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ABSTRACT. We consider the Schrödinger equation
{

−∆u + V (x)u = λK(x)f(u) + µL(x)g(u) in R
N ,

u ∈ H1(RN ),
(Pλ,µ)

where N ≥ 2, λ, µ ≥ 0 are parameters, V, K, L : R
N → R are radially symmetric potentials,

f : R → R is a continuous function with sublinear growth at infinity, and g : R → R is a continuous

sub-critical function. We first prove that for λ small enough no non-zero solution exists for (Pλ,0),

while for λ large and µ small enough at least two distinct non-zero radially symmetric solutions do

exist for (Pλ,µ). By exploiting a Ricceri-type three-critical points theorem, the principle of symmetric

criticality and a group-theoretical approach, the existence of at least N − 3 (N mod 2) distinct pairs

of non-zero solutions is guaranteed for (Pλ,µ) whenever λ is large and µ is small enough, N 6= 3, and

f, g are odd.

Keywords: Schrödinger equation, sublinear, three-critical points theorem, principle of symmetric

criticality

1. INTRODUCTION

In this paper we consider the perturbed Schrödinger equation
{

−∆u + V (x)u = λK(x)f(u) + µL(x)g(u) in R
N ,

u ∈ H1(RN),
(Pλ,µ)

where N ≥ 2, V, K, L : R
N → R are some non-negative potentials, λ, µ ≥ 0 are

parameters, while f, g : R → R are nonlinear continuous functions with different

behavior. The interest in this problem comes from mathematical physics; for instance,

certain kinds of solitary waves in the nonlinear Klein-Gordon or Schrödinger equations

appear as solutions of problem (Pλ,µ).
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The non-perturbed problem (Pλ) = (Pλ,0) or its related form has been studied by

many authors during the last two decades under various assumptions on the potentials

V, K and on the nonlinear function f . Most of these papers address the case when

V and K have suitable sign- and growth-properties, and f has a superlinear and

subcritical growth. In these papers existence and multiplicity results for (Pλ) are

established via various variational arguments, see Rabinowitz [8], Bartsch et al. [1, 2],

and further subsequent papers. In particular, if f is odd, the existence of infinitely

many solutions for (Pλ) is usually guaranteed. A particularly interesting paper is

due to Clapp and Weth [3] where the existence of at least N
2

+ 1 pairs of non-zero

solutions for (Pλ) is proved for every λ > 0 by assuming certain one-sided asymptotic

estimates for V and K when f(s) = |s|p−2s, p ∈ (2, 2∗). Problem (Pλ) has been also

studied in the case when f is odd and has an asymptotically linear growth at infinity;

more precisely, Liu, van Heerden and Wang [7] prove a multiplicity result for (Pλ)

whenever V (x) = µg(x) + 1, µ > 0, and the number of solutions for (Pλ) depends

on the behavior of the dimension of the eigenspace of a specific Dirichlet eigenvalue

problem defined on the bounded domain Ω = int(g−1(0)).

The aim of the present paper is to supplement the aforementioned contributions

by requiring that the non-zero continuous function f : R → R has a sublinear growth

at infinity and a superlinear growth near zero, and problem (Pλ) = (Pλ,0) is perturbed

by an arbitrarily nonlinear term. More precisely, we assume that

(f1) f(s) = o(|s|) as |s| → ∞;

(f2) f(s) = o(|s|) as s → 0;

(f3) there exists s0 ∈ R such that F (s0) > 0, where F (s) =
∫ s

0
f(t)dt.

In order to avoid technicalities, we assume in the sequel that potentials V, K, L :

R
N → R satisfy

(HV ) V ∈ C(RN) is radially symmetric and infRN V > 0;

(HK,L) K, L ∈ L∞(RN) ∩ L1(RN) are radially symmetric and K ≥ 0, K 6≡ 0.

Note that solutions of (Pλ,µ) are being sought in weak form in the space

W =

{

u ∈ H1(RN) :

∫

RN

(|∇u|2 + V (x)u2)dx < ∞
}

.

