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ABSTRACT. We consider a parametric nonlinear elliptic Neumann problem driven by a nonhomo-

geneous differential operator. Using variational methods combined with truncation and comparison

techniques, we prove a bifurcation-type theorem describing the dependence of the set of positive

solutions on the parameter λ > 0.
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1. PRELIMINARIES

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the following nonlinear Neumann eigenvalue problem

(1.1)

{
−div (a(Du(z)) + β(z)|u(z)|p−2u(z) = λf(z, u(z)) in Ω,
∂u
∂n

= 0, on ∂Ω, u > 0, λ > 0.

}

Here a : R
N → R

N is a map which is continuous, strictly monotone and satisfies

certain other regularity conditions which are presented in hypotheses H(a). These

hypotheses incorporate as special cases several differential operators of interest and

provide a unifying framework to deal with such equations. So, our setting includes

equations driven by the p-Laplacian (1 < p < ∞), the (p, q)-Laplacian (1 < q < p <

∞) and the generalized p-mean curvature operator. Also, β ∈ L∞(Ω)+\{0}, λ > 0

is a parameter (the “eigenvalue”) and f : Ω × R → R is a Caratheodory reaction

(i.e., for all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x → f(z, x) is

continuous). Finally n(·) denotes the outward unit normal on ∂Ω. We are looking for

positive solutions of problem (1.1) and more precisely, our aim is to investigate the

dependence on the parameter λ > 0 of the set of positive solutions of problem (1.1).
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In this direction, we prove a bifurcation-type result for problem (1.1), showing that

there exists a critical parameter value λ∗ > 0 such that for all λ > λ∗ problem (1.1)

has at least two nontrivial positive smooth solutions, for λ = λ∗ problem (1.1) has at

least one nontrivial positive smooth solution and finally for λ ∈ (0, λ∗) problem (1.1)

has no nontrivial positive solutions.

Nonlinear eigenvalue problems driven by the p-Laplace differential operator with

Dirichlet boundary condition, were studied by Brock-Itturiaga-Ubilla [3], Dong [6],

Filippakis-O’Regan-Papageorgiou [7], Guo [9], Hu-Papageorgiou [10], Perera [16], and

Takeuchi [19]. From the aforementioned works only [3], [7], [10] prove bifurcation-

type results describing the precise dependence of the set of positive solutions on the

parameter λ > 0. Parametric equations with Neumann boundary condition, were

studied by Motreanu-Motreanu-Papageorgiou [14]. In [14] the eigenvalue problem is

different and the authors do not prove a bifurcation type theorem. We should mention

that in contrast to the p-Laplacian, our differential operator here is not in general

homogeneous and this is the source of difficulties in the analysis of problem (1.1).

Our approach is variational, and uses also suitable truncation and comparison

techniques. In the next section, we state the hypotheses on the data of problem (1.1)

and we prove some auxiliary results which we will need in the sequel.

2. HYPOTHESES-AUXILIARY RESULTS

Let h ∈ C1(0,+∞) such that

(2.1)






0 < th′(t)
h(t)

≤ c0 for all t > 0 and some c0 > 0,

and c1t
p−1 ≤ h(t) ≤ c2(t

q−1 + tp−1)

for all t > 0 and some c1, c2 > 0, 1 < q < p <∞.






The hypotheses on the map a(·) are the following:

H(a): a(y) = a0(‖y‖)y for all y ∈ R
N with a0(t) > 0 for all t > 0 and

(i): a0 ∈ C1(0,+∞), ta0(t) → 0 as t→ 0+ and lim
t→0+

ta′0(t)

a0(t)
> −1;

(ii): ‖∇a(y)‖ ≤ c3
h(‖y‖)
‖y‖

for all y ∈ R
N\{0} and some c3 > 0;

(iii): (∇a(y)ξ, ξ)RN ≥ h(‖y‖)
‖y‖

‖ξ‖2 for all y ∈ R
N\{0}.

