A DIMENSION-DEPENDING MULTIPLICITY RESULT FOR A PERTURBED SCHRÖDINGER EQUATION

ALEXANDRU KRISTÁLY, GHEORGHE MOROŞANU, AND DONAL O'REGAN

Department of Economics, Babeş-Bolyai University 400591 Cluj-Napoca, Romania & Department of Mathematics, Óbudai University, 1034 Budapest, Hungary Department of Mathematics, Central European University 1051 Budapest, Hungary

Department of Mathematics, National University of Ireland, Galway, Ireland

ABSTRACT. We consider the Schrödinger equation

$$\begin{cases} -\Delta u + V(x)u = \lambda K(x)f(u) + \mu L(x)g(u) & \text{in } \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
 $(P_{\lambda,\mu})$

where $N \geq 2$, $\lambda, \mu \geq 0$ are parameters, $V, K, L : \mathbb{R}^N \to \mathbb{R}$ are radially symmetric potentials, $f: \mathbb{R} \to \mathbb{R}$ is a continuous function with sublinear growth at infinity, and $g: \mathbb{R} \to \mathbb{R}$ is a continuous sub-critical function. We first prove that for λ small enough no non-zero solution exists for $(P_{\lambda,0})$, while for λ large and μ small enough at least two distinct non-zero radially symmetric solutions do exist for $(P_{\lambda,\mu})$. By exploiting a Ricceri-type three-critical points theorem, the principle of symmetric criticality and a group-theoretical approach, the existence of at least N - 3 ($N \mod 2$) distinct pairs of non-zero solutions is guaranteed for $(P_{\lambda,\mu})$ whenever λ is large and μ is small enough, $N \neq 3$, and f, g are odd.

Keywords: Schrödinger equation, sublinear, three-critical points theorem, principle of symmetric criticality

1. INTRODUCTION

In this paper we consider the perturbed Schrödinger equation

$$\begin{cases} -\Delta u + V(x)u = \lambda K(x)f(u) + \mu L(x)g(u) & \text{in } \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \end{cases} (P_{\lambda,\mu})$$

where $N \geq 2$, $V, K, L : \mathbb{R}^N \to \mathbb{R}$ are some non-negative potentials, $\lambda, \mu \geq 0$ are parameters, while $f, g : \mathbb{R} \to \mathbb{R}$ are nonlinear continuous functions with different behavior. The interest in this problem comes from mathematical physics; for instance, certain kinds of solitary waves in the nonlinear Klein-Gordon or Schrödinger equations appear as solutions of problem $(P_{\lambda,\mu})$.

Received January 16, 2013

The first author was supported by Grant CNCSIS PCCE-55/2008 "Sisteme diferențiale în analiza neliniară și aplicații"

The non-perturbed problem $(P_{\lambda}) = (P_{\lambda,0})$ or its related form has been studied by many authors during the last two decades under various assumptions on the potentials V, K and on the nonlinear function f. Most of these papers address the case when V and K have suitable sign- and growth-properties, and f has a superlinear and subcritical growth. In these papers existence and multiplicity results for (P_{λ}) are established via various variational arguments, see Rabinowitz [8], Bartsch et al. [1, 2], and further subsequent papers. In particular, if f is odd, the existence of infinitely many solutions for (P_{λ}) is usually guaranteed. A particularly interesting paper is due to Clapp and Weth [3] where the existence of at least $\frac{N}{2} + 1$ pairs of non-zero solutions for (P_{λ}) is proved for every $\lambda > 0$ by assuming certain one-sided asymptotic estimates for V and K when $f(s) = |s|^{p-2}s$, $p \in (2, 2^*)$. Problem (P_{λ}) has been also studied in the case when f is odd and has an asymptotically linear growth at infinity; more precisely, Liu, van Heerden and Wang [7] prove a multiplicity result for (P_{λ}) whenever $V(x) = \mu g(x) + 1$, $\mu > 0$, and the number of solutions for (P_{λ}) depends on the behavior of the dimension of the eigenspace of a specific Dirichlet eigenvalue problem defined on the bounded domain $\Omega = int(q^{-1}(0))$.

The aim of the present paper is to supplement the aforementioned contributions by requiring that the non-zero continuous function $f : \mathbb{R} \to \mathbb{R}$ has a sublinear growth at infinity and a superlinear growth near zero, and problem $(P_{\lambda}) = (P_{\lambda,0})$ is perturbed by an arbitrarily nonlinear term. More precisely, we assume that

- $(f_1) f(s) = o(|s|)$ as $|s| \to \infty$;
- (f_2) f(s) = o(|s|) as $s \to 0$;
- (f_3) there exists $s_0 \in \mathbb{R}$ such that $F(s_0) > 0$, where $F(s) = \int_0^s f(t) dt$.