In fact, under the above conditions on f , V and K which will be assumed throughout

in the sequel, every weak solution u of (Pλ,0) is a classical one. Indeed, we have

∆u =: h ∈ L2
loc(R

N), thus u ∈ H2
loc(R

N) (cf. Evans [4, §8.3]) and u satisfies (Pλ) for

a.a. x ∈ R
N .

The hypotheses (f1), (f2) and (f3) guarantee that the number

cf = max
s 6=0

∣

∣

∣

∣

f(s)

s
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∣
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is well-defined, positive and finite. Now, we are in a position to state our main result.

Theorem 1.1. Assume that N ≥ 2. Let V, K, L : R
N → R be two potentials such

that both (HV ) and (HK,L) hold, and let f : R → R be a continuous function verifying

(f1) − (f3). Then, the following assertions hold:

(i) For every λ ∈ [0, c−1
f ‖K‖−1

L∞infRN V ), problem (Pλ) = (Pλ,0) has only the zero

solution;

(ii) There exists Λ0 > 0 such that for every λ > Λ0 and every subcritical nonlinearity

g : R → R, there exists δ0 > 0 such that for every µ ∈ [0, δ0], problem (Pλ,µ) has

at least two distinct non-zero radially symmetric weak solutions in W ;

(iii) If f is odd, there exists Λ1 > 0 such that for every λ > Λ1 and every odd

subcritical nonlinearity g : R → R, there exists δ1 > 0 such that for every

µ ∈ [0, δ1], problem (Pλ,µ) has at least sN = max{2, N − 3 · (N mod 2)} distinct

pairs of non-zero weak solutions {±uλ
i } ⊂ W , i = 1, . . . , sN .

The function g : R → R is said to be subcritical is for some c > 0 and 2 < p < 2∗,

|g(s)| ≤ c(|s| + |s|p−1) for all s ∈ R.

The proof of Theorem 1.1 (i) is direct. In order to prove Theorem 1.1 (ii)–(iii), we

find critical points of the energy functional associated with problem (Pλ,µ) by means

of a Ricceri-type three-critical points theorem and the well-known Palais’ principle of

symmetric criticality. In particular, the proof of the multiplicity in Theorem 1.1 (iii)

requires special treatment. Our strategy is to apply Ricceri’s result to some particular

subspaces of W which have two main properties:

• they can be compactly embedded into Lp(RN ), p ∈ (2, 2∗);

• they cannot be compared from a symmetrical point of view, i.e., their pairwise

intersections contain only the 0 element.

After a careful group-theoretical analysis inspired from Bartsch and Willem [2], we

construct s′N =
[

N−1
2

]

+ (−1)N such subspaces of W whenever N 6= 3. Further

energy-level analysis together with Ricceri’s multiplicity result provides at least two

pairs of distinct non-zero solutions for (Pλ,µ) belonging to these subspaces separately

whenever λ is large enough and µ is small. Thus, the minimal number of distinct pairs

of non-zero solutions for (Pλ,µ) is sN = 2s′N = N −3 (N mod 2). One can also observe

that sN ≥ 2 for every N 6= 3. Furthermore, in each dimension N ≥ 2, two pairs of

solutions are radially symmetric, while if sN > 2 (which occurs for N = 4 or N ≥ 6),

the rest of the (sN−2) pairs of solutions are sign-changing and non-radially symmetric

functions. This statement is based on the aforementioned group-theoretical argument

which is described in Section 2.
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In Section 2 we recall Ricceri’s three-critical point theorem and display the group-

theoretical arguments needed for the proof of Theorem 1.1 (iii). In Section 3 we prove

our main theorem.