Remark 2.1. Evidently, hypothesis H(a)(i) implies that a ∈ C1(RN\{0},RN) ∩

C(RN,RN) and so hypotheses H(a)(ii), (iii) make sense. We set G0(t) =
∫ t

0
a0(s)sds

and consider the potential function G : R
N → R defined by G(y) = G0(‖y‖) for all

y ∈ R
N. Then

∇G(y) = G′
0(‖y‖)

y

‖y‖
= a0(‖y‖)y = a(y) for all y ∈ R

N\{0}

and ∇G(0) = 0 (see H(a)(i)).
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Note that G(·) is convex and since G(0) = 0, ∇G(y) = a(y) for all y ∈ R
N, we

have

(2.2) G(y) ≤ (a(y), y)RN for all y ∈ R
N.

From (2.1), (2.2), hypotheses H(a) and the integral form of the mean value theorem,

we have the following lemma summarizing the properties of the map a(·).

Lemma 2.2. If hypotheses H(a) hold, then

a) the map y → a(y) is maximal monotone and strictly monotone;

b) ‖a(y)‖ ≤ c4(‖y‖
q−1 + ‖y‖p−1) for all y ∈ R

N and some c4 > 0;

c) (a(y), y)RN ≥ c1
p−1

‖y‖p for all y ∈ R
N.

Similarly, this lemma and (2.2) lead to the following growth estimates for the

primitive G(·).

Corollary 2.3. If hypotheses H(a) hold, then c1
p(p−1)

‖y‖p ≤ G(y) ≤ c5(‖y‖
q + ‖y‖p)

for all y ∈ R
N and some c5 > 0.

Examples The following maps satisfy hypotheses H(a).

a) a(y) = ‖y‖p−2y with 1 < p <∞.

This map corresponds to the p-Laplace differential operator

△pu = div(‖Du‖p−2Du) for all u ∈W 1,p(Ω).

The primitive is G(y) = 1
p
‖y‖p for all y ∈ R

N.

b) a(y) = ‖y‖p−2y + ‖y‖q−2y with 1 < q < p <∞.

This map corresponds to the (p, q)-differential operator

△pu+ △qu for all u ∈W 1,p(Ω).

The primitive is G(y) = 1
p
‖y‖p + 1

q
‖y‖q for all y ∈ R

N.

This differential operator is important in quantum physics in connection with the

problem of existence of solitons, see Benci-D’Avenia-Fortunato-Pisani [2]. Equations

driven by such differential operators, were studied recently by Cingolani-Degiovanni

[5], Li-Zhang [13], Sun [18].

c) a(y) = (1 + ‖y‖2)
p−2

p y with 1 < p <∞.

This map corresponds to the generalized p-mean curvature differential operator

div[(1 + ‖Du‖2)
p−2

p Du] for all u ∈W 1,p(Ω).

The primitive is G(y) = 1
p
[(1 + ‖y‖2)

p
2 − 1] for all y ∈ R

N.

Equations monitored by this differential operator were investigated by Chen-Shen

[4].
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d) a(y) = ‖y‖p−2y + ‖y‖p−2y

1+‖y‖p with 1 < p < ∞. item[] The primitive is G(y) =
1
p
‖y‖p + 1

p
ln(1 + ‖y‖p) for all y ∈ R

N.

Remark 2.4. We should mention that in [14] the authors also deal with equations

driven by a nonhomogeneous differential operator div a(Du). However, the hypothe-

ses on the map a(·) are more restrictive and exclude important cases such as the

(p, q)-differential operator and the generalized p-mean curvature differential operator.

Let f0 : Ω × R → R be a Caratheodory function with subcritical growth, i.e.,

|f0(z, x)| ≤ a(z) + c|x|r−1 for all z ∈ Ω, all x ∈ R

with 1 < r < p∗ =






Np

N−p
if p < N,

+∞ if p ≥ N.
. Let F0(z, x) =

∫ x

0
f0(z, s)ds and consider the

C1-functional ϕ0 : W 1,p
0 (Ω) → R defined by

ϕ0(u) =

∫

Ω

G(Du(z))dz −

∫

Ω

F0(z, u(z))dz for all u ∈W 1,p(Ω).

The next result relates Holder and Sobolev local minimizers of ϕ0 and can be

found in Motreanu-Papageorgiou [15].

