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ABSTRACT. In this paper, we obtain the definitions of fractional q cosine and fractional q sine
functions as the solutions of the fractional harmonic equation. Further generalized fractional trigono-
metric like functions are defined through the solutions of the 3rd order and higher order fractional
differential equations. The properties of q-cosine and q-sine functions are obtained and the results are
extended to generalized fractional trigonometric functions. This study is done parallel to the study
of generalized trigonometric functions as solutions of higher order ordinary differential equations.
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1. INTRODUCTION

The study of trigonometry is of special interest as many physical phenomena

exhibit oscillatory behavior and hence the trigonometric functions are used to under-

stand these systems [1, 2]. The introduction of the derivative of fractional order 300

years ago a paradox then, is now a vibrant field of research. The rich potential that

the fractional differential equations (FDE) carry with them both in theory as well

as mathematical models of many important physical phenomena is exciting and has

opened a new area of research. See [3, 4, 5, 6].

In this context, the study of fractional trigonometry is interesting in itself and will

provide an understanding of the basic structure of the physical phenomena modeled

by fractional differential equations. The fractional derivatives are intuitively obtained

as a generalization of the standard derivatives of integer order as can be observed from

the evolution of fractional calculus [4].

In this paper, we propose to obtain the development of fractional trigonomet-

ric functions analytically, using the theory of FDE. We proceed to obtain fractional
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trigonometric-like functions as the solutions of 2nd order and nth order fractional dif-

ferential equations employing this approach. Using the fractional counter part of the

standard harmonic equation, we define the q-cosine and q-sine functions and develop

their properties. Further generalizations are obtained using the nth order FDE of

similar type. Many types of fractional derivatives are defined by different scientists

such as Grünwald-Letnikov fractional derivative, Riesz fractional derivative, Fourier

fractional derivative, Riemann fractional derivative, Riemann-Liouville fractional de-

rivative and Caputo fractional derivative. In this paper, we restrict ourselves to

Caputo fractional derivative.

2. PRELIMINARIES

In order to investigate the solutions of 2nd order FDE and its generalizations we

need to introduce definitions and concepts related to fractional derivatives. These

definitions run parallel to the structure of solutions of ordinary differential equations.

In this context, we begin with a generalization of the exponential function known as

the Mittag-Leffler function which was discovered in 1903 [5].

Definition 2.1. The Mittag-Leffler function of one parameter, Eq(z) is defined by

(2.1) Eq(z) =
∞∑

k=0

zk

Γ(kq + 1)
(z ∈ C, R(q) > 0).

Definition 2.2. The Mittag-Leffler function of two parameters, Eq,β(z) is defined by

(2.2) Eq,β(z) =
∞∑

k=0

zk

Γ(kq + β)
(z, β ∈ C, R(q) > 0).

The definitions of fractional derivatives for a series by Riemann and Caputo are given

below.

Definition 2.3. Riemann-Liouville fractional derivative for series. If

f(x) = xq−1
∑∞

k=0 akx
kq then

(2.3) Dqf(x) =
dq(f(x))

dxq
= xq−1

∞∑
k=0

ak+1
Γ((k + 2)q)

Γ((k + 1)q)
xkq.

Definition 2.4. Caputo fractional derivative for series. If f(x) =
∑∞

k=0 akx
kq then

(2.4) cDqf(x) =
dq(f(x))

dxq
=

∞∑
k=0

ak+1
Γ(1 + (k + 1)q)

Γ(1 + kq)
xkq.

Next we proceed to present the definitions of the fore mentioned derivatives in

terms of the integrals.
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Definition 2.5. Riemann-Liouville derivative of x(t) is given by

(2.5) Dqx(t) =
1

Γ(1− q)

d

dt

t∫
t0

(t− s)−qx(s)ds, (t ∈ R).

Definition 2.6. Caputo derivative of x(t) is given by

(2.6) cDqx(t) =
1

Γ(1− q)

t∫
t0

(t− s)−qx
′
(s)ds.