In order to avoid technicalities, we assume in the sequel that potentials $V,K,L:\mathbb{R}^N\to\mathbb{R}$ satisfy

 (H_V) $V \in C(\mathbb{R}^N)$ is radially symmetric and $\inf_{\mathbb{R}^N} V > 0$; $(H_{K,L})$ $K, L \in L^{\infty}(\mathbb{R}^N) \cap L^1(\mathbb{R}^N)$ are radially symmetric and $K \ge 0, K \not\equiv 0$.

Note that solutions of $(P_{\lambda,\mu})$ are being sought in weak form in the space

$$W = \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx < \infty \right\}.$$

In fact, under the above conditions on f, V and K which will be assumed throughout in the sequel, every weak solution u of $(P_{\lambda,0})$ is a classical one. Indeed, we have $\Delta u =: h \in L^2_{loc}(\mathbb{R}^N)$, thus $u \in H^2_{loc}(\mathbb{R}^N)$ (cf. Evans [4, §8.3]) and u satisfies (P_{λ}) for a.a. $x \in \mathbb{R}^N$.

The hypotheses (f_1) , (f_2) and (f_3) guarantee that the number

$$c_f = \max_{s \neq 0} \left| \frac{f(s)}{s} \right|$$

is well-defined, positive and finite. Now, we are in a position to state our main result.

Theorem 1.1. Assume that $N \geq 2$. Let $V, K, L : \mathbb{R}^N \to \mathbb{R}$ be two potentials such that both (H_V) and $(H_{K,L})$ hold, and let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function verifying $(f_1) - (f_3)$. Then, the following assertions hold:

- (i) For every $\lambda \in [0, c_f^{-1} ||K||_{L^{\infty}}^{-1} \inf_{\mathbb{R}^N} V)$, problem $(P_{\lambda}) = (P_{\lambda,0})$ has only the zero solution;
- (ii) There exists $\Lambda_0 > 0$ such that for every $\lambda > \Lambda_0$ and every subcritical nonlinearity $g : \mathbb{R} \to \mathbb{R}$, there exists $\delta_0 > 0$ such that for every $\mu \in [0, \delta_0]$, problem $(P_{\lambda,\mu})$ has at least two distinct non-zero radially symmetric weak solutions in W;
- (iii) If f is odd, there exists $\Lambda_1 > 0$ such that for every $\lambda > \Lambda_1$ and every odd subcritical nonlinearity $g : \mathbb{R} \to \mathbb{R}$, there exists $\delta_1 > 0$ such that for every $\mu \in [0, \delta_1]$, problem $(P_{\lambda,\mu})$ has at least $s_N = \max\{2, N - 3 \cdot (N \mod 2)\}$ distinct pairs of non-zero weak solutions $\{\pm u_i^{\lambda}\} \subset W$, $i = 1, \ldots, s_N$.

The function $g : \mathbb{R} \to \mathbb{R}$ is said to be subcritical is for some c > 0 and 2 ,

$$|g(s)| \le c(|s| + |s|^{p-1})$$
 for all $s \in \mathbb{R}$.

The proof of Theorem 1.1 (i) is direct. In order to prove Theorem 1.1 (ii)–(iii), we find critical points of the energy functional associated with problem $(P_{\lambda,\mu})$ by means of a Ricceri-type three-critical points theorem and the well-known Palais' principle of symmetric criticality. In particular, the proof of the multiplicity in Theorem 1.1 (iii) requires special treatment. Our strategy is to apply Ricceri's result to some particular subspaces of W which have two main properties:

- they can be compactly embedded into $L^p(\mathbb{R}^N)$, $p \in (2, 2^*)$;
- they cannot be compared from a symmetrical point of view, i.e., their pairwise intersections contain only the 0 element.

After a careful group-theoretical analysis inspired from Bartsch and Willem [2], we construct $s'_N = \left[\frac{N-1}{2}\right] + (-1)^N$ such subspaces of W whenever $N \neq 3$. Further energy-level analysis together with Ricceri's multiplicity result provides at least two pairs of distinct non-zero solutions for $(P_{\lambda,\mu})$ belonging to these subspaces separately whenever λ is large enough and μ is small. Thus, the minimal number of distinct pairs of non-zero solutions for $(P_{\lambda,\mu})$ is $s_N = 2s'_N = N-3$ ($N \mod 2$). One can also observe that $s_N \geq 2$ for every $N \neq 3$. Furthermore, in each dimension $N \geq 2$, two pairs of solutions are radially symmetric, while if $s_N > 2$ (which occurs for N = 4 or $N \geq 6$), the rest of the (s_N-2) pairs of solutions are sign-changing and non-radially symmetric functions. This statement is based on the aforementioned group-theoretical argument which is described in Section 2.

In Section 2 we recall Ricceri's three-critical point theorem and display the grouptheoretical arguments needed for the proof of Theorem 1.1 (iii). In Section 3 we prove our main theorem.