Theorem 2.5. If hypotheses H(a) holds and u0 ∈W 1,p(Ω) is a local C1(Ω)-minimizer

of ϕ0, i.e., there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0

then u0 ∈ C1,γ(Ω) for some γ ∈ (0, 1) and u0 is also a local W 1,p(Ω) minimizer of ϕ0,

i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖ ≤ ρ1.

Let X be a Banach space and ϕ ∈ C1(X). We say that ϕ satisfies the “Palais

Smale condition” (the PS-condition), for short), if the following holds:

“Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded and

ϕ′(xn) → 0 in X∗,

admits a strongly convergent subsequence”.

The next theorem is known in the literature as the “Mountain Pass Theorem”

and characterizes certain critical values of ϕ.

Theorem 2.6. If ϕ ∈ C1(X) satisfies the PS-condition, x0, x1 ∈ X, ‖x1−x0‖ > ρ > 0

max{ϕ(x0), ϕ(x1)} < inf[ϕ(x) : ‖x− x0‖ = ρ] = ηρ

and

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1}
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then c ≥ ηρ and c is a critical value of ϕ.

Let 〈·, ·〉 denote the duality brackets for the pair (W 1,p(Ω)∗,W 1,p(Ω)) and let

A : W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

(2.3) 〈A(u), y〉 =

∫

Ω

(a(Du), Dy)RNdz for all u, y ∈ W 1,p(Ω).

From Gasinski-Papageorgiou [8, p. 652], we have:

Proposition 2.7. If hypotheses H(a) hold, then A : W 1,p(Ω) →W 1,p(Ω)∗ defined by

(2.3) is continuous, monotone (hence maximal monotone) and of type (S)+, i.e., if

un
w
→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 ≤ 0, then un → u in W 1,p(Ω).

In the analysis of problem (1.1) in addition to the Sobolev space W 1,p(Ω), we

will also use the Banach space C1(Ω). This is an ordered Banach space with positive

cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

In what follows, by ‖ · ‖ we denote the norm of W 1,p(Ω). The same notation also

denotes the R
N-norm. However, no confusion is possible since it will always be clear

from the context which norm is used. For x ∈ R, we set x± = max{±x, 0} and then

for u ∈W 1,p(Ω) we define u±(·) = u(·)±. We know that

u± ∈W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

By | · |RN we denote the Lebesgue measure on R
N and for any measurable function

g : Ω × R → R (for example a Caratheodory function), we introduce the map

Ng(u)(·) = g(·, u(·)) for all u ∈W 1,p(Ω)

(the Nemytskii map corresponding to g).

Next we introduce the hypotheses on the functions z → β(z) and (z, x) → f(z, x).

H(β): β ∈ L∞(Ω), β ≥ 0, β 6= 0.

H(f): f : Ω × R → R is a Caratheodory function such that f(z, 0) = 0 a.e.in Ω and

(i): for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

f(z, x) ≤ aρ(z) for a.a. z ∈ Ω, all x ∈ [0, ρ];

(ii): for every ρ > 0, we can find cρ > 0 such that

f(z, x) ≥ cρ for a.a. z ∈ Ω, all x ≥ ρ.

(iii): lim
x→+∞

f(z, x)

xp−1
= lim

x→0+

f(z, x)

xp−1
= 0 uniformly for a.a. z ∈ Ω.
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(iv): for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω, x →

f(z, x) + ξρx
p−1 is nondecreasing on [0, ρ].

Remark 2.8. Since we are looking for positive solutions and all the above hypotheses

concern the positive semiaxis R+ = [0,+∞], we may (and we will) assume that

f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. Evidently hypothesis H(f)(ii) implies that

f(z, x) > 0 for a.a. z ∈ Ω and all x > 0.

Example The following function satisfies hypotheses H(f) (for the sake of simplicity

we drop the z-dependence):

f(x) =





xr−1 if x ∈ [0, 1],

xq−1 if x > 1,
, with 1 < q < p < r <∞.

Proposition 2.9. If hypotheses H(β) hold, then there exists ξ∗ > 0 such that

c1
p− 1

‖Du‖p
p +

∫

Ω

β|u|pdz ≥ ξ∗‖u‖p for all u ∈W 1,p(Ω).

