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1. INTRODUCTION

The aim of this paper is to present a simple and powerful fixed point result

based on a connectedness and compactness argument. In particular no knowledge

is needed of the theory of fixed points (for example Brouwer’s fixed point theorem

is not assumed). To motivate our fixed point result we begin by presenting some

continuation principles for Fredholm and Volterra integral equations. We remark

here that similar continuation principles to those in this paper could be established for

integral inclusions and discrete equations and inclusions. We also note (see Section 2)

that the existence principles we establish in Section 2 in the Banach space setting

are not as general as those established in the literature via fixed point arguments.

However the advantage of our approach is that it is elementary and no knowledge of

fixed point theory is assumed. Finally we note that the fixed point principle we will

establish at the end of Section 2 will be in a Fréchet space setting (indeed it can be

trivially adjusted to a more general setting, for example complete gauge spaces).

For the space of continuous functions on the closed interval [0, T ], denoted by

C[0, T ] and norm | · |0 given by

|y|0 = sup
t∈[0,T ]

|y(t)|,

the Arzéla-Ascoli Theorem gives conditions under which a subset M of C[0, T ] is

compact.
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Theorem 1.1 (Arzéla-Ascoli Theorem). Let M ⊆ C([0, T ],R). If M is uniformly

bounded and equicontinuous, then M is relatively compact in C([0, T ],R).

The set of bounded, continuous functions on the half-open interval [0, T ), 0 ≤

T ≤ ∞, denoted by BC[0, T ), is also a normed space with norm given by

|y|0 = sup
t∈[0,T )

|y(t)|.

We will require compactness criteria for a subset of BC[0, T ), namely Cl[0, T ). The

space Cl[0, T ) is the set of all bounded, continuous functions y on [0, T ), for which

limt→T y(t) exists. We have the following criterion of compactness on Cl[0, T ):

Theorem 1.2 (Corduneanu, [2, P. 62]). Let M ⊂ Cl([0,∞),R). Then M is compact

in Cl([0,∞),R) if the following conditions hold:

(i) M is bounded in Cl,

(ii) the functions belonging to M are equicontinuous on any compact interval of

[0,∞),

(iii) the functions from M are equiconvergent, that is, given ǫ > 0, there corresponds

T (ǫ) > 0 such that |f(t) − f(∞)| < ǫ for any t ≥ T (ǫ) and f ∈ M .

We now turn our attention from continuous functions to measurable functions.

The most important spaces of measurable functions are the Lebesgue spaces Lp(I),

1 ≤ p ≤ ∞, where I is an interval of R (and indeed could be R
+). For y ∈ Lp(I),

the norm is given by

‖y‖p =

(
∫

I

|y(t)|p dt

)1/p

, for 1 ≤ p <∞,

‖y‖p = ess supt∈I |y(t)|, for p = ∞.

If |I| < ∞, we have the following compactness criteria for a subset M of Lp(I),

1 ≤ p <∞:

Theorem 1.3 (Riesz Compactness Criteria). Let M ⊂ Lp([t0, t1],R), 1 ≤ p < ∞.

Necessary and sufficient conditions for the relative compactness of M in Lp are:

(i) M is bounded in Lp,

(ii)
∫ t1

t0
|x(t+ h) − x(t)|p dt→ 0 as h→ 0 uniformly for x ∈M .

If I is not necessarily finite, compactness of a subset M of Lp(I) is given by

Theorem 1.4 (Yosida, [7, P. 275]). Let S be the real line, B the σ-ring of Baire

subsets B of S and m(B) =
∫

B
dx the ordinary Lebesgue measure of B. Then a

subset K of Lp(S,B, m), 1 ≤ p < ∞, is strongly relatively compact if and only if it

satisfies the following conditions:

(i) supx∈K ‖x‖ = supx∈K

(∫

S
|x(s)|p ds

)
1

p <∞,
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(ii) limt→0

∫

S
|x(t+ s) − x(s)|p ds = 0 uniformly in x ∈ K,

(iii) limα↑∞

∫

|s|>α
|x(s)|p ds = 0 uniformly in x ∈ K.

Let I be an interval in R.

Definition 1.5. A function g : I×R → R is a Carathéodory function if the following

conditions hold:

(i) the map t 7→ g(t, y) is measurable for all y ∈ R,

(ii) the map y 7→ g(t, y) is continuous for almost all t ∈ I.