2. PRELIMINARIES

2.1. A Ricceri-type three-critical point theorem. The functional space

$$W = \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx < \infty \right\}$$

is endowed with its natural inner product $\langle u, v \rangle_W = \int_{\mathbb{R}^N} (\nabla u \nabla v + V(x) uv) dx$ and norm $\|\cdot\|_W = \sqrt{\langle \cdot, \cdot \rangle_W}$. Due to hypothesis (H_V) , it is clear that the embeddings $W \subset H^1(\mathbb{R}^N) \subset L^p(\mathbb{R}^N)$ are continuous, $p \in [2, 2^*)$. Here, $2^* = \infty$ if N = 2, and $2^* = 2N/(N-2)$ for $N \ge 3$. Once (f_1) and (f_2) hold, the functional $\mathcal{F} : W \to \mathbb{R}$ defined by

$$\mathcal{F}(u) = \int_{\mathbb{R}^N} K(x) F(u) dx$$

is well-defined and is of class C^1 . If g is subcritical and L verifies (H_L) , the functional $J: W \to \mathbb{R}$ defined by

$$\mathcal{J}(u) = \int_{\mathbb{R}^N} L(x) G(u) dx,$$

is of class C^1 . Moreover, the critical points of the functional $E_{\lambda,\mu}: W \to \mathbb{R}$ defined by

$$E_{\lambda,\mu}(u) = \frac{1}{2} \|u\|_W^2 - \lambda \mathcal{F}(u) - \mu \mathcal{J}(u)$$

are precisely the weak solutions for problem $(P_{\lambda,\mu})$. In order to find critical points for $E_{\lambda,\mu}$, we will apply the principle of symmetric criticality together with a recent critical point theorem due to Ricceri [9]. In order to recall Ricceri's result, we need the following definition: if X is a Banach space, we denote by \mathcal{W}_X the class of those functionals $E: X \to \mathbb{R}$ having the property that if $\{u_n\}$ is a sequence in X converging weakly to $u \in X$ and $\liminf_n E(u_n) \leq E(u)$ then $\{u_n\}$ has a subsequence converging strongly to u.

Theorem 2.1 ([9, Theorem 2]). Let $(X, \|\cdot\|)$ be a separable, reflexive, real Banach space, let $E_1 : X \to \mathbb{R}$ be a coercive, sequentially weakly lower semicontinuous C^1 functional belonging to \mathcal{W}_X , bounded on each bounded subset of X and whose derivative admits a continuous inverse on X^* ; and let $E_2 : X \to \mathbb{R}$ be a C^1 functional with compact derivative. Assume that E_1 has a strict local minimum point u_0 with $E_1(u_0) = E_2(u_0) = 0$. Assume that $\tau < \chi$, where

(2.1)
$$\tau := \max\left\{0, \limsup_{\|u\| \to \infty} \frac{E_2(u)}{E_1(u)}, \limsup_{u \to u_0} \frac{E_2(u)}{E_1(u)}\right\},$$

(2.2)
$$\chi = \sup_{E_1(u)>0} \frac{E_2(u)}{E_1(u)}$$

Then, for each compact interval $[a, b] \subset (1/\chi, 1/\tau)$ (with the conventions $1/0 = \infty$ and $1/\infty = 0$) there exists $\kappa > 0$ with the following property: for every $\lambda \in [a, b]$ and every C^1 functional $E_3 : X \to \mathbb{R}$ with compact derivative, there exists $\delta > 0$ such that for each $\mu \in [0, \delta]$, the equation

$$E_1'(u) - \lambda E_2'(u) - \mu E_3'(u) = 0$$

admits at least three solutions in X having norm less than κ .

2.2. Special symmetries. Let $N \ge 2$ be fixed and assume that a closed subgroup of the orthogonal group $\mathbf{O}(N)$ acts on the space W, i.e., $(\phi, u) \mapsto \phi * u \in W, \phi \in G$, $u \in W$. We define the set of fixed points of W with respect to the group G which contains the G-invariant functions, i.e.,

$$W_G = \{ u \in W : \phi * u = u \text{ for every } \phi \in G \}.$$

In particular, if $G = \mathbf{O}(N)$ and '*' is the standard linear and isometric action defined as

(2.3)
$$(\phi * u)(x) = u(\phi^{-1}x) \text{ for } x \in \mathbb{R}^N, \phi \in \mathbf{O}(N),$$

the set $W_{\mathbf{O}(N)}$ is exactly the subspace of radially symmetric functions of W. Standard arguments show that $W_{\mathbf{O}(N)} \subset L^p(\mathbb{R}^N)$ is compact for every $p \in (2, 2^*)$, see Lions [6].