The initial value problem for Riemann-Liouville fractional differential equation

(RLFDE) and the initial value problem for Caputo fractional differential equation

(CFDE) have a basic difference. The RLFDE has a singularity at the initial point

and is given by

Dqx(t) = f(t, x(t)), x0 = x(t)(t− t0)
1−q/t = t0,

and the CFDE is given by

cDqx(t) = f(t, x(t)), x(t0) = x0.

There exists a relation between the CFDE and RLFDE which is given by

cDqx(t) = Dq[x(t)− x0].

It has been shown in [7] that the results which hold for the initial value problem of

RLFDE are also true for CFDE. On basis of this result we give the existence and

uniqueness results for linear nth order RLFDE and for systems and propose that they

can be naturally extended for linear CFDE. We now introduce the q-exponential func-

tion which is needed to define the solution of the linear Reimann Liouville fractional

differential equation.

Definition 2.7. The q-exponential function eλz
q is defined as

(2.7) eλz
q = zq−1Eq,q(λzq)

where (z ∈ C\{0}, R(q) > 0) and λ ∈ C.

Definition 2.8. We define the function eλz
q,n as

(2.8) eλz
q,n = zq−1

∞∑
k=0

(k + n)!

Γ[(k + n + 1)q]

(λzq)k

k!
.

Consider the linear fractional differential equation (LFDE).

(2.9) [Lnq(y)](t) := (Dnq
a+)y(t) +

n−1∑
k=0

ak(D
kq
a+)y(t) = 0
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where the coefficients {aj}n−1
j=1 are real constants. Then we assume that the solution

of the above RLFDE is of the form

y(t) = eλ(t−a)
q , λ ∈ C

and obtain the characteristic equation as

(2.10) Pn(λ) = λn +
n−1∑
k=1

akλ
k, λ ∈ C.

Please refer to [5] for lemmas and theorems that are necessary to obtain the existence

and uniqueness result for LFDE (2.9).

We denote R+ as the set of all non-negative real numbers.

3. TRIGONOMETRIC FUNCTIONS THROUGH

SECOND ORDER FDES

In this section,we analytically obtain the trigonometric functions and discuss their

properties by using the FDEs. We propose to show that the solutions of the αth order

fractional linear differential equation of the harmonic oscillator where 1 < α < 2

exhibit properties similar to those of cosine and sine functions, which are solutions

of the 2nd order ordinary harmonic differential equation. Before proceeding in that

direction, for sake of completeness, we begin with the qth order FDE, 0 < q < 1 and

state the following theorem from [5].

Theorem 3.1. Consider the qth order homogeneous Caputo fractional Initial value

problem (IVP)

(3.1) cDqx(t) + x(t) = 0 , x(0) = 1

where 0 < q < 1, t ≥ 0. Then the solution of (3.1) is given in the infinite series of

the form

x(t) =
∞∑

k=0

(−1)ktkq

Γ(1 + kq)
= Eq(−tq), t ≥ 0.

The graph of the solution x(t) is given below for different values of q in Fig-1.

Next we proceed to study the solutions of the fractional harmonic oscillator for

1 < α < 2 in the following theorem .

Theorem 3.2. Consider the Initial value problem (IVP) of αth order homogeneous

fractional differential equation with Caputo derivative given by

(3.2) cDαx(t) + x(t) = 0, 1 < α < 2, t ≥ 0,

(3.3) x(0) = 1, cDqx(0) = 0, where α = 2q, 0 < q < 1.
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Figure 1

Then the general solution is given by c1x(t) + c2y(t) (c1, c2 being arbitrary constants)

where x(t) and y(t) are infinite series solutions of the form

x(t) =
∞∑

k=0

(−1)kt2kq

Γ(1 + 2kq)
, y(t) =

∞∑
k=0

(−1)kt(2k+1)q

Γ(1 + (2k + 1)q)
, t ≥ 0, 0 < q < 1.