2. PRELIMINARIES

2.1. A Ricceri-type three-critical point theorem. The functional space

W =

{

u ∈ H1(RN) :

∫

RN

(|∇u|2 + V (x)u2)dx < ∞
}

is endowed with its natural inner product 〈u, v〉W =
∫

RN (∇u∇v + V (x)uv) dx and

norm ‖ · ‖W =
√

〈·, ·〉W . Due to hypothesis (HV ), it is clear that the embeddings

W ⊂ H1(RN) ⊂ Lp(RN) are continuous, p ∈ [2, 2∗). Here, 2∗ = ∞ if N = 2, and

2∗ = 2N/(N − 2) for N ≥ 3. Once (f1) and (f2) hold, the functional F : W → R

defined by

F(u) =

∫

RN

K(x)F (u)dx

is well-defined and is of class C1. If g is subcritical and L verifies (HL), the functional

J : W → R defined by

J (u) =

∫

RN

L(x)G(u)dx,

is of class C1. Moreover, the critical points of the functional Eλ,µ : W → R defined

by

Eλ,µ(u) =
1

2
‖u‖2

W − λF(u) − µJ (u)

are precisely the weak solutions for problem (Pλ,µ). In order to find critical points

for Eλ,µ, we will apply the principle of symmetric criticality together with a recent

critical point theorem due to Ricceri [9]. In order to recall Ricceri’s result, we need

the following definition: if X is a Banach space, we denote by WX the class of those

functionals E : X → R having the property that if {un} is a sequence in X converging

weakly to u ∈ X and lim infn E(un) ≤ E(u) then {un} has a subsequence converging

strongly to u.

Theorem 2.1 ([9, Theorem 2]). Let (X, ‖ · ‖) be a separable, reflexive, real Banach

space, let E1 : X → R be a coercive, sequentially weakly lower semicontinuous C1

functional belonging to WX , bounded on each bounded subset of X and whose deriv-

ative admits a continuous inverse on X∗; and let E2 : X → R be a C1 functional

with compact derivative. Assume that E1 has a strict local minimum point u0 with

E1(u0) = E2(u0) = 0. Assume that τ < χ, where

(2.1) τ := max

{

0, lim sup
‖u‖→∞

E2(u)

E1(u)
, lim sup

u→u0

E2(u)

E1(u)

}

,
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(2.2) χ = sup
E1(u)>0

E2(u)

E1(u)
.

Then, for each compact interval [a, b] ⊂ (1/χ, 1/τ) (with the conventions 1/0 = ∞
and 1/∞ = 0) there exists κ > 0 with the following property: for every λ ∈ [a, b] and

every C1 functional E3 : X → R with compact derivative, there exists δ > 0 such that

for each µ ∈ [0, δ], the equation

E ′
1(u) − λE ′

2(u) − µE ′
3(u) = 0

admits at least three solutions in X having norm less than κ.

2.2. Special symmetries. Let N ≥ 2 be fixed and assume that a closed subgroup

of the orthogonal group O(N) acts on the space W , i.e., (φ, u) 7→ φ ∗ u ∈ W , φ ∈ G,

u ∈ W . We define the set of fixed points of W with respect to the group G which

contains the G-invariant functions, i.e.,

WG = {u ∈ W : φ ∗ u = u for every φ ∈ G}.

In particular, if G = O(N) and ′∗′ is the standard linear and isometric action defined

as

(2.3) (φ ∗ u)(x) = u(φ−1x) for x ∈ R
N , φ ∈ O(N),

the set WO(N) is exactly the subspace of radially symmetric functions of W . Standard

arguments show that WO(N) ⊂ Lp(RN) is compact for every p ∈ (2, 2∗), see Lions [6].

In order to prove Theorem 1.1 (iii), more specific groups and actions are needed

whose origin can be found in Bartsch and Willem [2]. Let us fix N = 4 or N ≥ 6 and

define the number

tN =

[

N − 3

2

]

+ (−1)N .

Note that tN ≥ 1 and for every i ∈ {1, . . . , tN}, we may introduce the following

subgroups of the orthogonal group O(N):

GN,i =

{

O(N
2
) × O(N

2
), if i = N−2

2
,

O(i + 1) × O(N − 2i − 2) × O(i + 1), if i 6= N−2
2

.

