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1. INTRODUCTION

Let T be a positive integer, p : Z[0, T ] → (1,∞), r : Z[1, T ] → (0,∞) and the

homeomorphism hp(k) : R → R be defined by hp(k)(x) = |x|p(k)−2x, for all x ∈ R
and k ∈ Z[0, T ]. Here and below, for a, b ∈ N with a < b, we use the notation

Z[a, b] := {a, a+ 1, . . . , b}.
In this paper we deal with the existence of at least three solutions for the periodic

problem

(PP )

{
−∆p(k−1)x(k − 1) + r(k)hp(k)(x(k)) = λf(k, x(k)), (∀) k ∈ Z[1, T ],

x(0)− x(T + 1) = 0 = ∆x(0)−∆x(T ),

as well as for the Neumann problem

(PN)

{
−∆p(k−1)x(k − 1) + r(k)hp(k)(x(k)) = λf(k, x(k)), (∀) k ∈ Z[1, T ],

∆x(0) = 0 = ∆x(T ),
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where λ is a positive parameter, ∆x(k) = x(k + 1) − x(k) is the forward difference

operator, ∆p(·) stands for the discrete p(·)-Laplacian operator, i.e.,

∆p(k−1)x(k − 1) := ∆(hp(k−1)(∆x(k − 1)))(1.1)

= hp(k)(∆x(k))− hp(k−1)(∆x(k − 1))

and f : Z[1, T ]× R→ R is a continuous function.

Throughout the paper, we assume that the variable exponent p satisfies

(1.2) p(0) = p(T )

whenever we refer to the periodic problem (PP ). From now on, we also employ the

notations:

p− = min
k∈Z[0,T ]

p(k), p+ = max
k∈Z[0,T ]

p(k) and r− = min
k∈Z[1,T ]

r(k).

In the last years, the critical point theory has been extensively used to obtain mul-

tiplicity of solutions for boundary value problems involving the discrete p-Laplacian

operator (see e.g., [1], [4], [7]–[13], [18], [26] and the references therein).

Boundary value problems with discrete p(·)-Laplacian were studied in recent time;

we refer the reader to [3], [15], [16], [19], [21], [22]. The existence of at least three solu-

tions for discrete anisotropic equations subjected to homogeneous Dirichlet boundary

conditions was obtained in [14], [20]. Also, using some related variational arguments,

the existence of infinitely many solutions for such equations is studied in [23].

In the recent work [2], the authors have obtained the existence of ground state

and saddle point solutions for problems (PP ) and (PN) with λ = 1; also, they give

an alternative variational proof of the upper and lower solutions theorem for both of

the problems. By mountain pass type arguments, in [25], the existence of at least

two positive solutions for problems (PP ) and (PN) is established, for sufficiently large

values of the parameter λ.

The aim of this paper is to present suitable assumptions which guarantee the

existence of at least three solutions for problems (PP ) and (PN). Hence, the first

results (see Theorems 3.1 and 3.4) ensured the existence of an open interval Λh,

such that for every λ ∈ Λh, problems (PP ) and (PN) admit at least three solutions

whose norms are bounded with respect to λ. Next, under a suitable sign hypothesis

on f and without assuming any asymptotic condition on the primitive F of f , we

obtain the existence of at least three positive solutions for problems (PP ), (PN) (see

Theorems 3.6 and 3.9), for each λ belonging to a well-defined interval.

The rest of the paper is organized as follows. The functional framework, the

variational setting and the abstract three critical points theorems are presented in

Section 2. In Section 3 we give our main results.
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2. FUNCTIONAL FRAMEWORK AND ABSTRACT CRITICAL

POINTS THEOREMS

To establish the main results we shall use a variational approach. With this aim,

to treat the periodic problem (PP ), we introduce the space

XP := {x : Z[0, T + 1]→ R | x(0) = x(T + 1)} ,

while in the case of Neumann problem (PN), we shall use

XN := {x : Z[0, T + 1]→ R} .