In order to prove Theorem 1.1 (iii), more specific groups and actions are needed whose origin can be found in Bartsch and Willem [2]. Let us fix N = 4 or $N \ge 6$ and define the number

$$t_N = \left[\frac{N-3}{2}\right] + (-1)^N$$

Note that $t_N \ge 1$ and for every $i \in \{1, \ldots, t_N\}$, we may introduce the following subgroups of the orthogonal group $\mathbf{O}(N)$:

$$G_{N,i} = \begin{cases} \mathbf{O}(\frac{N}{2}) \times \mathbf{O}(\frac{N}{2}), & \text{if } i = \frac{N-2}{2}, \\ \mathbf{O}(i+1) \times \mathbf{O}(N-2i-2) \times \mathbf{O}(i+1), & \text{if } i \neq \frac{N-2}{2}. \end{cases}$$

We introduce the involution function $\tau_i : \mathbb{R}^N \to \mathbb{R}^N$ associated with $G_{N,i}$ by

$$\tau_i(x) = \begin{cases} (x_3, x_1), & \text{if } i = \frac{N-2}{2}, \text{ and } x = (x_1, x_3) \text{ with } x_1, x_3 \in \mathbb{R}^{\frac{N}{2}}; \\ (x_3, x_2, x_1), & \text{if } i \neq \frac{N-2}{2}, \text{ and } x = (x_1, x_2, x_3) \text{ with } x_1, x_3 \in \mathbb{R}^{i+1}, x_2 \in \mathbb{R}^{N-2i-2} \end{cases}$$

By definition, we clearly have that $\tau_i \notin G_{N,i}$, $\tau_i G_{N,i} \tau_i^{-1} = G_{N,i}$ and $\tau_i^2 = \mathrm{id}_{\mathbb{R}^N}$.

Now, let $G_{N,i}^{\tau_i} = \langle G_{N,i}, \tau_i \rangle = G_{N,i} \cup \tau_i G_{N,i}$. We know from the properties of τ_i that only two types of elements in $G_{N,i}^{\tau_i}$ can be distinguished; namely, $\phi = g \in G_{N,i}$,

and $\phi = \tau_i g \in G_{N,i}^{\tau_i} \setminus G_{N,i}$ (with $g \in G_{N,i}$). The action of the compact group $G_{N,i}^{\tau_i}$ on W is defined by

(2.4)
$$(g * u)(x) = u(g^{-1}x), \quad ((\tau_i g) * u)(x) = -u(g^{-1}\tau_i^{-1}x),$$

for $g \in G_{N,i}$, $u \in W$ and $x \in \mathbb{R}^N$. Now from Bartsch and Willem [2, pp. 455-457], the embedding $W_{G_{N,i}^{\tau_i}} \subset L^p(\mathbb{R}^N)$ is compact for every $p \in (2, 2^*)$.

The next result is of crucial importance in Theorem 1.1 (iii); a similar statement can be found in Kristály, Rădulescu and Varga [5], thus we omit its proof.

Theorem 2.2. The following statements hold true:

(i) If N = 4 or N ≥ 6, then W_{G^{τi}_{N,i}} ∩ W_{O(N)} = {0} for all i ∈ {1,...,t_N};
(ii) If N = 6 or N ≥ 8, then W_{G^{τi}_{N,i}} ∩ W_{G^{τj}_{N,j}} = {0} for every i, j ∈ {1,...,t_N} with i ≠ j.

3. PROOF OF THEOREM 1.1

In the sequel we assume that all the assumptions of Theorem 1.1 are fulfilled.

Proof of Theorem 1.1 (i). Assume that $u \in W$ is a solution of $(P_{\lambda}) = (P_{\lambda,0})$. Multiplying (P_{λ}) by the test function u and using the definition of the number $c_f > 0$, we obtain

$$\begin{aligned} \|u\|_{W}^{2} &= \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + V(x)u^{2}) dx \\ &= \lambda \int_{\mathbb{R}^{N}} K(x) f(u) u \\ &\leq \lambda \frac{\|K\|_{L^{\infty}}}{\inf_{\mathbb{R}^{N}} V} c_{f} \int_{\mathbb{R}^{N}} V(x) u^{2} \\ &\leq \lambda \frac{\|K\|_{L^{\infty}}}{\inf_{\mathbb{R}^{N}} V} c_{f} \|u\|_{W}^{2}. \end{aligned}$$

Now, if $0 \leq \lambda < c_f^{-1} \|K\|_{L^{\infty}}^{-1} \inf_{\mathbb{R}^N} V$, the above estimate implies u = 0, which concludes the proof of (i).

As we pointed out in the Introduction, the solutions of $(P_{\lambda,\mu})$ are exactly the critical points for the functional $E_{\lambda,\mu} = \mathcal{E}_1 - \lambda \mathcal{E}_2 - \mu \mathcal{E}_3 : W \to \mathbb{R}$, where

$$\mathcal{E}_1(u) = \frac{1}{2} \|u\|_W^2, \ \mathcal{E}_2(u) = \mathcal{F}(u) \text{ and } \mathcal{E}_3(u) = \mathcal{J}(u), \ u \in W.$$

Before proving (ii) and (iii) of Theorem 1.1, we need the following

Lemma 3.1. (i) $\limsup_{\|u\|_W \to \infty} \frac{\mathcal{F}(u)}{\|u\|_W^2} \leq 0;$

- (ii) $\limsup_{u \to 0} \frac{\mathcal{F}(u)}{\|u\|_W^2} \le 0;$
- (iii) Let X be a closed subspace of W which is compactly embedded into $L^r(\mathbb{R}^N)$, $r \in (2, 2^*)$. Then $\mathcal{F}|_X$ and $\mathcal{J}|_X$ have compact derivatives.