We introduce the involution function τi : R
N → R

N associated with GN,i by

τi(x) =

{

(x3, x1), if i = N−2
2 , and x = (x1, x3) with x1, x3 ∈ R

N
2 ;

(x3, x2, x1), if i 6= N−2
2 , and x = (x1, x2, x3) with x1, x3 ∈ R

i+1, x2 ∈ R
N−2i−2.

By definition, we clearly have that τi /∈ GN,i, τiGN,iτ
−1
i = GN,i and τ 2

i = idRN .

Now, let Gτi

N,i = 〈GN,i, τi〉 = GN,i ∪ τiGN,i. We know from the properties of τi

that only two types of elements in Gτi

N,i can be distinguished; namely, φ = g ∈ GN,i,



330 A. KRISTALY, G. MOROSANU, AND D. O’REGAN

and φ = τig ∈ Gτi

N,i \ GN,i (with g ∈ GN,i). The action of the compact group Gτi

N,i on

W is defined by

(2.4) (g ∗ u)(x) = u(g−1x), ((τig) ∗ u)(x) = −u(g−1τ−1
i x),

for g ∈ GN,i, u ∈ W and x ∈ R
N . Now from Bartsch and Willem [2, pp. 455-457],

the embedding WG
τi
N,i

⊂ Lp(RN) is compact for every p ∈ (2, 2∗).

The next result is of crucial importance in Theorem 1.1 (iii); a similar statement

can be found in Kristály, Rădulescu and Varga [5], thus we omit its proof.

Theorem 2.2. The following statements hold true:

(i) If N = 4 or N ≥ 6, then WG
τi
N,i

∩ WO(N) = {0} for all i ∈ {1, . . . , tN};
(ii) If N = 6 or N ≥ 8, then WG

τi
N,i

∩ W
G

τj
N,j

= {0} for every i, j ∈ {1, . . . , tN} with

i 6= j.

3. PROOF OF THEOREM 1.1

In the sequel we assume that all the assumptions of Theorem 1.1 are fulfilled.

Proof of Theorem 1.1 (i). Assume that u ∈ W is a solution of (Pλ) = (Pλ,0).

Multiplying (Pλ) by the test function u and using the definition of the number cf > 0,

we obtain

‖u‖2
W =

∫

RN

(|∇u|2 + V (x)u2)dx

= λ

∫

RN

K(x)f(u)u

≤ λ
‖K‖L∞

infRN V
cf

∫

RN

V (x)u2

≤ λ
‖K‖L∞

infRN V
cf‖u‖2

W .

Now, if 0 ≤ λ < c−1
f ‖K‖−1

L∞infRN V , the above estimate implies u = 0, which concludes

the proof of (i). �

As we pointed out in the Introduction, the solutions of (Pλ,µ) are exactly the

critical points for the functional Eλ,µ = E1 − λE2 − µE3 : W → R, where

E1(u) =
1

2
‖u‖2

W , E2(u) = F(u) and E3(u) = J (u), u ∈ W.

Before proving (ii) and (iii) of Theorem 1.1, we need the following

Lemma 3.1. (i) lim sup‖u‖W →∞
F(u)

‖u‖2
W

≤ 0;

(ii) lim supu→0
F(u)
‖u‖2

W

≤ 0;

(iii) Let X be a closed subspace of W which is compactly embedded into Lr(RN),

r ∈ (2, 2∗). Then F|X and J |X have compact derivatives.
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Proof. Due to (f1) and (f2), for every fixed ε > 0 there is a δε ∈ (0, 1) such that

|f(s)| < ε
infRN V

‖K‖L∞

|s| for all |s| ≤ δε and |s| ≥ δ−1
ε .

Since f ∈ C(R, R), there also exist two constants M1
ε , M2

ε > 0 such that

|f(s)|
|s|q−1

≤ M1
ε and

|f(s)|
|s|p−1

≤ M2
ε for all |s| ∈ [δε, δ

−1
ε ],

where 1 < q < 2 < p < 2∗. Combining the above two relations, we obtain that

(3.1) |f(s)| ≤ ε
infRN V

‖K‖L∞

|s| + M1
ε |s|q−1 for all s ∈ R;

(3.2) |f(s)| ≤ ε
infRN V

‖K‖L∞

|s| + M2
ε |s|p−1 for all s ∈ R.