For convenience in notations we generically denote by X one of the spaces XP or

XN . The space X will be endowed with the Luxemburg type norm

‖x‖η,p(·) = inf

{
ν > 0 :

T+1∑
k=1

1

p(k − 1)

∣∣∣∣∆x(k − 1)

ν

∣∣∣∣p(k−1)

+ η

T∑
k=1

1

p(k)

∣∣∣∣x(k)

ν

∣∣∣∣p(k)

≤ 1

}
,

for some η > 0. It is easy to check that for all x ∈ X and any η > 0, one has

(2.1) ‖x‖p
−

η,p(·) ≤
T+1∑
k=1

|∆x(k − 1)|p(k−1)

p(k − 1)
+ η

T∑
k=1

|x(k)|p(k)

p(k)
≤ ‖x‖p

+

η,p(·), if ‖x‖η,p(·) > 1.

We shall use the functional ϕX : X → R given by

(2.2) ϕX(x) =
T+1∑
k=1

|∆x(k − 1)|p(k−1)

p(k − 1)
+

T∑
k=1

r(k)

p(k)
|x(k)|p(k), (∀) x ∈ X.

Standard arguments show that ϕX ∈ C1(X,R) and

(2.3) 〈ϕ′X(x), y〉 =
T+1∑
k=1

hp(k−1)(∆x(k − 1))∆y(k − 1) +
T∑
k=1

r(k)hp(k)(x(k))y(k),

for all x ∈ X. Also, we define

(2.4) FX(x) =
T∑
k=1

F (k, x(k)), (∀) x ∈ X,

where F : Z[1, T ]× R→ R is the primitive of f , i.e.,

F (k, t) =

∫ t

0

f(k, τ)dτ, (∀) k ∈ Z[1, T ], (∀) t ∈ R.

It is easy to see that FX ∈ C1(X,R) and

(2.5) 〈F ′X(x), y〉 =
T∑
k=1

f(k, x(k))y(k), (∀) x, y ∈ X.

The energy functional corresponding to problem (PP ) (resp. (PN)) is

ΦX(x) = ϕX(x)− λFX(x), (∀) x ∈ X,



186 G. BONANNO, P. JEBELEAN, AND C. ŞERBAN

with X = XP (resp. X = XN). From (2.3) and (2.5), one has

〈Φ′X(x), y〉 =
T+1∑
k=1

hp(k−1)(∆x(k − 1))∆y(k − 1)

+
T∑
k=1

r(k)hp(k)(x(k))y(k)− λ
T∑
k=1

f(k, x(k))y(k), (∀) x, y ∈ X.

The search of solutions of problem (PP ) reduces to finding critical points of the

energy functional ΦXP
by the following

Proposition 2.1 (see [2, Proposition 2.1]). Assume that hypothesis (1.2) holds true.

A function x ∈ XP is solution of problem (PP ) if and only if it is a critical point of

ΦXP
.

Also, we have

Proposition 2.2 (see [2, Proposition 2.3]). A function x ∈ XN is solution of problem

(PN) if and only if it is a critical point of ΦXN
.

Next, we recall for reader’s convenience, two theorems which will be employed in

our proofs. The first was obtained in [5] as a consequence of a three critical points

theorem of B. Ricceri [24], by using some results on a suitable minimax inequality

(also see [6]). The second one was established in [7] (also see [10]) and it is a finite

dimensional variant of Theorem 3.3 in [8].

Theorem 2.3 ([5, Theorem 2.1]). Let (Y, ‖·‖) be a separable and reflexive real Banach

space, and let ψ, J : Y → R be two continuously Gâteaux differentiable functionals.

Assume that there exists y0 ∈ Y such that ψ(y0) = J(y0) = 0 and ψ(y) ≥ 0 for every

y ∈ Y and that there exist y1 ∈ Y , ω > 0 such that

(i1) ω < ψ(y1);

(i2) sup
ψ(y)<ω

J(y) < ω
J(y1)

ψ(y1)
.