Proof. Due to (f_1) and (f_2) , for every fixed $\varepsilon > 0$ there is a $\delta_{\varepsilon} \in (0, 1)$ such that

$$|f(s)| < \varepsilon \frac{\inf_{\mathbb{R}^N} V}{\|K\|_{L^{\infty}}} |s| \text{ for all } |s| \le \delta_{\varepsilon} \text{ and } |s| \ge \delta_{\varepsilon}^{-1}.$$

Since $f \in C(\mathbb{R}, \mathbb{R})$, there also exist two constants $M^1_{\varepsilon}, M^2_{\varepsilon} > 0$ such that

$$\frac{|f(s)|}{|s|^{q-1}} \le M_{\varepsilon}^1 \text{ and } \frac{|f(s)|}{|s|^{p-1}} \le M_{\varepsilon}^2 \text{ for all } |s| \in [\delta_{\varepsilon}, \delta_{\varepsilon}^{-1}],$$

where $1 < q < 2 < p < 2^*$. Combining the above two relations, we obtain that

(3.1)
$$|f(s)| \le \varepsilon \frac{\inf_{\mathbb{R}^N} V}{\|K\|_{L^{\infty}}} |s| + M_{\varepsilon}^1 |s|^{q-1} \text{ for all } s \in \mathbb{R};$$

(3.2)
$$|f(s)| \le \varepsilon \frac{\inf_{\mathbb{R}^N} V}{\|K\|_{L^{\infty}}} |s| + M_{\varepsilon}^2 |s|^{p-1} \text{ for all } s \in \mathbb{R}.$$

On account of (3.1), since $K \in L^{\infty}(\mathbb{R}^N) \cap L^1(\mathbb{R}^N)$ and the embedding $W \subset L^r(\mathbb{R}^N)$ is continuous for $r \in (2, 2^*)$, by the Hölder inequality one can find $C^1_{\varepsilon} > 0$ such that

$$\begin{aligned} \mathcal{F}(u) &\leq \int_{\mathbb{R}^N} K(x) |F(u)| \\ &\leq \int_{\mathbb{R}^N} K(x) \left[\varepsilon \frac{\inf_{\mathbb{R}^N} V}{2 \|K\|_{L^{\infty}}} u^2 + \frac{M_{\varepsilon}^1}{q} |u|^q \right] \\ &\leq \frac{\varepsilon}{2} \|u\|_W^2 + C_{\varepsilon}^1 \|u\|_W^q. \end{aligned}$$

Consequently, for every $u \in W \setminus \{0\}$, we have that

$$\frac{\mathcal{F}(u)}{\|u\|_W^2} \leq \frac{\varepsilon}{2} + C_{\varepsilon}^1 \|u\|_W^{q-2}.$$

Since q < 2, the arbitrariness of $\varepsilon > 0$ yields (i).

A similar argument based on (3.2) gives the existence of a $C_{\varepsilon}^2 > 0$ such that for every $u \in W \setminus \{0\}$,

$$\frac{\mathcal{F}(u)}{\|u\|_W^2} \leq \frac{\varepsilon}{2} + C_{\varepsilon}^2 \|u\|_W^{p-2}.$$

Since $\varepsilon > 0$ is arbitrary and p > 2, (ii) follows readily.

The proof of (iii) is standard.

For any $0 < r_1 < r_2$, let $A[r_1, r_2] = \{x \in \mathbb{R}^N : r_1 \leq |x| \leq r_2\}$ be the closed annulus with radii r_1 and r_2 . Since $K \in L^{\infty}(\mathbb{R}^N)$ is a radially symmetric function with $K \geq 0$ and $K \not\equiv 0$ (cf. hypothesis (H_K)), one can find real numbers R > r > 0and $K_0 > 0$ such that

$$(3.3) \qquad \qquad \operatorname{ess\,inf}_{x \in A[r,R]} K(x) \ge K_0.$$

Proof of Theorem 1.1 (ii). Let $s_0 \in \mathbb{R}$ from (f_3) . For a fixed $\sigma \in (0, (R-r)/2)$ with r, R from (3.3), we can define a radially symmetric truncation function $u_{\sigma} \in W_{\mathbf{O}(N)}$ such that

- (a) supp $u_{\sigma} \subseteq A[r, R];$
- (b) $||u_{\sigma}||_{L^{\infty}} \leq |s_0|;$
- (c) $u_{\sigma}(x) = s_0$ for every $x \in A[r + \sigma, R \sigma]$.

