . , l), satisfy (3.8). Therefore, we have

E sup
0≤s≤t

d2
H(Xm(s), Xn(s))

= E sup
0≤s≤t

d2
H

(∫ s

0

f(u, X̃m(u))du +
l∑

k=1

∫ s

0

gk(u, X̃m(u))dBk(u),

∫ s

0

f(u, X̃n(u))du

+

l∑

k=1

∫ s

0

gk(u, X̃n(u))dBk(u)

)

≤ (1 + l)E sup
0≤s≤t

[
d2

H

(∫ s

0

f(u, X̃m(u))du,

∫ s

0

f(u, X̃n(u))du

)

+
l∑

k=1

∥∥∥∥
∫ s

0

gk(u, X̃m(u))dBk(u)

∥∥∥∥
2
]

≤ (1 + l)t

∫ t

0

Ed2
H

(
f(u, X̃m(u)), f(u, X̃n(u))

)
du

+ 4(1 + l)

l∑

k=1

∫ t

0

E‖gk(u, X̃m(u))‖2du := I1 + I2.

From (H3.3) and the concavity of the function K(u), we deduce

I1 ≤ 3t(1 + l)E

∫ t

0

[d2
H(f(u, X̃m(u)), f(u, Xm(u)))

+ d2
H(f(u, Xm(u)), f(u, Xn(u))) + d2

H(f(u, Xn(u)), f(u, X̃n(u)))]du

≤ 3(1 + l)TC

∫ t

0

[
EK(d2

H(X̃m(u), Xm(u)))

+EK(d2
H(Xm(u), Xn(u))) + EK(d2

H(Xn(u), X̃n(u)))
]
du

≤ 3(1 + l)TC

∫ t

0

[
K(Ed2

H(X̃m(u), Xm(u)))

+K(Ed2
H(Xm(u), Xn(u))) + K(Ed2

H(Xn(u), X̃n(u)))
]
du,

which, from Lemma 3.3 and the function K(u) being increasing, shows that

I1 ≤ 3(1 + l)T 2C

(
K

(
C̄

m

)
+ K

(
C̄

n

))
+ 3(1 + l)TC

∫ t

0

K(Ed2
H(Xm(u), Xn(u)))du.
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Similarly, we have

I2 ≤ 12(1 + l)

l∑

k=1

∫ t

0

E[‖gk(u, X̃m(u)) − gk(u, Xm(u))‖2

+ ‖gk(u, Xm(u)) − gk(u, Xn(u))‖2

+ ‖gk(u, Xn(u)) − gk(u, X̃n(u))‖2]du

≤ 12(1 + l)lC

∫ t

0

[
EK(d2

H(X̃m(u), Xm(u)))

+EK(d2
H(Xm(u), Xn(u)))

+EK(d2
H(Xn(u), X̃n(u)))

]
du

≤ 12(1 + l)lC

∫ t

0

[
K(Ed2

H(X̃m(u), Xm(u)))

+K(Ed2
H(Xm(u), Xn(u)))

+K(Ed2
H(Xn(u), X̃n(u)))

]
du

≤ 12(1 + l)lCT

(
K(

C̄

m
) + K(

C̄

n
)

)

+ 12(1 + l)lC

∫ t

0

K(Ed2
H(Xm(u), Xn(u)))du.

Thus, we have

E sup
0≤s≤t

d2
H(Xm(s), Xn(s)) ≤ I1 + I2

≤ C
m,n
1 + C2

∫ t

0

K(Ed2
H(Xm(u), Xn(u)))du

≤ C
m,n
1 + C2

∫ t

0

K(E sup
0≤s≤u

d2
H(Xm(s), Xn(s)))du,

where

C
m,n
1 = (3(1 + l)T 2C + 12(1 + l)lTC)

(
K(

C̄

m
) + K(

C̄

n
)

)
,

C2 = 3(1 + l)TC + 12(1 + l)lC.

Obviously, C
m,n
1 → 0 as m, n → ∞.

By Bihari’s inequality (see Lemma 2.6), we have

E sup
0≤s≤t

d2
H(Xm(s), Xn(s)) ≤ G−1(G(Cm,n

1 ) + C2t), ∀t ∈ I.