Further, put

a =
hω

ω J(y1)
ψ(y1)

− supψ(y)<ω J(y)
,

with h > 1, assume that the functional ψ − λJ is sequentially weakly lower semicon-

tinuous, satisfies the Palais-Smale (in short, (PS)) condition and

(i3) lim
‖y‖→+∞

(ψ(y)− λJ(y)) = +∞, for every λ ∈ [0, a].

Then, there exists an open interval Λ ⊆ [0, a] and a positive real number µ such that,

for each λ ∈ Λ, the equation ψ′(y)− λJ ′(y) = 0 admits at least three solutions in Y ,

whose norms are less than µ.
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Theorem 2.4 ([7, Theorem 2.1], [10, Theorem 31]). Let Y be a finite dimensional

real Banach space and ψ, J : Y → R be two functionals of class C1 on Y , with ψ

coercive. Moreover, assume that

(i4) ψ is convex and infY ψ = ψ(0) = J(0) = 0;

(i5) for each λ > 0 and every u1, u2 which are local minima for the functional ψ−λJ
such that J(u1) ≥ 0 and J(u2) ≥ 0, one has

inf
ξ∈[0,1]

J(ξu1 + (1− ξ)u2) ≥ 0.

Further, assume that there are two positive constants ω1, ω2 and v ∈ Y , with ω1 <

ψ(v) < ω2/2 such that

(i6)
supy∈ψ−1(−∞,ω1) J(y)

ω1

≤ J(v)

2ψ(v)
and

supy∈ψ−1(−∞,ω2) J(y)

ω2

≤ J(v)

4ψ(v)
.

Then, for each

λ ∈

(
2ψ(v)

J(v)
,min

{
ω1

supy∈ψ−1(−∞,ω1) J(y)
,

ω2/2

supy∈ψ−1(−∞,ω2) J(y)

})
,

the functional ψ−λJ admits at least three distinct critical points y1, y2, y3 such that

y1 ∈ ψ−1(−∞, ω1), y2 ∈ ψ−1(ω1, ω2/2) and y3 ∈ ψ−1(−∞, ω2).

3. MAIN RESULTS

Under suitable assumptions, first we obtain the existence of an open interval Λh,

depending on h > 1, such that problems (PP ) and (PN) admit at least three solutions

for every λ ∈ Λh. Moreover, an upper bound for Λh is established.

For each positive constant c, we shall use the notations:

Γmin(c) :=

∑T
k=1 F (k, c)

min{cp− , cp+}
and Γmax(c) :=

∑T
k=1 F (k, c)

max{cp− , cp+}
.

Theorem 3.1. Assume that there exist positive constants c, d with c < d such that

(3.1)
T∑
k=1

sup
|t|<c

F (k, t) <
p−min{cp− , cp+}r−
p+
∑T

k=1 r(k)
Γmax(d)

and

(3.2) lim sup
|t|→∞

F (k, t)

|t|p(k)
≤ 0, (∀) k ∈ Z[1, T ].

Also, we set

(3.3) ã =

(
p−Γmax(d)∑T

k=1 r(k)
−
p+
∑T

k=1 sup|t|<c F (k, t)

r−min{cp− , cp+}

)−1

.

If (1.2) holds true, then for every h > 1, there exists an open interval Λh ⊆ [0, hã]

and a positive real number µ such that, for all λ ∈ Λh, problem (PP ) admits at least

three solutions in XP , whose norms are less than µ.
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Proof. We apply Theorem 2.3 with Y = XP , ψ = ϕXP
(see (2.2)) and J = FXP

(see (2.4)). Clearly, the regularity assumptions required on ϕXP
,FXP

and XP are

satisfied. Also, ϕXP
(0) = FXP

(0) = 0 and ϕXP
(x) ≥ 0, for all x ∈ XP .