Here is an example of such a function $u_{\sigma}: \mathbb{R}^N \to \mathbb{R}$

$$u_{\sigma}(x) = \begin{cases} \frac{s_0}{\sigma} (|x| - r)_+ & \text{if } |x| \le r + \sigma; \\ s_0 & \text{if } r + \sigma < |x| \le R - \sigma; \\ \frac{s_0}{\sigma} (R - |x|)_+ & \text{if } |x| \ge R - \sigma, \end{cases}$$

where $z_{+} = \max(z, 0)$. Denoting by ω_N the volume of the unit ball in \mathbb{R}^N , we clearly have from the properties (a)–(c) and relation (3.3) that

$$||u_{\sigma}||_{W}^{2} \geq s_{0}^{2}\omega_{N}\inf_{\mathbb{R}^{N}}V\left((R-\sigma)^{N}-(r+\sigma)^{N}\right),$$

and

$$\mathcal{F}(u_{\sigma}) \geq \omega_{N}[K_{0}F(s_{0})\left((R-\sigma)^{N}-(r+\sigma)^{N}\right)-\|K\|_{L^{\infty}}\max_{|t|\leq|s_{0}|}|F(t)|\times \left((r+\sigma)^{N}-r^{N}+R^{N}-(R-\sigma)^{N}\right)\right].$$

If σ is close enough to 0, the right-hand sides of both inequalities are strictly positive. Therefore, we can define the number

(3.4)
$$\lambda_0 = \inf\left\{\frac{\|u\|_W^2}{2\mathcal{F}(u)} : u \in W_{\mathbf{O}(N)}, \ \mathcal{F}(u) > 0\right\}.$$

Moreover, it is also clear (cf. Lemma 3.1 and the above estimates) that

$$\chi_0 = \sup\left\{\frac{2\mathcal{F}(u)}{\|u\|_W^2} : u \in W_{\mathbf{O}(N)} \setminus \{0\}\right\} \in (0,\infty)$$

and $\chi_0^{-1} = \lambda_0$.

Now, we are in a position to apply Theorem 2.1 with $X = W_{\mathbf{O}(N)}$ and E_1, E_2, E_3 : $W_{\mathbf{O}(N)} \to \mathbb{R}$ defined by $E_1 = \mathcal{E}_1|_{W_{\mathbf{O}(N)}}$, $E_2 = \mathcal{E}_2|_{W_{\mathbf{O}(N)}}$ and $E_3 = \mathcal{E}_3|_{W_{\mathbf{O}(N)}}$. On account of Lemma 3.1, the assumptions of Theorem 2.1 are fulfilled with $u_0 = 0 \in W_{\mathbf{O}(N)}$ and $\tau = 0$.

Thus, for every $\lambda > \Lambda_0 := \lambda_0 = \chi_0^{-1} > 0$ and every subcritical nonlinearity $g: \mathbb{R} \to \mathbb{R}$, there exists $\delta_0 > 0$ such that for every $\mu \in [0, \delta_0]$ the functional $E_{\lambda,\mu}|_{W_{\mathbf{O}(N)}}$ has at least three distinct critical points in $W_{\mathbf{O}(N)}$. Since $E_{\lambda,\mu}$ is $\mathbf{O}(N)$ -invariant, i.e., $E_{\lambda,\mu}(\phi*u) = E_{\lambda,\mu}(u)$ for every $\phi \in \mathbf{O}(N)$ and $u \in W$ (cf. relation (2.3) and hypotheses (H_V) and $(H_{K,L})$), the principle of symmetric criticality implies that the critical points of $E_{\lambda,\mu}|_{W_{\mathbf{O}(N)}}$ are also critical points for $E_{\lambda,\mu}$. This concludes the proof. \Box

Proof of Theorem 1.1 (iii). Let $N \neq 3$. Since f and g are odd, the energy functional $E_{\lambda,\mu}$ is even, and its critical points (hence solutions for $(P_{\lambda,\mu})$) appear in symmetric pairs. Consequently, a similar argument as in (ii) shows that there exists $\lambda_0 > 0$ such that for every $\lambda > \lambda_0$ and every odd subcritical nonlinearity $g : \mathbb{R} \to \mathbb{R}$, there exists $\delta_0^{\lambda} > 0$ such that for every $\mu \in [0, \delta_0^{\lambda}]$ problem $(P_{\lambda,\mu})$ has at least two pairs

of solutions $\{\pm u_{0,1}^{\lambda,\mu}\}$ and $\{\pm u_{0,2}^{\lambda,\mu}\}$ which are non-zero distinct functions belonging to $W_{\mathbf{O}(N)}$. In the case when N = 2 or N = 5 we have $s_N = 2$, i.e., the conclusion of (iii) follows from the latter arguments.