Definition 1.6. A function g : I × R → R is a Lq-Carathéodory function if the

following conditions hold:

(i) the map t 7→ g(t, y) is measurable for all y ∈ R,

(ii) the map y 7→ g(t, y) is continuous for almost all t ∈ I,

(iii) for any r > 0, there exists µr ∈ Lq(I) such that |y| ≤ r implies that |g(t, y)| ≤

µr(t) for almost all t ∈ I.

The following is a result for Carathéodory functions:

Theorem 1.7 (Krasnoselskii, [3, P. 22, 27]). Let g : I × R → R be a Carathéodory

function such that y ∈ Lp1(I) implies that g(t, y) ∈ Lp2(I) (p1, p2 ≥ 1). Then the

operator G : Lp1(I) → Lp2(I) defined by Gy(t) = g(t, y(t)), is continuous and bounded.

In particular, there exists a1 ∈ Lp2(I) and a2 > 0 such that

|g(t, y)| ≤ a1(t) + a2|y|
p1

p2 .

2. EXISTENCE

We begin this section by establishing an existence principle for

(2.1) y(t) = h(t) +

∫ 1

0

k(t, s) g(s, y(s)) ds, t ∈ [0, 1],

using a simple connectedness argument (no knowledge of fixed point theory is needed).

Theorem 2.1. Let 1 ≤ p ≤ ∞ be a constant, and q be such that 1/p + 1/q = 1.

Assume

(2.2) h ∈ C[0, 1],

(2.3) g : [0, 1] ×R → R is an Lq-Carathéodory function ,

(2.4) kt(s) = k(t, s) ∈ Lp[0, 1], for each t ∈ [0, 1]

and

(2.5) the map t 7→ kt is continuous from [0, 1] → Lp[0, 1]

hold. In addition suppose
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(i) there exists a constant M > 0, independent of λ, with |y|0 ≤M for any solution

y ∈ C[0, 1] to

(2.6)λ y(t) = λ

(

h(t) +

∫ 1

0

k(t, s) g(s, y(s)) ds

)

, t ∈ [0, 1],

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.6)λ0
has a solution in C[0, 1] there exists a neighbor-

hood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.6)λ has

a solution in C[0, 1] for all λ in the neighborhood of λ0.

Then (2.1) has at least one solution in C[0, 1].

Proof. Let

Λ = {λ ∈ [0, 1] : (2.6)λ has a solution in C[0, 1]} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ with

λn → λ. Let un ∈ C[0, 1] be a solution to (2.6)λ corresponding to λ = λn. It is easy

to check that (via the Arzéla-Ascoli Theorem, see [5, Theorem 4.2.2]) that {un}
∞
1 is

relatively compact in C[0, 1]. For completeness we present the proof here (however

we note that the compactness arguments in this paper are well known so for our other

results in this paper we will just refer the reader to the appropriate theorem in the

book [5]). Now there exists µM ∈ Lq[0, 1] such that |g(s, un(s))| ≤ µM(s), for almost

every s ∈ [0, 1] and n ∈ {1, 2, . . .}. Note

|un|0 ≤ |h|0 + sup
t∈[0,1]

‖kt‖p ‖µM‖q

and for any t1, t2 ∈ [0, 1] we have

|un(t1) − un(t2)| ≤ |h(t1) − h(t2)| +

(
∫ 1

0

|kt1(s) − kt2(s)|
p ds

)

1

p

‖µM‖q,

so the Arzéla-Ascoli Theorem implies there is a subsequence S of {1, 2, . . .} and a

u ∈ C[0, 1] with un → u in C[0, 1] as n→ ∞ in S. Let N : C[0, 1] → C[0, 1] be given

by

Ny(t) = h(t) +

∫ 1

0

k(t, s)g(s, y(s)) ds.

It is easy to check (see [5, Theorem 4.2.2]) via the Lebesgue dominated convergence

theorem that N : C[0, 1] → C[0, 1] is continuous. This with

un(t) = λn

(

h(t) +

∫ 1

0

k(t, s) g(s, un(s)) ds

)

, t ∈ [0, 1],

implies

u(t) = λ

(

h(t) +

∫ 1

0

k(t, s) g(s, u(s)) ds

)

, t ∈ [0, 1].