On account of (3.1), since K ∈ L∞(RN) ∩ L1(RN) and the embedding W ⊂ Lr(RN)

is continuous for r ∈ (2, 2∗), by the Hölder inequality one can find C1
ε > 0 such that

F(u) ≤
∫

RN

K(x)|F (u)|

≤
∫

RN

K(x)

[

ε
infRN V

2‖K‖L∞

u2 +
M1

ε

q
|u|q

]

≤ ε

2
‖u‖2

W + C1
ε‖u‖q

W .

Consequently, for every u ∈ W \ {0}, we have that

F(u)

‖u‖2
W

≤ ε

2
+ C1

ε‖u‖q−2
W .

Since q < 2, the arbitrariness of ε > 0 yields (i).

A similar argument based on (3.2) gives the existence of a C2
ε > 0 such that for

every u ∈ W \ {0},
F(u)

‖u‖2
W

≤ ε

2
+ C2

ε‖u‖p−2
W .

Since ε > 0 is arbitrary and p > 2, (ii) follows readily.

The proof of (iii) is standard.

For any 0 < r1 < r2, let A[r1, r2] = {x ∈ R
N : r1 ≤ |x| ≤ r2} be the closed

annulus with radii r1 and r2 . Since K ∈ L∞(RN) is a radially symmetric function

with K ≥ 0 and K 6≡ 0 (cf. hypothesis (HK)), one can find real numbers R > r > 0

and K0 > 0 such that

(3.3) ess infx∈A[r,R]K(x) ≥ K0.

Proof of Theorem 1.1 (ii). Let s0 ∈ R from (f3). For a fixed σ ∈ (0, (R − r)/2)

with r, R from (3.3), we can define a radially symmetric truncation function uσ ∈
WO(N) such that
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(a) supp uσ ⊆ A[r, R];

(b) ‖uσ‖L∞ ≤ |s0|;
(c) uσ(x) = s0 for every x ∈ A[r + σ, R − σ].

Here is an example of such a function uσ : R
N → R

uσ(x) =











s0

σ
(|x| − r)+ if |x| ≤ r + σ;

s0 if r + σ < |x| ≤ R − σ;
s0

σ
(R − |x|)+ if |x| ≥ R − σ,

where z+ = max(z, 0). Denoting by ωN the volume of the unit ball in R
N , we clearly

have from the properties (a)–(c) and relation (3.3) that

‖uσ‖2
W ≥ s2

0ωN inf
RN

V
(

(R − σ)N − (r + σ)N
)

,

and

F(uσ) ≥ ωN [K0F (s0)
(

(R − σ)N − (r + σ)N
)

− ‖K‖L∞ max
|t|≤|s0|

|F (t)| ×

×
(

(r + σ)N − rN + RN − (R − σ)N
) ]

.

If σ is close enough to 0, the right-hand sides of both inequalities are strictly positive.

Therefore, we can define the number

(3.4) λ0 = inf

{ ‖u‖2
W

2F(u)
: u ∈ WO(N), F(u) > 0

}

.

Moreover, it is also clear (cf. Lemma 3.1 and the above estimates) that

χ0 = sup

{

2F(u)

‖u‖2
W

: u ∈ WO(N) \ {0}
}

∈ (0,∞)

and χ−1
0 = λ0.

Now, we are in a position to apply Theorem 2.1 with X = WO(N) and E1, E2, E3 :

WO(N) → R defined by E1 = E1|WO(N)
, E2 = E2|WO(N)

and E3 = E3|WO(N)
. On account

of Lemma 3.1, the assumptions of Theorem 2.1 are fulfilled with u0 = 0 ∈ WO(N) and

τ = 0.