Proof. Let ψ : W 1,p(Ω) → R be the C1-functional defined by

ψ(u) =
c1

p− 1
‖Du‖p

p +

∫

Ω

β|u|pdz for all u ∈W 1,p(Ω).

We need to show that ψ(u) ≥ ξ∗‖u‖p for all u ∈W 1,p(Ω).

Arguing by contradiction, suppose that the proposition is not true. Exploiting

the p-homogeneity of ψ(·), we can find {un}n≥1 ⊆W 1,p(Ω) such that

‖un‖ = 1 for all n ≥ 1 and ψ(un) ↓ 0 as n→ ∞.

By passing to a suitable subsequence if necessary, we may assume that

un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω).

It is easy to see that ψ(·) is sequentially weakly lower semicontinuous. So,

ψ(u) ≤ 0,

⇒ ‖Du‖p = 0, hence u = θ ∈ R.

If θ 6= 0, then ψ(u) = |θ|p
∫
Ω
βdz ≤ 0, a contradiction.

So, θ = 0 and we have u ≡ 0. Hence

‖Dun‖p → 0,

⇒ un → 0 in W 1,p(Ω),

which contradicts the fact that ‖un‖ = 1 for all n ≥ 1.
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Let

λ̂1 = inf[

c1
p−1

‖Du‖p
p +

∫
Ω
β|u|pdz

‖u‖p
p

: u ∈W 1,p(Ω), u 6= 0]

From Proposition 2.9 it follows that:

Proposition 2.10. If hypotheses H(β) hold, then λ̂1 ≥ ξ∗ > 0.

3. BIFURCATION-TYPE THEOREM

We introduce the set

P = {λ > 0 : problem (1.1) has a nontrivial positive solution}.

We set

λ∗ = inf P (if P = ∅, then λ∗ = +∞)

Also, if λ ∈ P, then by S(λ) we denote the set of nontrivial positive solutions of (1.1).

We start by establishing the properties of S(λ) and of λ∗.

Proposition 3.1. If hypotheses H(a), H(β) and H(f) hold, then for all λ > 0,

S(λ) ⊆ intC+ and λ∗ > 0.

Proof. We may assume that λ ∈ P (if λ /∈ P, then S(λ) = ∅). Then we can find

u ∈W 1,p(Ω), u ≥ 0, u 6= 0 such that

−div a(Du(z)) + β(z)u(z)p−1 = λf(z, u(z)) in Ω,
∂u

∂n
= 0 on ∂Ω.

From Hu-Papageorgiou [11] (see Proposition 2.7) we have u ∈ L∞(Ω). Then from

the nonlinear regularity result of Lieberman [12] (p. 320), we have u ∈ C+\{0}. Let

ρ = ‖u‖∞ and let ξρ > 0 be as postulated by hypothesis H(f)(iv). Then we have

− div aD(u(z)) + (β(z) + λξρ)u(z)
p−1(3.1)

= λ[f(z, u(z)) + ξρu(z)
p−1] ≥ 0 a.e. in Ω,

⇒ div a(Du(z)) ≤ (‖β‖∞ + λξρ)u(z)
p−1 a.e. in Ω.

From (3.1) and the strong maximum principle of Pucci-Serrin [17] (p. 34) we can apply

the boundary point theorem of Pucci-Serrin [17] (p. 120) and infer that u ∈ intC+.

Therefore we have

S(λ) ⊆ intC+.

Hypotheses H(f)(i), (ii), (iii) imply that we can find c6 > 0 such that

(3.2) 0 ≤ f(z, x) ≤ c6x
p−1 for a.a. z ∈ Ω, all x ∈ R.