Proof. We transform the given IVP to a system of equations of qth order, 0 < q < 1

by taking α = 2q and setting

(3.4) cDqx(t) = −y(t) and cDqy(t) = x(t), x(0) = 1, y(0) = 0.

Now, let

(3.5) x(t) =
∞∑

k=0

akt
kq, y(t) =

∞∑
k=0

bkt
kq

be solutions of the system (3.2 ) where a′ks and b′ks are unknown constants and t ≥ 0.

We proceed to find a′ks and b′ks as follows. Using the initial conditions in (3.4), we

obtain a0 = 1, b0 = 0.

Utilizing the fact that cDqx(t) = −y(t) and substituting (3.5) in this equation

we get that
∞∑

k=0

ak+1
Γ(1 + (k + 1)q)

Γ(1 + kq)
tkq = −

∞∑
k=0

bkt
kq.
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which yields, ak+1 = − Γ(1+kq)
Γ(1+(k+1)q)

bk, for each k = 0, 1, 2, . . . Similarly by using
cDqy(t) = x(t), t ≥ 0, we get bk+1 = Γ(1+kq)

Γ(1+(k+1)q)
ak, for each k = 0, 1, 2, . . .. By

substituting successively, we obtain the values of a1, a2, . . . and b1, b2, . . . and finally

the solutions are given by

x(t) =
∞∑

k=0

(−1)kt2kq

Γ(1 + 2kq)
= E2q(−t2q), t ≥ 0,

which is in view of (2.1) and

y(t) =
∞∑

k=0

(−1)kt(2k+1)q

Γ(1 + (2k + 1)q)
= tqE2q,q+1(−t2q), t ≥ 0,

which is in view of (2.2). We designate these series by cosq t and sinqt respectively.

Thus cosq t and sinq t are defined as

cosq t =
∞∑

k=0

(−1)kt2kq

Γ(1 + 2kq)
= M q

2,0(t) (say)

sinq t =
∞∑

k=0

(−1)kt(2k+1)q

Γ(1 + (2k + 1)q)
= M q

2,1(t) (say) respectively .

We borrow this notation from the classical trigonometry since for q = 1, cosq(t) = cos t

and sinq(t) = sin t. The notation M q
2,0, M q

2,1(t) is introduced for future convenience.

The graphs of the solutions cosq(t) and sinq(t) are given below for different values

of q in Fig-2 and Fig-3 respectively.

Note: By assuming that the solution of the equation (3.2) is of the form x(t) =

Eq(λtq), we can show that M q
2,0(t) = cosq t and M q

2,1(t) = sinq t are two linearly

independent solutions of the equation (3.2).

Definition 3.3 (Wronskian). Suppose that φ1, φ2, . . . , φn are n real or complex valued

functions defined on some nonempty interval I in R+ and each having derivatives of

order α = nq. For t ∈ I, define the determinant

W (t) = W (φ1, φ2, φ3, . . . , φn)(t) =

∣∣∣∣∣∣∣∣∣∣
φ1(t) φ2(t) · · · φn(t)

cDqφ1(t)
cDqφ2(t) · · · cDqφn(t)

...
...

...
...

cD(n−1)qφ1(t)
cD(n−1)qφ2(t) · · · cD(n−1)qφn(t)

∣∣∣∣∣∣∣∣∣∣
.

The function W (t) is called the fractional Wronskian of n-functions φ1, φ2, . . . , φn.

We state and prove a result that relates the Wronskian and the solutions of the

equation (3.2).

Theorem 3.4. Let x(t) and y(t) be two solutions of the equation (3.2) on R+. These

two solutions are linearly independent on R+ if and only if the f -Wronskian W (t) 6= 0

for every t ≥ 0.
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Figure 2

Figure 3
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Proof. Suppose that W (t) 6= 0 of the solutions x(t) and y(t) of FDE (3.2). To show

that x(t) and y(t) are linearly independent solutions. If possible assume that x(t)

and y(t) are linearly dependent solutions. Then x(t) = ky(t) where k is a constant.