Thus, for every λ > Λ0 := λ0 = χ−1
0 > 0 and every subcritical nonlinearity

g : R → R, there exists δ0 > 0 such that for every µ ∈ [0, δ0] the functional Eλ,µ|WO(N)

has at least three distinct critical points in WO(N). Since Eλ,µ is O(N)−invariant, i.e.,

Eλ,µ(φ∗u) = Eλ,µ(u) for every φ ∈ O(N) and u ∈ W (cf. relation (2.3) and hypotheses

(HV ) and (HK,L)), the principle of symmetric criticality implies that the critical points

of Eλ,µ|WO(N)
are also critical points for Eλ,µ. This concludes the proof. �

Proof of Theorem 1.1 (iii). Let N 6= 3. Since f and g are odd, the energy

functional Eλ,µ is even, and its critical points (hence solutions for (Pλ,µ)) appear in

symmetric pairs. Consequently, a similar argument as in (ii) shows that there exists

λ0 > 0 such that for every λ > λ0 and every odd subcritical nonlinearity g : R → R,

there exists δλ
0 > 0 such that for every µ ∈ [0, δλ

0 ] problem (Pλ,µ) has at least two pairs
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of solutions {±uλ,µ
0,1 } and {±uλ,µ

0,2 } which are non-zero distinct functions belonging to

WO(N). In the case when N = 2 or N = 5 we have sN = 2, i.e., the conclusion of (iii)

follows from the latter arguments.

Consequently, it remains to consider N = 4 or N ≥ 6. In this case tN ≥ 1, so we

may fix i ∈ {1, . . . , tN} arbitrarily. Without any loss of generality, we may assume

for 0 < r < R in relation (3.3) that r(5 + 4
√

2) ≥ R. Due to the latter choice, it is

clear that the sets

Q1 =







(x1, x3) ∈ R
i+1 × R

i+1 :

√

(

|x1| −
R + 3r

4

)2

+ |x3|2 ≤
R − r

4







;

Q2 =







(x1, x3) ∈ R
i+1 × R

i+1 :

√

(

|x3| −
R + 3r

4

)2

+ |x1|2 ≤
R − r

4







are disjoint. For every σ ∈ (0, 1], we introduce the set

Di
σ =







x ∈ R
N :

√

(

|x1| −
R + 3r

4

)2

+ |x3|2 ≤ σ
R − r

4
,

√

(

|x3| −
R + 3r

4

)2

+ |x1|2 ≤ σ
R − r

4
,

|x2| ≤ σ
R − r

4

}

,

where x = (x1, x2, x3) ∈ R
N with x1, x3 ∈ R

i+1, x2 ∈ R
N−2i−2 whenever i 6= N−2

2
, and

x = (x1, x3) ∈ R
N with x1, x3 ∈ R

N
2 whenever i = N−2

2
(and x2 is considered formally

0). Note that the set Di
σ ⊂ R

N is Gτi

N,i-invariant, i.e., φDi
σ ⊂ Di

σ for every φ ∈ Gτi

N,i.

Moreover, meas(Di
σ) > 0 for every σ ∈ (0, 1] and

(3.5) lim
σ→1

meas(Di
1 \ Di

σ) = 0.

Let s0 ∈ R from (f3) and for a fixed number σ ∈ (0, 1), we construct the following

special truncation function

ui
σ(x) =









R − r

4
− max





√

(

|x1| −
R + 3r

4

)2

+ |x3|2, σ
R − r

4









+

−





R − r

4
− max





√

(

|x3| −
R + 3r

4

)2

+ |x1|2, σ
R − r

4









+



 ×

×
(

R − r

4
− max

(

|x2|, σ
R − r

4

))

+

16s0

(R − r)2(1 − σ)2
.

The special shape of ui
σ shows that φ∗ui

σ = ui
σ for every φ ∈ Gτi

N,i (see relation (2.4)),

thus ui
σ ∈ WG

τi
N,i

. Moreover, the following useful properties hold:



334 A. KRISTALY, G. MOROSANU, AND D. O’REGAN

(a’) supp ui
σ = Di

1 ⊆ A[r, R];

(b’) ‖ui
σ‖L∞ ≤ |s0|;

(c’) |ui
σ(x)| = |s0| for every x ∈ Di

σ.