Thus u is a solution of (2.6)λ i.e. λ ∈ Λ so Λ is closed.
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Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.1) has a solution in C[0, 1].

Remark 2.2. One can put conditions on k and g (see for example [8, pg 156–

157]) so that (ii) in Theorem 2.1 holds. In the literature it is usual to write y(t) −

λ
(

h(t) +
∫ 1

0
k(t, s)g(s, y(s)) ds

)

= 0, t ∈ [0, 1] as F (λ, y) = 0 where F : [0, 1] ×

C[0, 1] → C[0, 1] and one approach to guarantee (ii) in Theorem 2.1 is to put condi-

tions so that the implicit function theorem can be applied. Of course if one used an

appropriate fixed point result (for example the Leray-Schauder alternative) instead

of the connectedness approach then condition (ii) is not needed in Theorem 2.1. This

shows how powerful the fixed point approach is. However we remark that the connect-

edness approach is elementary (for example no knowledge is needed of the Brouwer’s

fixed point theorem, the starting off point in fixed point theory) and still a powerful

and applicable topological existence principle can be established.

Next we will look for Lp solutions to

(2.7) y(t) = h(t) +

∫ 1

0

k(t, s) g(s, y(s)) ds a.e. t ∈ [0, 1].

Theorem 2.3. Let p, p1 and p2 be such that 1 ≤ p1 ≤ p < ∞ and 1
p1

+ 1
p2

= 1.

Assume

(2.8) h ∈ Lp[0, 1],

(2.9)

{

g : [0, 1] ×R → R is a Cararthéodory function

and g(t, y(t)) ∈ Lp2 [0, 1] for y ∈ Lp[0, 1]

and

(2.10)



















k : [0, 1] × [0, 1] → R is such that

(t, s) 7→ k(t, s) is measurable and
(

∫ 1

0

(

∫ 1

0
|k(t, s)|p dt

)

p1

p

ds

)
1

p1

≡M0 <∞

hold. In addition suppose

(i) there exists a constant M > 0, independent of λ, with ‖y‖p ≤M for any solution

y ∈ Lp[0, 1] to

(2.11)λ y(t) = λ

(

h(t) +

∫ 1

0

k(t, s) g(s, y(s)) ds

)

a.e. t ∈ [0, 1]

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.11)λ0
has a solution in Lp[0, 1] there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.11)λ

has a solution in Lp[0, 1] for all λ in the neighborhood of λ0.

Then (2.7) has at least one solution in Lp[0, 1].
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Proof. Let

Λ = {λ ∈ [0, 1] : (2.11)λ has a solution in Lp[0, 1]} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ

with λn → λ. Let un ∈ Lp[0, 1] be a solution to (2.11)λ corresponding to λ = λn.

It is easy to check (via the Riesz compactness criterion, see [5, Theorem 4.2.1]) that

{un}
∞
1 is relatively compact in Lp[0, 1]. Thus there is a subsequence S of {1, 2, . . .}

and a u ∈ Lp[0, 1] with un → u in Lp[0, 1] as n→ ∞ in S. Let G : Lp[0, 1] → Lp2 [0, 1]

be

Gy(t) := g(t, y(t)),

K : Lp2[0, 1] → Lp[0, 1] be

Ky(t) := h(t) +

∫ 1

0

k(t, s) y(s) ds

and N : Lp[0, 1] → Lp[0, 1] be Ny(t) := KGy(t). From Theorem 1.7 we know G is

continuous and bounded and also K is continuous since if yn → y in Lp2 [0, 1] then

Hölder’s inequality guarantees that

‖Kyn −Ky‖p ≤M0 ‖yn − y‖p2
→ 0 as n→ ∞.

As a result N : Lp[0, 1] → Lp[0, 1] is continuous. This with

un(t) = λn

(

h(t) +

∫ 1

0

k(t, s) g(s, un(s)) ds

)

a.e. t ∈ [0, 1],

implies

u(t) = λ

(

h(t) +

∫ 1

0

k(t, s) g(s, u(s)) ds

)

a.e. t ∈ [0, 1].

Thus u is a solution of (2.11)λ i.e. λ ∈ Λ so Λ is closed.

Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.7) has a solution in Lp[0, 1].