Consequently, it remains to consider N = 4 or $N \ge 6$. In this case $t_N \ge 1$, so we may fix $i \in \{1, \ldots, t_N\}$ arbitrarily. Without any loss of generality, we may assume for 0 < r < R in relation (3.3) that $r(5 + 4\sqrt{2}) \ge R$. Due to the latter choice, it is clear that the sets

$$Q_{1} = \left\{ (x_{1}, x_{3}) \in \mathbb{R}^{i+1} \times \mathbb{R}^{i+1} : \sqrt{\left(|x_{1}| - \frac{R+3r}{4} \right)^{2} + |x_{3}|^{2}} \le \frac{R-r}{4} \right\};$$
$$Q_{2} = \left\{ (x_{1}, x_{3}) \in \mathbb{R}^{i+1} \times \mathbb{R}^{i+1} : \sqrt{\left(|x_{3}| - \frac{R+3r}{4} \right)^{2} + |x_{1}|^{2}} \le \frac{R-r}{4} \right\};$$

are disjoint. For every $\sigma \in (0, 1]$, we introduce the set

$$D_{\sigma}^{i} = \left\{ x \in \mathbb{R}^{N} : \sqrt{\left(|x_{1}| - \frac{R+3r}{4} \right)^{2} + |x_{3}|^{2}} \le \sigma \frac{R-r}{4}, \\ \sqrt{\left(|x_{3}| - \frac{R+3r}{4} \right)^{2} + |x_{1}|^{2}} \le \sigma \frac{R-r}{4}, \\ |x_{2}| \le \sigma \frac{R-r}{4} \right\},$$

where $x = (x_1, x_2, x_3) \in \mathbb{R}^N$ with $x_1, x_3 \in \mathbb{R}^{i+1}$, $x_2 \in \mathbb{R}^{N-2i-2}$ whenever $i \neq \frac{N-2}{2}$, and $x = (x_1, x_3) \in \mathbb{R}^N$ with $x_1, x_3 \in \mathbb{R}^{\frac{N}{2}}$ whenever $i = \frac{N-2}{2}$ (and x_2 is considered formally 0). Note that the set $D_{\sigma}^i \subset \mathbb{R}^N$ is $G_{N,i}^{\tau_i}$ -invariant, i.e., $\phi D_{\sigma}^i \subset D_{\sigma}^i$ for every $\phi \in G_{N,i}^{\tau_i}$. Moreover, $\text{meas}(D_{\sigma}^i) > 0$ for every $\sigma \in (0, 1]$ and

(3.5)
$$\lim_{\sigma \to 1} \operatorname{meas}(D_1^i \setminus D_{\sigma}^i) = 0.$$

Let $s_0 \in \mathbb{R}$ from (f_3) and for a fixed number $\sigma \in (0, 1)$, we construct the following special truncation function

$$u_{\sigma}^{i}(x) = \left[\left(\frac{R-r}{4} - \max\left(\sqrt{\left(|x_{1}| - \frac{R+3r}{4} \right)^{2} + |x_{3}|^{2}}, \sigma \frac{R-r}{4} \right) \right)_{+} - \left(\frac{R-r}{4} - \max\left(\sqrt{\left(|x_{3}| - \frac{R+3r}{4} \right)^{2} + |x_{1}|^{2}}, \sigma \frac{R-r}{4} \right) \right)_{+} \right] \times \left(\frac{R-r}{4} - \max\left(|x_{2}|, \sigma \frac{R-r}{4} \right) \right)_{+} \frac{16s_{0}}{(R-r)^{2}(1-\sigma)^{2}}.$$

The special shape of u_{σ}^{i} shows that $\phi * u_{\sigma}^{i} = u_{\sigma}^{i}$ for every $\phi \in G_{N,i}^{\tau_{i}}$ (see relation (2.4)), thus $u_{\sigma}^{i} \in W_{G_{N,i}^{\tau_{i}}}$. Moreover, the following useful properties hold:

(a') supp $u_{\sigma}^{i} = D_{1}^{i} \subseteq A[r, R];$ (b') $||u_{\sigma}^{i}||_{L^{\infty}} \leq |s_{0}|;$ (c') $|u_{\sigma}^{i}(x)| = |s_{0}|$ for every $x \in D_{\sigma}^{i}.$

Since F is even (thus $F(s_0) = F(-s_0)$), by exploiting the properties (a')–(c'), we obtain that

$$\mathcal{F}(u^i_{\sigma}) \ge K_0 F(s_0) \operatorname{meas}(D^i_{\sigma}) - \|K\|_{L^{\infty}} \max_{|t| \le |s_0|} |F(t)| \operatorname{meas}(D^i_1 \setminus D^i_{\sigma}).$$

If σ is close enough to 1, the right-hand side of the latter term is strictly positive, see (3.5). Consequently, we can introduce the number

(3.6)
$$\lambda_i = \inf\left\{\frac{\|u\|_W^2}{2\mathcal{F}(u)} : u \in W_{G_{N,i}^{\tau_i}}, \ \mathcal{F}(u) > 0\right\}$$

As before, one has that

$$\chi_i = \sup\left\{\frac{2\mathcal{F}(u)}{\|u\|_W^2} : u \in W_{G_{N,i}^{\tau_i}} \setminus \{0\}\right\} \in (0,\infty)$$

and $\chi_i^{-1} = \lambda_i$.