Due to the properties of the functions G and G−1, we deduce

G(Cm,n
1 ) + C2T → −∞ as m, n → ∞,
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from which we know

E sup
s∈I

d2
H(Xm(s), Xn(s)) ≤ G−1(G(Cm,n

1 ) + C2T ) → 0 as m, n → ∞.

Hence, the proof is complete.

We now can start to prove Theorem 3.2.

Proof of Theorem 3.2. From the definition of X̃n(t), Propositions 2.1 and 2.3 we

know that the process Xn defined as in (3.6) belongs to L2(I × Ω,N ;K(Rd)), and is

dH-continuous.

By Lemma 3.4, we know that Xn(t) is a Cauchy sequence in L2(I×Ω,N ;K(Rd)).

Thus, there exists a X(t, ω) ≡ X(t) such that Xn(t)
I P.1
→ X(t) and (3.5) holds.

Observing that P -a.s. for every t ∈ I it holds

dH (Xn(t, ω), X(t, ω)) → 0 as n → ∞,

we deduce that Xn(t, ·) : Ω → K(Rd) is an At-measurable multifunction. Thus, X is a

continuous {A}t∈I-adapted set-valued stochastic process, and hence nonanticipating.

As Xn ∈ L2(I × Ω,N ;K(Rd)), we know that for every fixed t ∈ I the set-

valued random variable Xn(t) ∈ L2(Ω,A, P ;K(Rd)), which, from (3.9), implies that

E sup
t∈I

d2
H(X(t), {0}) < ∞. Thus (3.4) holds. Further, E

∫ T

0
d2

H(X(t), {0})dt ≤

T sup
t∈I

Ed2
∞(X(t), {0}) < ∞, which means that X ∈ L2(I × Ω,N ;K(Rd)).

In what follows we shall show that X is a solution to equation (3.1). Since the

function K(u) is increasing and concave, due to (H3.3), Propositions 2.2 and 2.4, we

have

E sup
u∈[0,t]

d2
H

(∫ u

0

f(s, X̃n(s))ds,

∫ u

0

f(s, X(s))ds

)
(3.10)

+
l∑

k=1

E sup
u∈[0,t]

∥∥∥∥
∫ u

0

gk(s, X̃n(s))dBk(s) −

∫ u

0

gk(s, X(s))dBk(s)

∥∥∥∥
2

≤ 2

[
E sup

u∈[0,t]

d2
H

(∫ u

0

f(s, X̃n(s))ds,

∫ u

0

f(s, Xn(s))ds

)

+ E sup
u∈[0,t]

d2
H

(∫ u

0

f(s, Xn(s))ds,

∫ u

0

f(s, X(s))ds

)

+

l∑

k=1

E sup
u∈[0,t]

∥∥∥∥
∫ u

0

gk(s, X̃n(s))dBk(s) −

∫ u

0

gk(s, Xn(s))dBk(s)

∥∥∥∥
2

+

l∑

k=1

E sup
u∈[0,t]

∥∥∥∥
∫ u

0

gk(s, Xn(s))dBk(s) −

∫ u

0

gk(s, X(s))dBk(s)

∥∥∥∥
2
]

≤ 2(t + 4l)C

∫ t

0

[
E sup

u∈[0,s]

K
(
d2

H(X̃n(u), Xn(u))
)



148 W. FEI AND D. XIA

+E sup
u∈[0,s]

K
(
d2

H(Xn(u), X(u))
)
]

ds

≤ 2(T + 4l)C

∫ T

0

K

(
E sup

u∈[0,s]

d2
H(X̃n(u), Xn(u))

)
ds

+ 2(T + 4l)C

∫ t

0

K

(
E sup

u∈[0,s]

d2
H(Xn(u), X(u))

)
ds

:= In.