Now consider the Wronskian

W (t) =

∣∣∣∣∣ x(t) y(t)
cDqx(t) cDqy(t)

∣∣∣∣∣ =

∣∣∣∣∣ ky(t) y(t)

k cDqy(t) cDqy(t)

∣∣∣∣∣ = 0

which is a contradiction. Hence the solutions are linearly independent. To obtain a

sufficient condition, assume that x(t) and y(t) are two linearly independent solutions

of (3.2). Then the Wronskian for t ≥ 0 is given by

W (t) =

∣∣∣∣∣ x(t) y(t)
cDqx(t) cDqy(t)

∣∣∣∣∣ .

Differentiating W using the Caputo derivative definition for the determinant, we get

cDqW (t) = 0.

Now this further implies that for Caputo derivative, W (t) = c where c is constant,

t ≥ 0.

Noting that for t = 0, W (0) = 1. Then we get c = 1. This implies that

W (t) = 1 6= 0 for t ≥ 0. The proof is complete.

We now state and prove the following Corollary relating the solutions of (3.2).

Corollary 3.5. If x(t) and y(t) are the two linearly independent solutions of the

fractional harmonic equation (3.2). Then x2(t) + y2(t) = 1, t ≥ 0.

Proof. Finding Caputo q-derivative of W (t), t ≥ 0, we get that cDqW (t) = 0, which

implies that W (t) = c = 1 for t ≥ 0 from the hypothesis. Thus we obtain x2(t) +

y2(t) = 1, which is a basic property relating the solutions of (3.2), i.e., cos2
q(t) +

sin2
q(t) = (M q

2.0(t))
2 + (M q

2,1(t))
2 = 1, 0 < q < 1, t ≥ 0.

We now show that cosq(t), sinq(t), t ≥ 0 possess oscillatory behavior.

Theorem 3.6. The linearly independent solutions x(t) and y(t) of the FDE (3.2)

have at-least one zero in R+.

Proof. Consider the FDE in (3.2) with initial condition.

Let cDqx(t) = −y(t), cDqy(t) = x(t) with initial conditions x(0) = 1, y(0) = 0.

We now claim that there exists a positive number t0 ∈ R+ such that x(t0) = 0.

Suppose, if possible, we cannot find a t0 > 0 such that x(t0) = 0. Since x(0) = 1 and

x(t) is a continuous function, x(t) must be positive for t > 0. Thus cDqy(t) = x(t) > 0
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and cDqy(t) > 0 for t > 0. This further implies that y(t) is non-negative for t > 0.

Since y(0) = 0 and −1 ≤ y(t) ≤ 1 the solution is non-negative.

We have that y(t) is increasing for a some small neighbourhood of zero.

Let T > 0 be any arbitrary number in the above neighbourhood of zero. Consider

0 < t < s < T . Then,

y(t)(T − t)q−1 < y(s)(s− t)q−1 =

T∫
t

y(s)(s− t)q−1ds = ΓqIq
T y(s)

= −ΓqIq
T

cDqx(s) = −Γq[x(s)− x(T )] < 2Γq.

Because t, T , belong to the neighborhood of zero, T − t < 1 ⇒ 1
T−t

> 1. So we

can choose T so small that y(t)(T − t)q−1 > 2Γq. Hence the inequality leads to a

contradiction. The conclusion is that there exists a positive number t0 such that

x(t0) = 0.

Theorem 3.7. The zeros of the solutions x(t) and y(t) of second order CFDE in-

terlace each other i.e., between any two consecutive zeros of y(t) there exists one and

only one zero of x(t).

Proof. Suppose that t1 and t2 are two consecutive zeros of y(t) i.e., y(t1) = 0, y(t2) = 0

and y(t) 6= 0 for all t ∈ (t1, t2). This implies that y(t) is either positive or negative

over the interval (t1, t2). Without loss of generality, let us assume that y(t) > 0 for

t ∈ (t1, t2). Then by Rolle’s theorem, we have that y′(ξ) = 0 for some ξ ∈ (t1, t2).