We denote

ω =
r−min{cp− , cp+}

p+
> 0

and since c < d, one has

(3.4) ϕXP
(d) =

T∑
k=1

r(k)

p(k)
dp(k) ≥ min{dp− , dp+}

p+

T∑
k=1

r(k) >
r−min{cp− , cp+}

p+
= ω,

that is, condition (i1), with y1(k) ≡ d ∈ XP , for all k ∈ Z[0, T + 1].

Also, it is easy to see that (3.1) implies

(3.5)
T∑
k=1

F (k, d) > 0.

If ϕXP
(x) < ω, then

T∑
k=1

|x(k)|p(k) < min{cp− , cp+}

and hence, for each k ∈ Z[1, T ], one obtains

|x(k)| < min{cp− , cp+}
1

p(k) .

If c ≥ 1, then |x(k)| < c
p−
p(k) < c. Also, |x(k)| < c

p+

p(k) < c, provided that c ∈ (0, 1).

Therefore, maxk∈Z[1,T ] |x(k)| < c and from (3.1) and (3.5), we infer

sup
ϕXP

(x)<ω

FXP
(x) ≤ sup

maxk∈Z[1,T ] |x(k)|<c
FXP

(x) ≤
T∑
k=1

sup
|t|<c

F (k, t)

<
p−min{cp− , cp+}r−
p+
∑T

k=1 r(k)
Γmax(d) =

ωp−FXP
(d)

max{dp− , dp+}
∑T

k=1 r(k)

≤ ω
FXP

(d)

ϕXP
(d)

.

Thus, condition (i2) is satisfied. Moreover, we have

a =
hω

ω
FXP

(d)

ϕXP
(d)
− supϕXP

(x)<ω FXP
(x)

≤ hω
p−r−min{cp− ,cp+}Γmax(d)

p+
∑T

k=1 r(k)
−
∑T

k=1 sup|t|<c F (k, t)
= hã,

with ã given in (3.3). Now, we consider g(k, t) = λf(k, t) − r(k)hp(k)(t), for all

k ∈ Z[1, T ] and t ∈ R. Then,

G(k, t) = λF (k, t)− r(k)
|t|p(k)

p(k)
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and in view of (3.2), we obtain the following Hammerstein type condition

(3.6) lim sup
|t|→∞

G(k, t)

|t|p(k)
≤ −r(k)

p(k)
< 0, (∀) k ∈ Z[1, T ].

Next, we use the same arguments as in the proof of Theorem 3.1 in [17]. From (3.6),

there are constants σ > 0 and ρ > 0 such that

G(k, t) ≤ − σ

p(k)
|t|p(k), (∀) k ∈ Z[1, T ], (∀) t ∈ R with |t| > ρ.

On the other hand, by the continuity of G, there is a constant Mρ > 0 such that

|G(k, t)| ≤Mρ, (∀) k ∈ Z[1, T ], (∀) t ∈ R with |t| ≤ ρ.

Hence, we infer

G(k, t) ≤Mρ +
σ

p(k)
ρp(k) − σ

p(k)
|t|p(k), (∀) k ∈ Z[1, T ], (∀) t ∈ R.

To prove the coercivity of ϕXP
−λFXP

(i.e., ΦXP
), from the above inequality we have

ΦXP
(x) =

T+1∑
k=1

|∆x(k − 1)|p(k−1)

p(k − 1)
−

T∑
k=1

G(k, x(k))

≥
T+1∑
k=1

|∆x(k − 1)|p(k−1)

p(k − 1)
− σ

p−
(ρp

−
+ ρp

+

)T −MρT + σ
T∑
k=1

|x(k)|p(k)

p(k)

=
T+1∑
k=1

|∆x(k − 1)|p(k−1)

p(k − 1)
+ σ

T∑
k=1

|x(k)|p(k)

p(k)
− C1, (∀) x ∈ XP ,

where C1 = MρT + σ
p−

(ρp
−

+ ρp
+

)T . This, together with (2.1), yields

ΦXP
(x) ≥ ‖x‖p

−

σ,p(·) − C1, (∀) x ∈ XP , ‖x‖σ,p(·) > 1.