More generally we can look for solutions to (2.7) in an Orlicz space. Let P and

Q be complementary N -functions [4]. The Orlicz class, denoted by OP , consists of

measurable functions y : [0, 1] → R for which

ρ(y;P ) =

∫ 1

0

P (y(x))dx <∞.

We shall denote by LP ([0, 1],R) the Orlicz space of all measurable functions y :

[0, 1] → R for which

|y|P = sup

ρ(v;Q) ≤ 1

v ∈ OQ

∣

∣

∣

∣

∫ 1

0

y(x) · v(x)dx

∣

∣

∣

∣

<∞.
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Note also Hölder’s inequality [4, p. 74] which says
∣

∣

∣

∣

∫ 1

0

y(x) · v(x)dx

∣

∣

∣

∣

≤ |y|P · |v|Q.

It is known that (LP ([0, 1],R), | · |P ) is a Banach space [4]. Let EP ([0, 1],R) be the

closure in LP ([0, 1],R) of the set of all bounded functions. Note that EP ⊆ LP ⊆ OP .

We have EP = LP = OP if P satisfies the (△2) condition, which is

(△2) there exist ω, y0 ≥ 0 such that for y ≥ y0, we have P (2y) ≤ ωP (y).

For a discussion of the (△2) condition, we refer the reader to [4, p. 23–29]. For

example if P grows faster than a power, then Q satisfies the (△2) condition.

Using the ideas of [4] we can present many topological existence principles in an

Orlicz space; we refer the reader also to [6]. One such result is as follows.

Theorem 2.4. Let P and Q be complementary N-functions. Suppose

(2.12)

{

φ and ψ are complementary N-functions, and the functions

Q and φ satisfy the (△2) condition,

(2.13)

{

k(t, ·) ∈ EP for a.e. t ∈ [0, 1] and

the function t 7→ |k(t, ·)|P belongs to Eφ,

(2.14) h ∈ Lφ[0, 1] and g is a Carathéodory function

and

(2.15)











for each r > 0 there exists ηr ∈ LQ([0, 1],R) and Kr ≥ 0

such that |g(t, u)| ≤ ηr(t) +Kr Q
−1

(

φ
(

u
r

))

for a.e. t ∈ [0, 1] and every u ∈ R.

In addition assume

(i) there exists a constant M > 0, independent of λ, with |y|φ ≤M for any solution

y ∈ Lφ[0, 1] to (2.11)λ for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.11)λ0
has a solution in Lφ[0, 1] there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.11)λ

has a solution in Lφ[0, 1] for all λ in the neighborhood of λ0.

Then (2.7) has at least one solution in Lφ[0, 1].

Proof. Let

Λ = {λ ∈ [0, 1] : (2.11)λ has a solution in Lφ[0, 1]} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ

with λn → λ. Let un ∈ Lφ[0, 1] be a solution to (2.11)λ corresponding to λ = λn. Let

G : Lφ → LQ be

Gy(t) := g(t, y(t)),
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K : EQ = LQ → Eφ = Lφ be

Ky(t) := h(t) +

∫ 1

0

k(t, s) y(s) ds

and N : Lφ[0, 1] → Lφ[0, 1] be Ny(t) := KGy(t). Now Lemma 16.3 and Theorem 16.3

(take M1 = Q, M2 = φ and N1 = P ) of [4] guarantees that K : EQ = LQ → Eφ = Lφ

is continuous and completely continuous and Theorem 17.6 in [4] guarantees that

G : A → LQ is continuous and G maps bounded sets into bounded sets; here A =

{u ∈ Lφ : |u|φ ≤ M}. Thus N : A → Lφ is continuous and completely continuous.

As a result we see that {un}
∞
1 is relatively compact in Lφ[0, 1]. Thus there is a

subsequence S of {1, 2, . . .} and a u ∈ Lφ[0, 1] with un → u in Lφ[0, 1] as n → ∞ in

S. This also with

un(t) = λn

(

h(t) +

∫ 1

0

k(t, s) g(s, un(s)) ds

)

a.e. t ∈ [0, 1],

implies

u(t) = λ

(

h(t) +

∫ 1

0

k(t, s) g(s, u(s)) ds

)

a.e. t ∈ [0, 1].

Thus u is a solution of (2.11)λ i.e. λ ∈ Λ so Λ is closed.

Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.7) has a solution in Lφ[0, 1].