Let λ̃ <
bλ1

c6
and consider µ ∈ (0, λ̃]. If µ ∈ P, then we can find uµ ∈ S(µ) ⊆ intC+

such that

(3.3) A(uµ) + βup−1
µ = µNf(uµ).
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Acting on (3.3) with uµ and using Lemma 2.2(c), we obtain

c1
p− 1

‖Duµ‖
p
p +

∫

Ω

β|uµ|
pdz ≤ µ

∫

Ω

f(z, uµ)uµdz

⇒
c1

p− 1
‖Duµ‖

p
p +

∫

Ω

β|uµ|
pdz ≤ µc6‖uµ‖

p
p (see (3.2))

< λ̂1‖uµ‖
p
p (since µ ≤ λ̃),

⇒
c1

p− 1
‖Duµ‖

p
p +

∫

Ω

β|uµ|
pdz < λ̂1‖uµ‖

p
p,

which contradicts (2.3). Therefore µ /∈ P and so λ∗ ≥ λ̃ > 0.

Next we show the nonemptiness of P. In what follows F (z, x) =
∫ x

0
f(z, s)ds.

Proposition 3.2. If hypotheses H(a), H(β) and H(f) hold, then P 6= ∅.

Proof. Hypotheses H(f)(i), (ii), (iii) imply that given ε > 0 we can find c7 = c7(ε) >

0 such that

(3.4) 0 ≤ F (z, x) ≤
ε

p
|x|p + c7 for a.a. z ∈ Ω, all x ∈ R.

Then for every u ∈W 1,p(Ω), we have

ϕλ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

β|u|pdz − λ

∫

Ω

F (z, u)dz

≥
ξ∗

p
‖u‖p −

λε

p
‖u‖p − λc7|Ω|N(3.5)

(see Corollary 2.3, Proposition 2.9 and (3.4))

=
1

p
[ξ∗ − λε]‖u‖p − λc7|Ω|N .(3.6)

Choosing ε ∈ (0, ξ∗

λ
), from (3.5) we infer that ϕλ is coercive. Also, using the Sobolev

embedding theorem, we check easily that ϕλ is sequentially weakly lower semicontin-

uous. So, by the Weierstrass theorem, we can find u0 ∈W 1,p(Ω) such that

(3.7) ϕλ(u0) = inf[ϕλ(u) : u ∈W 1,p(Ω)].

If ũ ∈ C+\{0}, then
∫
Ω
F (z, ũ)dz > 0 and so for λ > 0 big, we have

λ

∫

Ω

F (z, ũ)dz >

∫

Ω

G(Dũ)dz +
1

p

∫

Ω

β|ũ|pdz,

⇒ ϕλ(ũ) < 0 = ϕλ(0),

⇒ ϕλ(u0) < 0 = ϕλ(0) (see (3.7)), hence u0 6= 0.

From (3.7) and for λ > 0 big we have

ϕ′
λ(u0) = 0 with u0 6= 0,

⇒ A(u0) + β|u0|
p−2u0 = λNf(u0).(3.8)
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On (3.8) we act with −u−0 ∈W 1,p(Ω) and obtain

c1
p− 1

‖Du−0 ‖
p
p +

∫

Ω

β(u−0 )pdz ≤ 0 (see Lemma 2.2(c)),

⇒ ξ∗‖u−0 ‖
p ≤ 0

(see Proposition 2.9), hence u0 ≥ 0, u0 6= 0. Therefore u0 ∈ S(λ) ⊆ intC+ (see

Proposition 3.1) for λ > 0 big and so P 6= ∅.

Proposition 3.3. If hypothesesH(a), H(β) and H(f) hold and λ ∈ P, then [λ,+∞) ⊆

P.

Proof. Let µ > λ. Since λ ∈ P, we can find uλ ∈ S(λ) ⊆ intC+ (see Proposition 3.1).

We consider the following truncation of the reaction in problem (1.1).

(3.9) hµ(z, x) =





µf(z, uλ(z)) if x ≤ uλ(z),

µf(z, x) if uλ(z) < x,
.

Clearly this is a Caratheodory function. We set Hµ(z, x) =
∫ x

0
hµ(z, s)ds and consider

the C1-functional ψµ : W 1,p(Ω) → R defined by

ψµ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

β|u|pdz −

∫

Ω

Hµ(z, u)dz for all u ∈ W 1,p(Ω).

As in the proof of Proposition 3.2, using hypotheses H(f)(i), (iii), we show that ψµ

is coercive. Also it is sequentially weakly lower semicontinuous.