From Lemma 3.3 and the definition of X(t), we deduce In → 0. Hence, we have, for

∀t ∈ I,

E sup
u∈[0,t]

d2
H

(∫ u

0

f(s, X̃n(s))ds,

∫ u

0

f(s, X(s))ds

)
→ 0,

l∑

k=1

E sup
u∈[0,t]

∥∥∥∥
∫ u

0

gk(s, X̃n(s))dBk(s) −

∫ u

0

gk(s, X(s))dBk(s)

∥∥∥∥
2

→ 0 as n → ∞,

from which we can let n → ∞ in (3.6) to obtain that, for ∀t ∈ I,

X(t) = x0 +

∫ t

0

f(s, X(s))ds +

l∑

k=1

∫ t

0

gk(s, X(s))dBk(s).

In other words, X(t) is a solution to equation (3.1).

Finally, we prove that X is strongly unique. Let us assume that X, Y : I ×Ω →

K(Rd) are strong solutions to equations (3.1). Define ξ(t) = E sup
u∈[0,t]

d2
H(X(u), Y (u)).

From Propositions 2.2 and 2.4, we obtain

ξ(t) ≤ (1 + l)

[
E sup

u∈[0,t]

d2
H

(∫ u

0

f(s, X(s))ds,

∫ u

0

f(s, Y (s))ds

)

+
l∑

k=1

E sup
u∈[0,t]

∥∥∥∥
∫ u

0

gk(s, X(s))dBk(s) −

∫ u

0

gk(s, Y (s))dBk(s)

∥∥∥∥
2
]

≤ (1 + l)

[
t

∫ t

0

Ed2
H(f(s, X(s)), f(s, Y (s)))ds

+4
l∑

k=1

∫ t

0

E‖gk(s, X(s)) − gk(s, Y (s))ds‖2

]

≤ (1 + l)(T + 4l)C

∫ t

0

EK
(
d2

H(X(s), Y (s))
)
ds

≤ (1 + l)(T + 4l)C

∫ t

0

E

(
sup

u∈[0,s]

K
(
d2

H(X(u), Y (u))
)
)

ds

≤ (1 + l)(T + 4l)C

∫ t

0

K

(
E sup

u∈[0,s]

d2
H(X(u), Y (u))

)
ds
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= (1 + l)(T + 4l)C

∫ t

0

K(ξ(s))ds := C1

∫ t

0

K(ξ(s))ds.

By Bihari’s inequality (see Lemma 2.5), we have

ξ(t) ≤ G−1(G(0+) + C1t) = 0, ∀t ≥ 0,

which shows that X(t)
I P.1
= Y (t). Thus, the proof is complete. �

4. STABILITY OF SOLUTIONS TO SSDEs

A stability of the solution with respect to initial value is a desired property. This

kind of stability ensures that in the case of replacement of x0 by its approximate

value y0, the solution of equation with initial value y0 does not differ much from the

solution of equation with initial value x0. We will show that such the property holds

for solutions of SSDEs. Let X, Y denote strong solutions to SSDEs

(4.1) dX(t)
I P.1
= f(t, X(t))dt + g(t, X(t))dB(t), X(0)

P.1
= x0,

(4.2) dY (t)
I P.1
= f(t, Y (t))dt + g(t, Y (t))dB(t), Y (0)

P.1
= y0,

respectively.

Proposition 4.1. Assume that x0, y0 ∈ L2(Ω,A0, P ;K(Rd)), and f : I × Ω ×

K(Rd) → K(Rd), gk : I × Ω × K(Rd) → Rd (k = 1, . . . , l) satisfy (H3.1)–(H3.3).

Then we have

E sup
u∈[0,t]

d2
H(X(u), Y (u)) ≤ G−1(G(C0)) + C1t), ∀t ∈ I,

where C0 = (2 + l)Ed2
H(x0, y0), C1 = (2 + l)(T + 4l)C. Especially, if x0

P.1
= y0, then

X(t)
I P.1
= Y (t).