Remark 2.5. By placing other conditions on k and g (see [4, Sections 15, 16, 17])

we may deduce other existence principles in an Orlicz space.

Next we establish existence principles for the Volterra equation

(2.16) y(t) = h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds, t ∈ [0, T ]

where T > 0.

Theorem 2.6. Let 1 ≤ p ≤ ∞ be a constant, and q be such that 1/p + 1/q = 1.

Assume

(2.17) h ∈ C[0, T ],

(2.18) g : [0, T ] ×R → R is an Lq-Carathéodory function ,

(2.19)

{

kt(s) = k(t, s) ∈ Lp[0, t], for each t ∈ [0, T ]

and supt∈[0,T ]

∫ t

0
|kt(s)|

p ds <∞,

and

(2.20)











for any t, t′ ∈ [0, T ],
∫ t⋆

0
|kt(s) − kt′(s)|

p ds→ 0 as t→ t′,

where t⋆ = min{t, t′}

hold. In addition suppose
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(i) there exists a constant M > 0, independent of λ, with |y|0 ≤M for any solution

y ∈ C[0, T ] to

(2.21)λ y(t) = λ

(

h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds

)

, t ∈ [0, T ],

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.21)λ0
has a solution in C[0, T ] there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.21)λ

has a solution in C[0, T ] for all λ in the neighborhood of λ0.

Then (2.16) has at least one solution in C[0, T ].

Remark 2.7. In Theorem 2.6 the condition (2.20) can be replaced by










for any t, t′ ∈ [0, T ],
∫ t⋆

0
|kt(s) − kt′(s)|

p ds+
∫ t⋆⋆

t⋆
|kt⋆⋆(s)|p ds→ 0 as t→ t′,

where t⋆ = min{t, t′} and t⋆⋆ = max{t, t′}.

Note this condition implies supt∈[0,T ]

∫ t

0
|kt(s)|

p ds <∞ in (2.19).

Proof. Let

Λ = {λ ∈ [0, 1] : (2.21)λ has a solution in C[0, T ]} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ

with λn → λ. Let un ∈ C[0, T ] be a solution to (2.11)λ corresponding to λ = λn. Let

N : C[0, T ] → C[0, T ] be given by

Ny(t) = h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds

and it is easy to check [5] that N : C[0, T ] → C[0, T ] is continuous and completely

continuous. Thus there is a subsequence S of {1, 2, . . .} and a u ∈ C[0, T ] with

un → u in C[0, T ] as n→ ∞ in S and we can conclude immediately that

u(t) = λ

(

h(t) +

∫ t

0

k(t, s) g(s, u(s)) ds

)

, t ∈ [0, T ].

Thus u is a solution of (2.21)λ i.e. λ ∈ Λ so Λ is closed.

Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.16) has a solution in C[0, T ].

We can also obtain immediately the following two existence principles (using the

results in [4, 5]) for

(2.22) y(t) = h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds for a.e. t ∈ [0, T ]

where T > 0.
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Theorem 2.8. Let p, p1 and p2 be such that 1 ≤ p1 ≤ p < ∞ and 1
p1

+ 1
p2

= 1.

Assume

(2.23) h ∈ Lp[0, T ],

(2.24)

{

g : [0, T ] ×R → R is a Cararthéodory function

and g(t, y(t)) ∈ Lp2 [0, T ] for y ∈ Lp[0, T ]

and

(2.25)



















k : [0, T ] × [0, t] → R is such that

(t, s) 7→ k(t, s) is measurable and
(

∫ T

0

(

∫ T

s
|k(t, s)|p dt

)

p1

p

ds

)
1

p1

<∞

hold. In addition suppose

(i) there exists a constant M > 0, independent of λ, with ‖y‖p ≤M for any solution

y ∈ Lp[0, T ] to

(2.26)λ y(t) = λ

(

h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds

)

a.e. t ∈ [0, T ]

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.26)λ0
has a solution in Lp[0, T ] there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.26)λ

has a solution in Lp[0, T ] for all λ in the neighborhood of λ0.

Then (2.22) has at least one solution in Lp[0, T ].

As above let P and Q be complementary N -functions. The Orlicz class, denoted

by OP , consists of measurable functions y : [0, T ] → R for which

ρ(y;P ) =

∫ 1

0

P (y(x))dx <∞.