We can apply Theorem 2.1 with $X = W_{G_{N,i}^{\tau_i}}$ and $E_1, E_2, E_3 : W_{G_{N,i}^{\tau_i}} \to \mathbb{R}$ defined by $E_1 = \mathcal{E}_1|_{W_{G_{N,i}^{\tau_i}}}, E_2 = \mathcal{E}_2|_{W_{G_{N,i}^{\tau_i}}}$ and $E_3 = \mathcal{E}_3|_{W_{G_{N,i}^{\tau_i}}}$. Due to Lemma 3.1, the assumptions of Theorem 2.1 are satisfied with $u_0 = 0 \in W_{G_{N,i}^{\tau_i}}$ and $\tau = 0$. Consequently, for every $\lambda > \chi_i^{-1} = \lambda_i > 0$, there exists $\delta_i^{\lambda} > 0$ such that for each $\mu \in [-\delta_i^{\lambda}, \delta_i^{\lambda}]$, the functional $E_{\lambda,\mu}|_{W_{G_{N,i}^{\tau_i}}}$ has at least three critical points in $W_{G_{N,i}^{\tau_i}}$.

Due to the evenness of $E_{\lambda,\mu}$, relation (2.4), and hypotheses (H_V) , $(H_{K,L})$, we have that $E_{\lambda,\mu}(\phi * u) = E_{\lambda,\mu}(u)$ for every $\phi \in G_{N,i}^{\tau_i}$ and $u \in W$, i.e., $E_{\lambda,\mu}$ is $G_{N,i}^{\tau_i}$ -invariant on W. On account of the principle of symmetric criticality, the critical point pairs $\{\pm u_{i,1}^{\lambda,\mu}\}$ and $\{\pm u_{i,2}^{\lambda,\mu}\}$ of $E_{\lambda,\mu}|_{W_{G_{N,i}^{\tau_i}}}$ are also critical point pairs for $E_{\lambda,\mu}$ whenever $\lambda > \lambda_i$ and $\mu \in [-\delta_i^{\lambda}, \delta_i^{\lambda}]$, hence solutions for problem $(P_{\lambda,\mu})$.

Now, it remains to count the number of distinct solutions of the above type. Due to Theorem 2.2, there are at least $(1+t_N)$ subspaces of W whose mutual intersections contain only the 0 element:

- (I) the subspace $W_{\mathbf{O}(N)}$ of radially symmetric functions of W, and
- (II) t_N subspace(s) of W of the type $W_{G_{N,i}^{\tau_i}}$.

As we pointed out above, each of these subspaces contain two distinct pairs of nonzero solutions for $(P_{\lambda,\mu})$ whenever λ is large enough and μ is small enough. More precisely, if

$$\lambda > \Lambda_1 := \max\{\lambda_0, \lambda_1, \dots, \lambda_{t_N}\} \text{ and } 0 \le \mu \le \min\{\delta_0^\lambda, \delta_1^\lambda, \dots, \delta_{t_N}^\lambda\} =: \delta_1,$$

where λ_0 and δ_0^{λ} come from the radial case (see (3.4)), while λ_i is from (3.6), $i \in \{1, \ldots, t_N\}$, problem $(P_{\lambda,\mu})$ has at least

$$s_N = 2(1 + t_N) = N - 3(N \mod 2)$$

distinct pairs of non-zero solutions. This concludes our proof.

Remark 3.2. The statement of Theorem 1.1 (iii) is not relevant for N = 3 since $s_3 = 0$. However, Theorem 1.1 (ii) gives two distinct (pairs of) non-zero, radially symmetric solutions for $(P_{\lambda,\mu})$ whenever λ is large and μ is small enough (and f, g are odd).

Remark 3.3. The proof of Theorem 1.1 (iii) shows that in each dimension $N \ge 2$, two pairs of solutions are radially symmetric. Moreover, if N = 4 or $N \ge 6$, then $s_N \ge 4$ and the rest of the $(s_N - 2)$ pairs of solutions are sign-changing and non-radially symmetric functions in W.

Remark 3.4. From a Strauss-type estimate (see Lions [6]) we know that the elements $u \in W$ are homoclinic, i.e., $u(x) \to 0$ as $|x| \to \infty$. Thus, all solutions in Theorem 1.1 (ii)–(iii) have this property.

REFERENCES

- T. Bartsch, Z. Liu, T. Weth, Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differential Equations 29 (2004), no. 1-2, 25–42.
- T. Bartsch, M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal. 117 (1993), no. 2, 447–460.
- [3] M. Clapp, T. Weth, Multiple solutions of nonlinear scalar field equations. Comm. Partial Differential Equations 29 (2004), no. 9-10, 1533–1554.
- [4] L. C. Evans, Partial differential equations. Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence, RI, 1998.
- [5] A. Kristály, V. Rădulescu, Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Encyclopedia of Mathematics and its Applications, No. 136, 2010.
- [6] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49 (1982), no. 3, 315–334.
- [7] Z. Liu, F. A. van Heerden, Z.-Q. Wang, Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Differential Equations 214 (2005), no. 2, 358–390.
- [8] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992), no. 2, 270–291.
- [9] B. Ricceri, A further three critical points theorem. Nonlinear Analysis 71 (2009), no. 9, 4151– 4157.