Proof. Let us assume that X, Y : I × Ω → K(Rd) are solutions to the equations

(4.1) and (4.2), respectively. Define r(t) = E sup
u∈[0,t]

d2
H(X(u), Y (u)). Since K(u) is

increasing and concave, from Propositions 2.2 and 2.4 we obtain

r(t) ≤ (2 + l)

[
Ed2

H(x0, y0) + E sup
u∈[0,t]

d2
H

(∫ u

0

f(s, X(s))ds,

∫ u

0

f(s, Y (s))ds

)

+

l∑

k=1

E sup
u∈[0,t]

∥∥∥∥
∫ u

0

gk(s, X(s))dBk(s) −

∫ u

0

gk(s, Y (s))dBk(s)

∥∥∥∥
2
]

≤ (2 + l)

[
Ed2

H(x0, y0) + t

∫ t

0

Ed2
H(f(s, X(s)), f(s, Y (s)))ds

+4
l∑

k=1

∫ t

0

E‖gk(s, X(s)) − gk(s, Y (s))‖2ds

]
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≤ (2 + l)Ed2
H(x0, y0) + (2 + l)(T + 4l)C

∫ t

0

EK
(
d2

H(X(s), Y (s))
)
ds

≤ (2 + l)Ed2
H(x0, y0)

+ (2 + l)(T + 4l)C

∫ t

0

EK

(
sup

u∈[0,s]

d2
H(X(u), Y (u))

)
ds

≤ (2 + l)Ed2
H(x0, y0)

+ (2 + l)(T + 4l)C

∫ t

0

K

(
E sup

u∈[0,s]

d2
H(X(u), Y (u))

)
ds

= (2 + l)Ed2
H(x0, y0) + (2 + l)(T + 4l)C

∫ t

0

K(r(s))ds := C0 + C1

∫ t

0

K(r(s))ds.

By Lemma 2.5 we have

r(t) ≤ G−1(G(C0) + C1t), ∀t ≥ 0.

If x0
P.1
= y0, then C0 = 0. By the properties of the functions G and G−1, we know

r(t) = 0 which shows that X(t)
I P.1
= Y (t). Thus, the proof is complete.

The exponential stability of stochastic differential equation driven by semimartin-

gale is discussed in [29]. Now, the second kind of stability for strong solutions to

SSDEs which is stability with respect to the equation coefficients f, gk (k = 1 . . . , l)

is explored. We will show that if approximations fn, g1
n, . . . , g

l
n of the coefficients

f, g1, . . . , gl converge to the exact coefficients, then approximate solutions converge

to the solution of the equation with exact coefficients, too. Therefore, let X, Xn

denote solutions of the following SSDEs

(4.3) dX(t)
I P.1
= f(t, X(t))dt + g(t, X(t))dB(t), X(0)

P.1
= x0,

(4.4) dXn(t)
I P.1
= fn(t, Xn(t))dt + gn(t, Xn(t))dB(t), Xn(0)

P.1
= x0,

respectively.

Proposition 4.2. Let x0 ∈ L2(Ω,A0, P ;K(Rd)), and f, fn : I×Ω×K(Rd) → K(Rd),

gk, gk
n : I × Ω × K(Rd) → Rd (n ∈ N, k = 1, . . . , l) satisfy (H3.1)–H(3.3). Assume

that for every x ∈ K(Rd) it holds

(4.5) E

∫ T

0

d2
H(fn(t, x), f(t, x))dt → 0,

(4.6) E

∫ T

0

‖gk
n(t, x) − gk(t, x))dt‖2dt → 0, k = 1, . . . , l,

as n → ∞. Then, for the solutions X, Xn : I × Ω → K(Rd) of the equations (4.3),

(4.4) we have

E sup
t∈I

d2
H(Xn(t), X(t)) → 0 as n → ∞.
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Proof. The solutions X to (4.3) and Xn to (4.4) exist and are unique due to Theorem

3.2. By (H3.1)–H(3.3), Propositions 2.2 and 2.4 we deduce

E sup
v∈[0,t]

d2
H(

∫ v

0

fn(s, Xn(s))ds,

∫ v

0

f(s, X(s))ds)

≤ 2[tE

∫ t

0

d2
H(fn(s, Xn(s)), fn(s, X(s)))

+ tE

∫ t

0

d2
H(fn(s, X(s)), f(s, X(s)))ds]

≤ 2[CT

∫ t

0

EK(d2
H(Xn(s), X(s)))ds

+ TE

∫ T

0

d2
H(fn(s, X(s)), f(s, X(s)))ds],

and

E sup
v∈[0,t]