We shall denote by LP ([0, T ],R) the Orlicz space of all measurable functions y :

[0, T ] → R for which

|y|P = sup

ρ(v;Q) ≤ 1

v ∈ OQ

∣

∣

∣

∣

∫ T

0

y(x) · v(x)dx

∣

∣

∣

∣

<∞.

Theorem 2.9. Let P and Q be complementary N-functions. Suppose

(2.27)

{

φ and ψ are complementary N-functions, and the functions

Q and φ satisfy the (△2) condition,

(2.28)

{

k(t, ·) ∈ EP for a.e. t ∈ [0, T ] and

the function t 7→ |k(t, ·)|P belongs to Eφ,
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(2.29) h ∈ Lφ[0, T ] and g is a Carathéodory function

and

(2.30)











for each r > 0 there exists ηr ∈ LQ([0, T ],R) and Kr ≥ 0

such that |g(t, u)| ≤ ηr(t) +Kr Q
−1

(

φ
(

u
r

))

for a.e. t ∈ [0, T ] and every u ∈ R.

In addition assume

(i) there exists a constant M > 0, independent of λ, with |y|φ ≤M for any solution

y ∈ Lφ[0, T ] to (2.26)λ for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.26)λ0
has a solution in Lφ[0, T ] there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.26)λ

has a solution in Lφ[0, T ] for all λ in the neighborhood of λ0.

Then (2.22) has at least one solution in Lφ[0, T ].

Next we turn our attention to finding solutions to

(2.31) y(t) = h(t) +

∫ ∞

0

k(t, s) g(s, y(s)) ds, t ∈ [0,∞).

Theorem 2.10. Assume that 1 ≤ p ≤ ∞ and let q be such that 1
p

+ 1
q

= 1. Suppose

that

(2.32) h ∈ Cl[0,∞),

(2.33) g is Lq-Carathéodory,

(2.34) kt ∈ Lp[0,∞) for each t ∈ [0,∞),

(2.35) the map t 7→ kt is continuous from [0,∞) to Lp[0,∞)

and

(2.36)

{

there exists k̃ ∈ Lp[0,∞) such that

kt → k̃ in Lp[0,∞) as t→ ∞

hold. In addition assume

(i) there exists a constant M > 0, independent of λ, with |y|0 = supt∈[0,∞) |y(t)| ≤M

for any solution y ∈ Cl[0,∞) to

(2.37)λ y(t) = λ

(

h(t) +

∫ ∞

0

k(t, s) g(s, y(s)) ds

)

, t ∈ [0,∞)

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.37)λ0
has a solution in Cl[0,∞) there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.37)λ

has a solution in Cl[0,∞) for all λ in the neighborhood of λ0.
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Then (2.31) has at least one solution in Cl[0,∞).

Proof. Let

Λ = {λ ∈ [0, 1] : (2.37)λ has a solution in Cl[0,∞)} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ with

λn → λ. Let un ∈ Cl[0,∞) be a solution to (2.37)λ corresponding to λ = λn. Let

N : Cl[0,∞) → Cl[0,∞) be given by

Ny(t) = h(t) +

∫ ∞

0

k(t, s) g(s, y(s)) ds

and it is easy to check [5, Theorem 5.2.3] (we use Theorem 1.2 and the Lebesgue

dominated convergence theorem) that N : Cl[0,∞) → Cl[0,∞) is continuous and

completely continuous. Thus there is a subsequence S of {1, 2, . . .} and a u ∈ Cl[0,∞)

with un → u in Cl[0,∞) as n→ ∞ in S and we can conclude immediately that

u(t) = λ

(

h(t) +

∫ ∞

0

k(t, s) g(s, u(s)) ds

)

, t ∈ [0,∞).

Thus u is a solution of (2.37)λ i.e. λ ∈ Λ so Λ is closed.

Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.31) has a solution in Cl[0,∞).

Next we look for Lp solutions to

(2.38) y(t) = h(t) +

∫ ∞

0

k(t, s)g(s, y(s)) ds a.e. t ∈ [0,∞).