So, we can find uµ ∈W 1,p(Ω) such that

ψµ(uµ) = inf[ψµ(u) : u ∈W 1,p(Ω)],

⇒ ψ′
µ(uµ) = 0,

⇒ A(uµ) + β|uµ|
p−2uµ = Nhµ

(uµ).(3.10)

On (3.10) we act with (uλ − uµ)
+ ∈W 1,p(Ω). Then

〈A(uµ), (uλ − uµ)
+〉 +

∫

Ω

β|uµ|
p−2uµ(uλ − uµ)

+dz

=

∫

Ω

µf(z, uλ)(uλ − uµ)+dz (see (3.9))

≥

∫

Ω

λf(z, uλ)(uλ − uµ)
+dz (since λ < µ and f ≥ 0)

= 〈A(uλ), (uλ − uµ)
+〉 +

∫

Ω

βup−1
λ (uλ − uµ)

+dz

⇒

∫

{uλ>uµ}

(a(Duλ) − a(Duµ), Duλ −Duµ)RNdz

+

∫

{uλ>uµ}

β(up−1
λ − |uµ|

p−2uµ)(uλ − uµ)dz ≤ 0,

⇒ |{uλ > uµ}|N = 0 (see Lemma 2.2(a)), hence uλ ≤ uµ.
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Therefore (3.10) becomes

a(uµ) + βup−1
µ = µNf(uµ) (see (3.9)),

⇒ uµ ∈ S(µ) ⊆ intC+ (see Proposition 3.1),

⇒ [λ,+∞) ⊆ P.

As a consequence of Proposition 3.3, we have that (λ∗,+∞) ⊆ P.

Proposition 3.4. If hypotheses H(a), H(β) and H(f) hold and λ > λ∗ then problem

(1.1) has at least two nontrivial positive solutions

u0, û ∈ intC+.

Proof. Let λ∗ < θ < λ < µ and let uθ ∈ S(θ) ⊆ intC+. We have

(3.11) A(uθ) + βup−1
θ = θNf(uθ) ≤ µNf(uθ) in W 1,p(Ω)∗

(recall θ < µ and f ≥ 0).

Reasoning as in the proof of Proposition 3.3, we truncate f(z, ·) at uθ(z) and

employ the direct method. Using (3.11), we obtain uµ ∈ S(µ) ⊆ intC+ such that

uθ ≤ uµ. Since θ < λ < µ and f ≥ 0, we have

(3.12) A(uθ) + βup−1
θ ≥ λNf (uθ) in W 1,p(Ω)∗,

(3.13) A(uµ) + βup−1
µ ≥ λNf (uµ) in W 1,p(Ω)∗,

Then we introduce the following Caratheodory fuction

(3.14) eλ(z, x) =






λf(z, uθ(z)) if x < uθ(z),

λf(z, x) if uθ(z) ≤ x ≤ uµ(z),

λf(z, uµ(z) if uµ(z) < x.

We set Eλ(z, x) =
∫ x

0
eλ(z, s)ds and consider the C1-functional γλ : W 1,p(Ω) → R

defined by

γλ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

β|u|pdz −

∫

Ω

Eλ(z, u)dz for all u ∈W 1,p(Ω).

Evidently γλ is coercive (see Proposition 2.9 and (3.14)). Also, it is sequentially

weakly lower semicontinuous. So, we can find u0 ∈W 1,p(Ω) such that

γλ(u0) = inf[γλ(u) : u ∈W 1,p(Ω)],

⇒ γ′λ(u0) = 0,

⇒ A(u0) + β|u0|
p−2u0 = Neλ

(u0).(3.15)
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As in the proof of Proposition 3.3, acting on (3.15) with (uθ − u0)
+ ∈ W 1,p(Ω) and

using (3.12) and then acting on (3.15) with (u0 − uµ)
+ ∈ W 1,p(Ω) and using (3.13),

we show that

u0 ∈ [uθ, uµ] = {u ∈W 1,p(Ω) : uθ(z) ≤ u(z) ≤ uµ(z) a.e. in Ω},

⇒ u0 ∈ S(λ) ⊆ intC+ (see (3.14), (3.15)).