Consequently, ΦXP
is coercive, for every λ > 0. So, condition (i3) is fulfilled.

Also, it is easy to see that from coercivity, ΦXP
satisfies (PS) condition.

Thus, from Theorem 2.3, for every h > 1, there exists an open interval Λh ⊆
[0, hã] and a positive real number µ such that, for all λ ∈ Λh, equation

ϕ′XP
(x)− λF ′XP

(x) = 0

admits at least three solutions in XP and by virtue of (1.2) and Proposition 2.1, we

have that problem (PP ) admits at least three solutions in XP , whose norms are less

than µ and the proof is complete.

Remark 3.2. (i) We note that according to the proof of Theorem 2.3 (also see [5,

Proposition 1.3]), µ entering in Theorem 3.1 satisfies

sup
ϕXP

(x)<ω

FXP
(x) +

ω
FXP

(d)

ϕXP
(d)
− supϕXP

(x)<ω FXP
(x)

h
< µ < ω

FXP
(d)

ϕXP
(d)

,

for every h > 1.
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(ii) It is worth to point out that applying [10, Theorem 30], under the assumptions

(1.2), (3.1) and (3.2) from Theorem 3.1, we also obtain in a similar way as above

that, for every

λ ∈

(∑T
k=1 r(k)

p−Γmax(d)
,

r−min{cp− , cp+}
p+
∑T

k=1 sup|t|<c F (k, t)

)
,

problem (PP ) admits at least three solutions in XP , such that at least one is in

ϕ−1
XP

(
−∞, r−min{cp− , cp+}

p+

)
and another one in

ϕ−1
XP

(
r−min{cp− , cp+}

p+
, +∞

)
.

(iii) Theorem 3.2 proved in [4] for p=constant is an immediate consequence of The-

orem 3.1.

Example 3.3. Let p− = 5, p+ = 17, T = 15, λ > 0, r(k) ≡ 1 and f(k, t) = 2k(t3−t),
for all k ∈ Z[1, 15], t ∈ R. We consider the problem

(3.7)

{
−∆p(k−1)x(k − 1) + hp(k)(x(k)) = 2λk(x(k)3 − x(k)), (∀) k ∈ Z[1, 15],

x(0)− x(16) = 0 = ∆x(0)−∆x(15).

We have

F (k, t) = k

(
t4

2
− t2

)
, (∀) k ∈ Z[1, 15], (∀) t ∈ R.

If we choose c = 1 and d = 2, then it is easy to see that the conditions of Theorem

3.1 are satisfied. Hence, if p(0) = p(15), then for every h > 1, there exists an open

interval Λh ⊆ [0, 212h/5] and a positive real number µ such that, for every λ ∈ Λh,

problem (3.7) has at least three solutions in XP , whose norms are less than µ.

Using exactly the same strategy as above we have the following

Theorem 3.4. Assume that there exist positive constants c, d with c < d such that

(3.1) and (3.2) hold true and let ã be given by (3.3). Then, for every h > 1, there

exists an open interval Λh ⊆ [0, hã] and a positive real number µ such that, for all

λ ∈ Λh, problem (PN) admits at least three solutions in XN , whose norms are less

than µ.

In order to obtain at least three positive solutions for the periodic problem (PP ),

we shall need the following maximum principle.

Lemma 3.5. If

(3.8)

{
−∆p(k−1)x(k − 1) + r(k)hp(k)(x(k)) ≥ 0, (∀) k ∈ Z[1, T ],

x(0)− x(T + 1) = 0 = ∆x(0)−∆x(T ),
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then either x > 0 in Z[0, T + 1] or x ≡ 0.