Theorem 2.11. Assume that p, p1 and p2 are such that 1 ≤ p1 ≤ p < ∞ and
1
p1

+ 1
p2

= 1 are satisfied. Suppose that

(2.39) h ∈ Lp[0,∞),

(2.40)

{

g : [0,∞) × R → R is a Cararthéodory function, and

g(t, y(t)) ∈ Lp2 [0,∞) for y ∈ Lp[0,∞)

and

(2.41)















k : [0,∞) × [0,∞) → R is such that

(t, s) 7→ k(t, s) is measurable and
(

∫ ∞

0

(∫ ∞

0
|k(t, s)|p dt

)

p1

p ds
)

1

p1 <∞

hold. In addition assume

(i) there exists a constant M > 0, independent of λ, with ‖y‖p 6= M , for any solution

y ∈ Lp[0,∞) to

(2.42)λ y(t) = λ

(

h(t) +

∫ ∞

0

k(t, s)g (s, y(s)) ds

)

a.e. t ∈ [0,∞)

for each λ ∈ [0, 1],
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(ii) for any λ0 ∈ [0, 1] where (2.42)λ0
has a solution in Lp[0,∞) there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.42)λ

has a solution in Lp[0,∞) for all λ in the neighborhood of λ0.

Then (2.38) has at least one solution in Lp[0,∞).

Proof. Let

Λ = {λ ∈ [0, 1] : (2.42)λ has a solution in Lp[0,∞)} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ with

λn → λ. Let un ∈ Lp[0,∞) be a solution to (2.42)λ corresponding to λ = λn. Let

N : Lp[0,∞) → Lp[0,∞) be given by

Ny(t) = h(t) +

∫ ∞

0

k(t, s) g(s, y(s)) ds

and it is easy to check [5, Theorem 5.2.1] (we use Theorem 1.4) that N : Lp[0,∞) →

Lp[0,∞) is continuous and completely continuous. Thus there is a subsequence S of

{1, 2, . . .} and a u ∈ Lp[0,∞) with un → u in Lp[0,∞) as n → ∞ in S and we can

conclude immediately that

u(t) = λ

(

h(t) +

∫ ∞

0

k(t, s) g(s, u(s)) ds

)

a.e. t ∈ [0,∞).

Thus u is a solution of (2.42)λ i.e. λ ∈ Λ so Λ is closed.

Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.38) has a solution in Lp[0,∞).

We can also obtain the following two existence principles (using the results in [5])

for the Volterra equation

(2.43) y(t) = h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds, t ∈ [0,∞).

Theorem 2.12. Assume that 1 ≤ p <∞, and let q be such that 1
p

+ 1
q

= 1. Suppose

that

(2.44) h ∈ Cl[0,∞),

(2.45) g is Lq-Carathéodory,

(2.46)

{

kt(s) = k(t, s) ∈ Lp[0, t] for each t ∈ [0,∞)

and supt∈[0,∞)

∫ t

0
|kt(s)|

p ds <∞,

(2.47)











for any t, t′ ∈ [0,∞),
∫ t⋆

0
|kt(s) − kt′(s)|

p ds→ 0 as t→ t′,

where t⋆ = min {t, t′}
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and

(2.48)







there exists k̃ ∈ Lp[0,∞) such that

limt→∞

(

∫ t

0
|kt(s) − k̃(s)|p ds

)
1

p

= 0

hold. In addition assume

(i) there exists a constant M > 0, independent of λ, with |y|0 ≤M for any solution

y ∈ Cl[0,∞) to

(2.49)λ y(t) = λ

(

h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds

)

, t ∈ [0,∞)

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.49)λ0
has a solution in Cl[0,∞) there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.49)λ

has a solution in Cl[0,∞) for all λ in the neighborhood of λ0.

Then (2.43) has at least one solution in Cl[0,∞).

Now we consider

(2.50) y(t) = h(t) +

∫ t

0

k(t, s) g(s, y(s)) ds a.e. t ∈ [0,∞).

Theorem 2.13. Assume that p, p1 and p2 satisfy 1 ≤ p1 ≤ p < ∞ and 1
p1

+ 1
p2

= 1.