This yields that y′(s) is increasing in (t1, ξ) and y′(s) is decreasing in (ξ, t2) or vice

versa. This further implies that

x(ξ) = cDqyt1(ξ) =
1

Γ(1− q)

ξ∫
t1

(ξ − s)−qy′(s)ds ≥ 0

and

x(ξ) = cDqyt2(ξ) =
1

Γ(1− q)

t2∫
ξ

(s− ξ)−qy′(s)ds ≤ 0,

which gives x(ξ) = 0. This follows from the fact that x(t) is continuous at ξ and the

fore mentioned property of y′(s) in (t1, t2). Thus between two successive zeros of y(t)

there exists a zero of x(t). We now proceed to show that the zero is unique. If not,

suppose there exists t1 < ξ1 < ξ2 < t2 such that x(ξ1) = 0 and x(ξ2) = 0 and x(s) 6= 0

for s ∈ (ξ1, ξ2). Now repeating the earlier proof by writing x(t) in place of y(t) in the

interval (ξ1, ξ2) we obtain that there exists a η ∈ (ξ1, ξ2) such that y(η) = 0. This

contradicts the fact that t1 and t2 are two consecutive zeros of y(t) and the proof is

complete.
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The addition properties of the solutions of CFDE are discussed below.

Addition Formulae: We now show that the solution (x(t), y(t)) of (3.2) possesses

the properties

(3.6) y(t + η) = y(t)x(η) + y(η)x(t)

(3.7) x(t + η) = x(t)x(η)− y(η)y(t), (t ≥ 0, η ≥ 0).

To prove these properties we use the method of linear algebra.

It is known that if (x(t), y(t)) is a solution (3.2) then (x(t + η), y(t + η)), η ≥ 0

also satisfies (3.2). Now these solutions can be expressed in terms of x(t) and y(t) in

the following form

(3.8) y(t + η) = c1y(t) + c2x(t)

(3.9) x(t + η) = d1y(t) + d2x(t).

Here c1, c2, d1 and d2 are constants to be chosen appropriately for a given value of

η ≥ 0. Clearly, for t = 0 we have

y(η) = c1y(0) + c2x(0) = c2

x(η) = d1y(0) + d2x(0) = d2.

Further

x(t + η) =c Dq(y(t + η)) = c1x(t)− c2y(t)

−y(t + η) =c Dq(x(t + η)) = d1x(t)− d2y(t)

which yields, for t = 0, x(η) = c1, −y(η) = d1. Here we have used the initial conditions

in (3.4). Substituting the values of c1, d1, c2 and d2 in (3.8) and (3.9) we get the

relations (3.6) and (3.7).

The relations (3.6) and (3.7) can be described as addition formulae for the func-

tions x(t) and y(t). These in turn give rise to several useful relations, for η = t which

are

y(2t) = 2x(t)y(t), x(2t) = x2(t)− y2(t)

= 2x2(t)− 1 = 1− 2y2(t), (t ≥ 0).

Further, let η = 2t. Then we obtain, for t ≥ 0,

y(3t) = 3y(t)− 4y3(t), x(3t) = 4x3(t)− 3x(t).

Even and Odd Functions: We now prove that x(t) is an even function for t ∈ R.

We know that

x(t) =
∞∑

k=0

(−1)kt2kq

Γ(1 + 2kq)
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and for t = −t we get

(3.10) x(−t) =
∞∑

k=0

(−1)k(−t)2kq

Γ(1 + 2kq)
=

∞∑
k=0

(−1)k(−1)2kqt2kq

Γ(1 + 2kq)
= x(t).