Proof. Let j ∈ Z[1, T ] be such that x(j) = mink∈Z[1,T ] x(k). Clearly,

(3.9) ∆x(j) ≥ 0 and ∆x(j − 1) ≤ 0.

From (3.8), (1.1) and (3.9), we obtain

r(j)hp(j)(x(j)) ≥ |∆x(j)|p(j)−2∆x(j)− |∆x(j − 1)|p(j−1)−2∆x(j − 1) ≥ 0,

which implies that x ≥ 0, for all k ∈ Z[0, T + 1].

Moreover, assuming that x(j) = 0, from the previous inequality and nonnegativ-

ity of x(j − 1) and x(j + 1), we have

0 ≤ |x(j + 1)|p(j)−2x(j + 1) + |x(j − 1)|p(j−1)−2x(j − 1) ≤ 0

and so, x(j + 1) = x(j − 1) = 0. Thus, repeating these arguments, the conclusion

follows at once.

Theorem 3.6. Let f be a positive continuous function on Z[1, T ]× [0,∞). Assume

that there exist three positive constants c1, d and c2, with c1 < d, such that

(3.10) max{dp− , dp+} < p−

2p+

r−∑T
k=1 r(k)

min{cp
−

2 , cp
+

2 }

and

(3.11) max {Γmin(c1), 2Γmin(c2)} < p−

2p+

r−∑T
k=1 r(k)

Γmax(d).

If (1.2) holds true, then for each

(3.12) λ ∈

(
2
∑T

k=1 r(k)

p−Γmax(d)
,

r−
p+ max {Γmin(c1), 2Γmin(c2)}

)
,

problem (PP ) admits at least three distinct positive solutions x1, x2, x3 in XP , such

that

xi(k) < c2, (∀) k ∈ Z[0, T + 1], i = 1, 2, 3.

Proof. Without loss of generality, we may assume that f(k, t) = f(k, 0), for all (k, t) ∈
Z[1, T ]×(−∞, 0). We shall apply Theorem 2.4 with Y = XP , ψ = ϕXP

and J = FXP
.

From (2.1), we have

ϕXP
(x) ≥ ‖x‖p

−

r−,p(·), (∀) x ∈ XP , ‖x‖r−,p(·) > 1,

which imply that ϕXP
is coercive. Clearly, (i4) is fulfilled.

Let u1, u2 be two local minima of ΦXP
. They are two solutions for problem (PP )

and owing to Lemma 3.5, one has ξu1(k) + (1 − ξ)u2(k) ≥ 0, for all k ∈ Z[0, T + 1]

and all ξ ∈ [0, 1]. Hence,

FXP
(ξu1 + (1− ξ)u2) ≥ 0, (∀) ξ ∈ [0, 1]
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and (i5) is verified.

Setting

ω1 =
r−min{cp

−

1 , cp
+

1 }
p+

and ω2 =
r−min{cp

−

2 , cp
+

2 }
p+

,

in the same way as in the proof of Theorem 3.1, if ϕXP
(x) < ω1 (resp. ϕXP

(x) < ω2),

we have that maxk∈Z[1,T ] |x(k)| < c1 (resp. maxk∈Z[1,T ] |x(k)| < c2). Therefore, one

obtains
supx∈ϕ−1

XP
(−∞,ω1)FXP

(x)

ω1

≤
supmaxk∈Z[1,T ] |x(k)|<c1 FXP

(x)

ω1

≤

(3.13)

∑T
k=1 sup|t|<c1 F (k, t)

ω1

≤
∑T

k=1 F (k, c1)

ω1

=
p+

r−
Γmin(c1),

as well as

(3.14)
supx∈ϕ−1

XP
(−∞,ω2)FXP

(x)

ω2

≤ p+

r−
Γmin(c2).

On the other hand, since c1 < d, we get ϕXP
(d) > ω1 (see (3.4)). Also, from

(3.10), one has

ϕXP
(d) ≤ max{dp− , dp+}

p−

T∑
k=1

r(k) <
r−min{cp

−

2 , cp
+

2 }
2p+

=
ω2

2
.