Let ρ = ‖uµ‖∞ and let ξρ > 0 be as postulated by hypothesis H(f)(iv). For δ > 0,

we set uδ
0(z) = u0(z) + δ for all z ∈ Ω. Then uδ

0 ∈ intC+ and we have

− div a(Duδ
0(z)) + (β(z) + µξρ)u

δ
0(z)

p−1

(3.16)

≤ −div a(Du0(z)) + (β(z) + µξρ)u0(z)
p−1 + ζ(δ) with ζ(δ) → 0+ as δ → 0+

= λf(z, u0(z)) + µξρu0(z)
p−1

= µ[f(z, u0(z)) + ξρu0(z)
p−1] − (µ− λ)f(z, u0(z)) + ζ(δ)

≤ µf(z, u0(z)) + µξρu0(z)
p−1 − (µ− λ)cρ0

+ ζ(δ)

where ρ0 = minΩ u0 (recall u0 ∈ intC+ and see H(f)(iii)).

Since ζ(δ) → 0+ as δ → 0+, we can find δ∗ > 0 such that

ζ(δ) − (µ− λ)cρ ≤ 0 for all δ ∈ (0, δ∗]

. So, from (3.16) we have for all δ ∈ (0, δ∗]

− div a(Duδ
0(z)) + (β(z) + µξρ)u

δ
0(z)

≤ µf(z, uµ(z)) + µξρuµ(z)
p−1

= −div a(Duµ(z)) + (β(z) + µξρ)uµ(z) a.e. in Ω,

⇒ uδ
0 ≤ uµ (by acting with (uδ

0 − uµ)
+(Ω)),

⇒ uµ − u0 ∈ intC+.

In a similar fashion, we show that

u0 − uθ ∈ intC+.

So, we have proved that

(3.17) u0 ∈ intC1(Ω)[uθ, uµ].

From (3.14) we see that

γλ|[uθ,uµ] = ϕλ|[uθ,uµ] + ξ̂λ with ξ̂λ ∈ R

(see the proof of Proposition 3.2 for ϕλ).

Using (3.17) if follows that

u0 is a local C1(Ω)-minimizer of ϕλ,
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⇒ u0 is a local W 1,p(Ω)-minimizer of ϕλ (see Theorem 2.5).

By virtue of hypothesis H(f)(iii), given ε > 0, we can find δ = δ(ε) > 0 such that

(3.18) F (z, x) ≤
ε

p
xp for a.a. z ∈ Ω, all x ∈ [0, δ].

For u ∈ C1(Ω) with ‖u‖C1(Ω) ≤ δ, we have

ϕλ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

β|u|pdz − λ

∫

Ω

F (z, u)dz

≥
1

p
[ξ∗ − λε]‖u‖p(3.19)

(see Proposition 2.9 and (3.18)).

Choosing ε ∈ (0, ξ∗

λ
), from (3.19) we infer that

ϕλ(u) > 0 = ϕλ(0) for all u ∈ C1(Ω) with 0 < ‖u‖C1(Ω) ≤ δ,

⇒ u = 0 is a local C1(Ω)-minimizer of ϕλ,

⇒ u = 0 is a local W 1,p(Ω)-minimizer of ϕλ (see Theorem 2.5).

Without any loss of generality we may assume that ϕλ(0) = 0 ≤ ϕλ(u0) (the reasoning

is similar, if the opposite inequality holds) and that u0 is an isolated critical point of ϕλ

(otherwise we have a whole sequence of distinct positive solutions and so we are done).

Then as in Aizicovicci-Papageorgiou-Staicu [1] (see the proof of Proposition 29), we

can find ρ̂ ∈ (0, ‖u0‖) such that

(3.20) ϕλ(0) = 0 ≤ ϕλ(u0) < inf[ϕλ(u) : ‖u‖ = ρ̂] = ηbρ.

Recall that ϕλ is coercive (see the proof of Proposition 3.2). Using this fact, we can

easily check that ϕλ satisfies the PS-condition. Combining this with (3.20), we can

apply Theorem 2.6 and obtain û ∈W 1,p(Ω) such that

(3.21) ηbρ ≤ ϕλ(û)

(3.22) ϕ′
λ(û) = 0.