This shows that x(t) is an even function. Let us now consider the function y(t) for

t ∈ R .

y(t) =
∞∑

k=0

(−1)kt(2k+1)q

Γ(1 + (2k + 1)q)

and for t = −t, we get

y(−t) =
∞∑

k=0

(−1)k(−t)(2k+1)q

Γ(1 + (2k + 1)q)
=

∞∑
k=0

(−1)k(−1)(2k+1)qt(2k+1)q

Γ(1 + (2k + 1)q)
= (−1)qy(t)

Thus

(3.11) y(−t) = (−1)qy(t)

Now it is clear that for q 6= 1, y(t) is not an odd function. Using (3.10) and (3.11) we

show that for t, η ∈ R+

x(t− η) = x(t)x(η)− (−1)qy(t)y(η)

and

y(t− η) = y(t)x(η) + (−1)qx(t)y(η).

Further we can obtain

y(t + η) + y(t− η) = 2y(t)x(η) + (1 + (−1)q)x(t)y(η)

y(t + η)− y(t− η) = (1− (−1)q)x(t)y(η)

x(t + η) + x(t− η) = 2x(t)x(η)− ((−1)q + 1)y(t)y(η)

x(t + η)− x(t− η) = ((−1)q − 1)y(t)y(η).

When q = 1 the above formulae coincide with transformation formulae in classical

trigonometry.

Euler’s Formulae: The solutions of FDE (3.2) are Eq(it
q) and Eq(−itq) where ±i

are the roots of λ2 +1 = 0. Eq(it
q) and Eq(−itq) can be expressed in terms of M q

2,0(t)

and M q
2,1(t) as

(i) Eq(it
q) = 1 − t2q

Γ(1+2q)
+ t4q

Γ(1+4q)
− · · · + i

(
tq

Γ(1+q)
− t3q

Γ(1+3q)
+ · · ·

)
= M q

2,0(t) +

iM q
2,1(t). and

(ii) Eq(−itq) = 1 − t2q

Γ(1+2q)
+ t4q

Γ(1+4q)
− · · · − i

(
tq

Γ(1+q)
− t3q

Γ(1+3q)
+ · · ·

)
= M q

2,0(t) −
iM q

2,1(t)
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which give

(3.12) M q
2,0(t) =

1

2
(Eq(it

q) + Eq(−itq))

and

(3.13) M q
2,1(t) =

1

2i
(Eq(it

q)− Eq(−itq)), t ∈ R+.

4. EXTENSION OF TRIGONOMETRIC FUNCTIONS: 3rd ORDER

We have already seen that the FDE (3.2) gives rise to trigonometric like functions

cosq(t) and sinq(t), for 0 < q < 1. Note that FDE (3.2) is of order two. We next

consider the FDE of order three of the same family. Interestingly, the solutions of this

equation also give trigonometric type of solutions having several similar properties.

We call the solutions of the third order equation as extended trigonometric functions.

We now state some results corresponding to the third order CFDE. The proofs

are parallel to the second order CFDE and hence are omitted.

We consider the αth order (2 < α < 3) homogeneous Caputo fractional IVP,

(4.1) cDαx(t) + x(t) = 0, x(0) = 1, cDqx(0) = 0, cD2qx(0) = 0

where α = 3q, 0 < q < 1, t ≥ 0. Then the general solution is given by c1x(t) +

c2y(t) + c3z(t) where x(t), y(t) and z(t) are infinite series solutions of the form

x(t) =
∞∑

k=0

(−1)kt3kq

Γ(1 + 3kq)
= M q

3,0 (say)

y(t) =
∞∑

k=0

(−1)kt(3k+1)q

Γ(1 + (3k + 1)q)
= M q

3,1i (say)

z(t) =
∞∑

k=0

(−1)kt(3k+2)q

Γ(1 + (3k + 2)q)
= M q

3,2 (say), t ≥ 0.

The graphs of the solutions x(t), y(t) and z(t) are given below for different values of

q in Fig-4, Fig-5 and Fig-6 respectively.

The Wronskian property in this setup is as follows.