Suppose that

(2.51) h ∈ Lp[0,∞),

(2.52)

{

g : [0,∞) × R → R is a Cararthéodory function, and

g(t, y(t)) ∈ Lp2 [0,∞) for y ∈ Lp[0,∞)

and

(2.53)















k : [0,∞) × [0, t] → R is such that

(t, s) 7→ k(t, s) is measurable and
(

∫ ∞

0

(∫ ∞

s
|k(t, s)|p dt

)

p1

p ds
)

1

p1 <∞

hold. In addition assume

(i) there exists a constant M > 0, independent of λ, with ‖y‖p 6= M , for any solution

y ∈ Lp[0,∞) to

(2.54)λ y(t) = λ

(

h(t) +

∫ t

0

k(t, s)g (s, y(s)) ds

)

a.e. t ∈ [0,∞)

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.54)λ0
has a solution in Lp[0,∞) there exists a neigh-

borhood of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.54)λ

has a solution in Lp[0,∞) for all λ in the neighborhood of λ0.
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Then (2.50) has at least one solution in Lp[0,∞).

Remark 2.14. All the results in this section extend in an straightforward way to

systems.

Remark 2.15. One can obtain similar existence principles to those in this section

for Fredholm and Volterra integral inclusions.

Our next result (which contains all our previous principles in this section) was

motivated partly from our previous work; see [1] and the references therein. In our

next theorem E = (E, {| · |m}m∈N) (here N = {1, 2, . . .}) will be a Fréchet space

generated by the family of semi-norms {| · |m : m ∈ N}. Recall a subset X of E is

bounded if for every m ∈ N there exists rm > 0 with |x|m ≤ rm for all x ∈ X. We

consider the operator equation

(2.55) x = N x.

Theorem 2.16. Let E be a Fréchet space and assume

(2.56) N : E → E is continuous and completely continuous.

In addition suppose

(i) for each m ∈ N there exists a constant Mm > 0, independent of λ, with |y|m ≤

Mm for any solution y ∈ E to

(2.57)λ y = λN y

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.57)λ0
has a solution in E there exists a neighborhood

of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.57)λ has a

solution in E for all λ in the neighborhood of λ0.

Then (2.55) has at least one solution in E.

Proof. Let

Λ = {λ ∈ [0, 1] : (2.57)λ has a solution in E} .

Note 0 ∈ Λ. Now we show Λ is closed. To see this let {λn}
∞
1 be a sequence in Λ

with λn → λ. Let un ∈ E be a solution to (2.57)λ corresponding to λ = λn. Note for

each m ∈ N that |un|m ≤Mm for each n ∈ N. Now (2.56) guarantees that there is a

subsequence S of N and a u ∈ E with un → u in E as n→ ∞ in S. This with (2.56)

and un = λnN un implies u = λN u. Thus u is a solution of (2.57)λ i.e. λ ∈ Λ so Λ

is closed.

Finally (ii) guarantees that Λ is open. Since Λ 6= ∅ is both open and closed in

[0, 1] it follows that Λ = [0, 1]. Since 1 ∈ Λ then (2.55) has a solution in E.
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Remark 2.17. It is clear from the above proof that one could replace (2.56) with

the condition

N : A→ E is continuous and compact;

here A = {x ∈ E : |x|m ≤Mm for all m ∈ N}. Indeed one could replace N : A→ E

compact with the condition:










for any sequence {λn}
∞
n=1 ⊆ [0, 1] with xn a

solution to (2.57)λ corresponding to λn the

sequence {xn}
∞
n=1 has a convergent subsequence.

Remark 2.18. We stated the previous result when E is a Fréchet space but it is

clear that one could consider more general spaces.

Our previous result extends in a straightforward way to the inclusion

(2.58) x ∈ N x.

Theorem 2.19. Let E be a Fréchet space and assume

(2.59) N : E → 2E is a closed and completely continuous map.

In addition suppose

(i) for each m ∈ N there exists a constant Mm > 0, independent of λ, with |y|m ≤

Mm for any solution y ∈ E to

(2.60)λ y ∈ λN y

for each λ ∈ [0, 1],

(ii) for any λ0 ∈ [0, 1] where (2.60)λ0
has a solution in E there exists a neighborhood

of λ0 (one-sided neighborhood of λ0 if λ0 = 0 or λ0 = 1) so that (2.60)λ has a

solution in E for all λ in the neighborhood of λ0.

Then (2.58) has at least one solution in E.

Remark 2.20. Note one could replace (2.59) with the condition

N : A→ 2E is a closed and compact map;

here A = {x ∈ E : |x|m ≤Mm for all m ∈ N}.
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