From (3.20) and (3.21) we see that û /∈ {0, u0}, while from (3.22) it follows that

û ∈ S(λ) ⊆ intC+.

The next proposition examines what happens at the critical parameter value

λ∗ > 0.

Proposition 3.5. If hypotheses H(a), H(β) and H(f) hold, then λ∗ ∈ P.

Proof. Let {λn}n≥1 ⊆ P such that λn ↓ λ∗ and λn > λ∗ for all n ≥ 1. Then we can

find un ∈ S(λn) ⊆ intC+ such that

(3.23) {un}n≥1
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is decreasing (see the proof of Proposition 3.4) and

(3.24) A(un) + βup−1
n = λnNf(un) for all n ≥ 1.

Recall that

0 ≤ f(z, x) ≤ c6x
p−1 for a.a. z ∈ Ω, all x ≥ 0 (see (3.2)).

From this estimate, Proposition 2.9 and (3.23), (3.24), we infer that

{un}n≥1 ⊆ W 1,p(Ω) is bounded.

Hence we may assume that

(3.25) un
w
→ u∗ in W 1,p(Ω) and un → u in Lp(Ω).

On (3.24) we act with un − u∗ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use

(3.25). We obtain

lim
n→∞

〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(Ω) (see Proposition 2.7).(3.26)

So, by passing to the limit as n→ ∞ in (3.24) and using (3.26), we have

A(u∗) + βup−1
∗ = λ∗Nf (u∗),

⇒ u∗ ∈ C+ (nonlinear regularity, see [11], [12]).

If we show that u∗ 6= 0, then u∗ ∈ S(λ∗) ⊆ intC+ and so λ∗ ∈ P. To this end, we

have

−div a(Dun(z)) + β(z)un(z)p−1 = λnf(z, un(z)) a.e. in Ω,
∂un

∂n
= 0 on ∂Ω.

Since 0 ≤ un ≤ u1 for all n ≥ 1, from Hu-Papageorgiou [11] (see Proposition 2.7), we

can find M1 > 0 such that

‖un‖∞ ≤M1 for all n ≥ 1.

Then the regularity result of Lieberman [12] (p. 320) implies that there exist η ∈ (0, 1)

and M2 > 0 such that

(3.27) un ∈ C1,η(Ω) and ‖un‖C1,η(Ω) ≤M2 for all n ≥ 1.

Since C1,η(Ω) is embedded compactly in C1(Ω), from (3.27) and (3.26), we have

un → u∗ in C1(Ω).

Suppose that u∗ = 0. Then

(3.28) un → 0 in C1(Ω).

By virtue of hypothesis H(f)(iii), given ε > 0, we can find δ = δ(ε) > 0 such that

(3.29) f(z, x) ≤ εxp−1 for a.a. z ∈ Ω, all x ∈ [0, δ].
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From (3.28) it follows that there exists an integer n0 ≥ 1 such that

un(z) ∈ [0, δ] for all z ∈ Ω, all n ≥ n0,

⇒ −div a(Dun(z)) + β(z)un(z)p−1 ≤ λnεun(z)
p−1

a.e. in Ω , n ≥ n0 (see (3.29))

⇒ ξ∗‖un‖
p ≤ λnε‖un‖

p
p, n ≥ n0 (see Proposition 2.9),

⇒
ξ∗

ε
≤ λn for all n ≥ n0,

⇒
ξ∗

ε
≤ λ∗.

But ε > 0 is arbitrary. So if we let ε → 0+, we reach a contradiction. This proves

that u∗ 6= 0 and so λ∗ ∈ P.

Summarizing the situation for problem (1.1), we can state the following bifurcation-

type theorem.

Theorem 3.6. If hypotheses H(a), H(β) and H(f) hold, then there exists λ∗ > 0

such that

(a) for all λ ∈ (λ∗,+∞) problem (1.1) has at least two nontrivial positive solutions

u0, û ∈ intC+;

(b) for λ = λ∗ problem (1.1) has at least one nontrivial positive solution u∗ ∈ intC+;

(c) for λ ∈ (0, λ∗) problem (1.1) has no nontrivial positive solution.
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