Theorem 4.1. Let x(t), y(t), and z(t) be three solutions of the equation (4.1). These

three solutions are linearly independent on R+ if and only if the Wronskian for every

t ≥ 0,

W (t) =

∣∣∣∣∣∣∣
x(t) y(t) z(t)

cDqx(t) cDqy(t) cDqz(t)
cD2qx(t) cD2qy(t) cD2qz(t)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
x(t) y(t) z(t)

−z(t) x(t) y(t)

−y(t) −z(t) x(t)

∣∣∣∣∣∣∣ 6= 0.

The following Corollary gives a relation between the solutions of the third order CFDE

(4.1) with initial conditions in (4.1).
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Figure 4

Figure 5



350 J. V. DEVI, S. G. DEO, AND S. NAGAMANI

Figure 6

Corollary 4.2. The linearly independent solutions of the third order CFDE satisfy

the relation

W (x(t), y(t), z(t)) = x3(t)− y3(t) + z3(t) + 3x(t)y(t)z(t) = 1

where x(t), y(t), z(t) for t ≥ 0 are the linearly independent solutions of the FDE (4.1),

0 < q < 1.

We present below the addition formulae for solutions of third order CFDE. The

proofs can be obtained by following the technique used for solutions of second order

CFDE.

Addition Formulae: Let η ≥ 0 be arbitrary. Following the method of linear algebra

again it follows that the solution (x(t), y(t), z(t)) of (4.1) possesses the properties

(4.2) x(t + η) = x(t)x(η)− y(t)z(η)− z(t)y(η),

(4.3) y(t + η) = x(t)y(η) + y(t)x(η)− z(t)z(η),

(4.4) z(t + η) = x(t)z(η) + y(t)y(η) + z(t)x(η).

From these relations we derive, for η = t,

x(2t) = x2(t)− 2y(t)z(t),

y(2t) = 2x(t)y(t)− z2(t),
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z(2t) = 2x(t)z(t) + y2(t).

These results may be easily used to obtain the values of x(3t), y(3t), and z(3t) and

many similar relations.

Similar to the Euler’s formulae for the second order FDE we can obtain the

Euler’s formulae for the third order FDE.

Euler’s Formulae: The solutions of the FDE (4.1) are Eq(−tq), Eq(ωtq) and Eq(−ω2tq)

where −1, ω, −ω2 (ω = 1
2
−

√
3i
2

) are the roots of the equation λ3 +1 = 0. We express

Eq(−tq), Eq(ωtq) and Eq(−ω2tq) in terms of M q
3,0(t), M q

3,1(t) and M q
3,2(t) respectively

as follows.

(4.5) Eq(−tq) = M q
3,0(t)−M q

3,1(t) + M q
3,2(t),

(4.6) Eq(ωtq) = M q
3,0(t) + ωM q

3,1(t) + ω2M q
3,2(t),

(4.7) Eq(−ω2tq) = M q
3,0(t)− ω2M q

3,1(t)− ωM q
3,2(t),

We can also express M q
3,0(t), M q

3,1(t) and M q
3,2(t) in terms of Eq(−tq), Eq(ωtq) and

Eq(−ω2tq). By solving (4.5), (4.6) and (4.7) we get

(4.8) M q
3,0(t) =

1

3
Eq(−tq)− 1

3
Eq(ωtq) +

1

3
Eq(−ω2tq),

(4.9) M q
3,1(t) = −1

3
Eq(−tq)− ω2

3
Eq(ωtq) +

ω

3
Eq(−ω2tq),

(4.10) M q
3,2(t) =

1

3
Eq(−tq)− ω

3
Eq(ωtq) +

ω2

3
Eq(−ω2tq).

5. EXTENSION OF TRIGONOMETRIC FUNCTIONS

TO nth ORDER FDE

It can be observed that, the results obtained in section three and section four can

be generalized to nth order CFDE. We proceed to do so in this section. As the proofs

can be naturally extended to nth order and are routine, we omit them.