∥∥∥∥
∫ v

0

gk
n(s, Xn(s))dBk(s) −

∫ v

0

gk(s, X(s))dBk(s)

∥∥∥∥
2

≤ 8[E

∫ t

0

‖gk
n(s, Xn(s)) − gk

n(s, X(s))‖2ds

+ E

∫ t

0

‖gk
n(s, X(s)) − gk(s, X(s))‖2ds]

≤ 8[C

∫ t

0

EK(d2
H(Xn(s), X(s)))

+

∫ t

0

E‖gk
n(s, X(s)) − gk(s, X(s))‖2ds],

from which, we have, for t ∈ I,

E sup
v∈[0,t]

d2
H(Xn(v), X(v))

≤ (1 + l)

[
E sup

v∈[0,t]

d2
H

(∫ v

0

fn(s, Xn(s))ds,

∫ v

0

f(s, X(s))ds

)

+
l∑

k=1

E sup
v∈[0,t]

∥∥∥∥
∫ v

0

gk
n(s, Xn(s))dBk(s) −

∫ v

0

gk(s, X(s))dBk(s)

∥∥∥∥
2
]

≤ 2(1 + l)

[
CT

∫ t

0

EK
(
d2

H(Xn(s), X(s))
)
ds

+ T

∫ T

0

Ed2
H(fn(s, X(s)), f(s, X(s)))ds

+ 4lC

∫ t

0

EK
(
d2

H(Xn(s), X(s))
)
ds

+4
l∑

k=1

∫ t

0

E‖gk
n(s, X(s)) − gk(s, X(s))‖2ds

]
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≤ 2(1 + l)

[
C(T + 4l)

∫ t

0

EK
(
d2

H(Xn(s), X(s))
)
ds

+ T

∫ T

0

Ed2
H(fn(s, X(s)), f(s, X(s)))ds

+4

l∑

k=1

∫ T

0

E‖gk
n(s, X(s)) − gk(s, X(s))‖2ds

]

≤ 2(1 + l)

[
C(T + 4l)

∫ t

0

K

(
E sup

v∈[0,s]

d2
H(Xn(v), X(v))

)
ds

+ T

∫ T

0

Ed2
H(fn(s, X(s)), f(s, X(s)))ds

+4
l∑

k=1

∫ T

0

E‖gk
n(s, X(s)) − gk(s, X(s))‖2ds

]

:= Cn
1 + C2

∫ t

0

K

(
E sup

v∈[0,s]

d2
H(Xn(v), X(v))

)
ds,

where

Cn
1 = 2(1 + l)

[
T

∫ T

0

Ed2
H(fn(s, X(s)), f(s, X(s)))ds

+4

l∑

k=1

∫ T

0

E‖gk
n(s, X(s)) − gk(s, X(s))‖2ds

]
,

C2 = 2C(1 + l)(T + 4l).

Again by Bihari’s inequality (see Lemma 2.5) we obtain

E sup
v∈[0,T ]

d2
H(Xn(v), X(v)) ≤ G−1(G(Cn

1 ) + C2T ),

Hence, from assumptions (4.5) and (4.6), we know that Cn
1 → 0 as n → ∞, from which

we have G(Cn
1 ) → −∞ as n → ∞. By the definition of G−1, we have G−1(G(Cn

1 ) +

C2T ) → 0 as n → ∞. Hence, we prove immediately the claim.

5. CONCLUSION

In real dynamic systems, we are often faced with random experiments whose

outcomes might be multi-valued. We analyze this phenomenon by using the set-

valued calculus. The stochastic set differential equations characterize a large class of

physically important dynamic systems which can be applied in such areas as control,

economics and finance, etc. In this paper, we discuss the behavior of solutions to

SSDEs disturbed by the Brownian motion with non-Lipschitzian coefficients. First,

the existence and uniqueness theorem of solutions to the SSDEs of Itô type is proven

by employing the well-known Cauchy-Maruyama approximation procedure (c.f. [29]).
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Second, the stability of solutions to the SSDEs is discussed. Main mathematical tool

is Bihari’s inequality. Moreover, the present case can be in future extended to the

SSDEs driven by one-dimensional continuous local martingales.
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