Since F is even (thus F (s0) = F (−s0)), by exploiting the properties (a’)–(c’), we

obtain that

F(ui
σ) ≥ K0F (s0)meas(Di

σ) − ‖K‖L∞ max
|t|≤|s0|

|F (t)|meas(Di
1 \ Di

σ).

If σ is close enough to 1, the right-hand side of the latter term is strictly positive, see

(3.5). Consequently, we can introduce the number

(3.6) λi = inf

{ ‖u‖2
W

2F(u)
: u ∈ WG

τi
N,i

, F(u) > 0

}

.

As before, one has that

χi = sup

{

2F(u)

‖u‖2
W

: u ∈ WG
τi
N,i

\ {0}
}

∈ (0,∞)

and χ−1
i = λi.

We can apply Theorem 2.1 with X = WG
τi
N,i

and E1, E2, E3 : WG
τi
N,i

→ R defined

by E1 = E1|W
G

τi
N,i

, E2 = E2|W
G

τi
N,i

and E3 = E3|W
G

τi
N,i

. Due to Lemma 3.1, the assump-

tions of Theorem 2.1 are satisfied with u0 = 0 ∈ WG
τi
N,i

and τ = 0. Consequently, for

every λ > χ−1
i = λi > 0, there exists δλ

i > 0 such that for each µ ∈ [−δλ
i , δλ

i ], the

functional Eλ,µ|W
G

τi
N,i

has at least three critical points in WG
τi
N,i

.

Due to the evenness of Eλ,µ, relation (2.4), and hypotheses (HV ), (HK,L), we have

that Eλ,µ(φ ∗ u) = Eλ,µ(u) for every φ ∈ Gτi

N,i and u ∈ W , i.e., Eλ,µ is Gτi

N,i−invariant

on W . On account of the principle of symmetric criticality, the critical point pairs

{±uλ,µ
i,1 } and {±uλ,µ

i,2 } of Eλ,µ|W
G

τi
N,i

are also critical point pairs for Eλ,µ whenever

λ > λi and µ ∈ [−δλ
i , δλ

i ], hence solutions for problem (Pλ,µ).

Now, it remains to count the number of distinct solutions of the above type. Due

to Theorem 2.2, there are at least (1+tN) subspaces of W whose mutual intersections

contain only the 0 element:

(I) the subspace WO(N) of radially symmetric functions of W , and

(II) tN subspace(s) of W of the type WG
τi
N,i

.

As we pointed out above, each of these subspaces contain two distinct pairs of non-

zero solutions for (Pλ,µ) whenever λ is large enough and µ is small enough. More

precisely, if

λ > Λ1 := max{λ0, λ1, . . . , λtN} and 0 ≤ µ ≤ min{δλ
0 , δλ

1 , . . . , δλ
tN
} =: δ1,

where λ0 and δλ
0 come from the radial case (see (3.4)), while λi is from (3.6), i ∈

{1, . . . , tN}, problem (Pλ,µ) has at least

sN = 2(1 + tN ) = N − 3(N mod 2)
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distinct pairs of non-zero solutions. This concludes our proof. �

Remark 3.2. The statement of Theorem 1.1 (iii) is not relevant for N = 3 since

s3 = 0. However, Theorem 1.1 (ii) gives two distinct (pairs of) non-zero, radially

symmetric solutions for (Pλ,µ) whenever λ is large and µ is small enough (and f, g

are odd).

Remark 3.3. The proof of Theorem 1.1 (iii) shows that in each dimension N ≥ 2,

two pairs of solutions are radially symmetric. Moreover, if N = 4 or N ≥ 6, then

sN ≥ 4 and the rest of the (sN − 2) pairs of solutions are sign-changing and non-

radially symmetric functions in W .

Remark 3.4. From a Strauss-type estimate (see Lions [6]) we know that the elements

u ∈ W are homoclinic, i.e., u(x) → 0 as |x| → ∞. Thus, all solutions in Theorem 1.1

(ii)–(iii) have this property.
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