Theorem 5.1. Consider the nth order fractional IVP of the form

(5.1) cDαx(t) + x(t) = 0, x(0) = 1, cDqx(0) = 0, . . . ,c D(n−1)qx(0) = 0.

where n < α < n + 1, with α = nq, 0 < q < 1, n fixed.



352 J. V. DEVI, S. G. DEO, AND S. NAGAMANI

The general solution of this equation is given by c1x1(t) + c2x2(t) + · · ·+ cnxn(t)

where x1(t), x2(t), . . . , xn(t) are infinite series solutions of the form

x1(t) =
∞∑

k=0

(−1)ktnkq

Γ(1 + nkq)
= M q

n,o(t) (say)

x2(t) =
∞∑

k=0

(−1)kt(nk+1)q

Γ(1 + (nk + 1)q)
= M q

n,1(t) (say)

...
...

...

xn(t) =
∞∑

k=0

(−1)kt(nk+(n−1))q

Γ(1 + (nk + (n− 1))q)
= M q

n,n−1(t) (say) t ≥ 0.

At this stage, let us consider suitable notation to conveniently represent such infinite

series. The notation is as follows.

(5.2) M q
n,r(t) =

∞∑
k=0

(−1)kt(nk+r)q

Γ(1 + (nk + r)q)
, 0 ≤ r < n, n ∈ N, t ≥ 0.

These are the n linearly independent solutions of CFDE (5.1).

The Wronskian property for the nth order CFDE is as follows.

Theorem 5.2. Let x1(t), x2(t), . . . , xn(t) be n solutions of the equation (5.1). These

n solutions are linearly independent on R if and only if the Wronskian W (t) 6= 0 for

every t ∈ R+.

Here

W (t) =

∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xn

−xn x1 . . . xn−1

−xn−1 −xn . . . xn−2

...
...

...
...

−x2 −x3 . . . x1

∣∣∣∣∣∣∣∣∣∣∣∣
(t).

The following Corollary gives a relation between the solutions of the nth order CFDE

(5.1) with initial conditions in (5.1).

Corollary 5.3. The linearly independent solutions of the nth order CFDE (5.1) satisfy

the relation ∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xn

−xn x1 . . . xn−1

−xn−1 −xn . . . xn−2

...
...

...
...

−x2 −x3 . . . x1

∣∣∣∣∣∣∣∣∣∣∣∣
(t) = 1.

This formula includes the relations obtained in Corollary 3.5 and Corollary 4.2.
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The addition formulae of the solutions of CFDE (5.1) are given below.

Addition Formulae: The method adopted for obtaining these addition formulae in

section 3 and section 4 works smoothly for nth order FDE also. Hence we only state

these formulae, for η ≥ 0, t ≥ 0.

(5.3) M q
n,r(t + η) =

r∑
k=0

M q
n,k(t)M

q
n,r−k(η)−

n−1∑
k=r+1

M q
n,k(t)M

q
n,n+r−k(η).

All the addition formulae are particular cases of (5.3). Clearly for (n, r) = (2, 0) and

(2, 1) and for (n, r) = (3, 0), (3, 1) and (3, 2) we get the addition formulae obtained

in (3.6), (3.7) and (4.2), (4.3), (4.4) respectively.

It is now easy to generate the formulae for multiple angles. The M q
n,r(t) in (5.2)

are extended trigonometric like functions.

6. CONCLUSION

In this paper we have obtained the classical trigonometric functions cosq t and

sinq t using 2nd order FDE. Next using the 3rd order FDE of the type cDαx(t)+x(t) = 0

we obtained trigonometric like functions M q
3,0(t), M q

3,1(t) and M q
3,2(t). This approach

has been generalized to obtain trigonometric like functions for nth order. Further, us-

ing Matlab techniques we can formulate tables of trigonometric and extended trigono-

metric functions. It is also possible to use Laplace method to solve FDEs involved

above.
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