So, we have ω1 < ϕXP
(d) < ω2/2. Now, using (3.11), (3.13), (3.14) and the fact that∑T

k=1 F (k, d) > 0, we infer

supx∈ϕ−1
XP

(−∞,ω1)FXP
(x)

ω1

≤ p+

r−
Γmin(c1) <

p−

2
∑T

k=1 r(k)
Γmax(d) ≤ FXP

(d)

2ϕXP
(d)

,

respectively,

supx∈ϕ−1
XP

(−∞,ω2)FXP
(x)

ω2

≤ p+

r−
Γmin(c2) <

p−

4
∑T

k=1 r(k)
Γmax(d) ≤ FXP

(d)

4ϕXP
(d)

and (i6) holds true, with v(k) ≡ d ∈ XP , for all k ∈ Z[0, T + 1]. Further, again from

(3.13) and (3.14), one has that

λ ∈

(
2ϕXP

(d)

FXP
(d)

, min

{
ω1

supx∈ϕ−1
XP

(−∞,ω1)FXP
(x)

;
ω2/2

supx∈ϕ−1
XP

(−∞,ω2)FXP
(x)

})
.

Therefore, the functional ΦXP
admits at least three critical points xi ∈ XP ,

i = 1, 2, 3, which on account of (1.2) and Proposition 2.1 are solutions of problem

(PP ) and owing to Lemma 3.5, are positive functions.

Finally, for i = 1, 2, 3, since ω1 < ω2 and ϕXP
(xi) < ω2, we get that

max
k∈Z[1,T ]

xi(k) < c2
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and the end points inequality follows from the boundary conditions and the proof is

complete.

Remark 3.7. Since the range of solutions obtained in Theorem 3.6 is in [0, c2], the

conclusion still remains true if we assume that f is a positive continuous function

only in Z[1, T ]× [0, c2]. Also, it can be seen from the proof of Theorem 3.6 that if f

is only nonnegative on Z[1, T ] × [0, c2], then problem (PP ) has at least two positive

solutions.

Example 3.8. Let p− = 7, p+ = 12, T = 15, λ > 0, r(k) ≡ 1 and

f(k, t) =


k, 0 ≤ t < 1,

kt18, 1 ≤ t < 5,

k(10− t)18, 5 ≤ t < 9,

k, t ≥ 9,

for all k ∈ Z[1, 15], t ∈ [0,∞). By a simple computation we see that the conditions

in Theorem 3.6 are satisfied if we choose c1 = 1, d = 2 and c2 = 9. Hence, with f

defined above, if p(0) = p(15), then for each λ ∈ (19/3584, 19/1440), the problem{
−∆p(k−1)x(k − 1) + hp(k)(x(k)) = λf(k, t), (∀) k ∈ Z[1, 15],

x(0)− x(16) = 0 = ∆x(0)−∆x(15)

has at least three distinct positive solutions xi ∈ XP , i = 1, 2, 3, such that, for each

k ∈ Z[0, 16], one has xi < 9, i = 1, 2, 3.

It is easy to check that Lemma 3.5 remains valid with{
−∆p(k−1)x(k − 1) + r(k)hp(k)(x(k)) ≥ 0, (∀) k ∈ Z[1, T ],

∆x(0) = 0 = ∆x(T ),

instead of (3.8). Hence, for the Neumann problem (PN), by no longer than “mutatis

mutandis” arguments (also, see Remark 3.7), we have the following

Theorem 3.9. Assume that there exist three positive constants c1, d and c2, with

c1 < d, such that (3.10) and (3.11) hold true. If f is a positive continuous function

on Z[1, T ] × [0, c2], then for each λ as in (3.12), problem (PN) admits at least three

distinct positive solutions x1, x2, x3 in XN , such that

xi(k) < c2, (∀) k ∈ Z[0, T + 1], i = 1, 2, 3.
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