CRITICAL POINT LOCALIZATION THEOREMS VIA EKELAND'S VARIATIONAL PRINCIPLE

RADU PRECUP

Department of Mathematics, Babeş-Bolyai University, Cluj 400084, Romania

ABSTRACT. In this paper some existence results for critical points of extremum in conical annular regions are established by Ekeland's variational principle. An application to two-point boundary value problems is included to illustrate the theory.

AMS (MOS) Subject Classification. 47J30, 58E05, 34B15

1. INTRODUCTION AND PRELIMINARIES

The well-known Ekeland's variational principle [3], [4] is one of the fundamental results of nonlinear analysis.

Theorem 1.1 (Ekeland). Let (M, d) be a complete metric space and $F : M \to \mathbf{R}$ lower semicontinuous and bounded from below. For every $\varepsilon > 0$ and $x_0 \in M$ such that $F(x_0) \leq \inf F(M) + \varepsilon$, and every $\delta > 0$, there exists $x \in M$ such that

- (i) $F(x) \le F(x_0);$
- (ii) $d(x_0, x) \leq \delta$;
- (iii) $F(x) < F(y) + \frac{\varepsilon}{\delta} d(y, x)$ for all $y \neq x$.

An immediate consequence of Ekeland's variational principle is concerning with the existence of a critical point of minimum for a C^1 -functional on a Banach space.

Corollary 1.1. Let X be a Banach space with norm $|\cdot|$, and $F : X \to \mathbf{R}$ a C^1 -functional, bounded from below. There exists a sequence (x_n) such that

$$F(x_n) \to \inf F(X), \quad F'(x_n) \to 0.$$

If in addition F satisfies the Palais-Smale condition (i.e. any sequence as above has a convergent subsequence), then there exists $x \in X$ with

$$F(x) = \inf F(X), \quad F'(x) = 0.$$

For its proof it is sufficient to apply Theorem 1.1 with $\delta = 1$ and $\varepsilon = \frac{1}{n}$, to obtain a sequence (x_n) satisfying the following conditions:

$$F(x_n) \le \inf F(X) + \frac{1}{n}, \quad F(x_n) < F(y) + \frac{1}{n} |y - x_n| \text{ for all } y \ne x_n.$$

Received January 10, 2013

1056-2176 \$15.00 ©Dynamic Publishers, Inc.

The first inequality gives us $F(x_n) \to \inf F(X)$, while the second inequality, for $y = x_n - tz, t > 0, |z| = 1$, yields

$$-t\left\langle F'\left(x_{n}\right),z\right\rangle + o\left(t\right) + \frac{t}{n} > 0.$$

Here and throughout the paper, by $\langle \cdot, \cdot \rangle$ we understand the duality between a space X and its dual X', i.e. $\langle x^*, x \rangle = x^*(x)$ for $x^* \in X'$ and $x \in X$. Dividing by t and letting t tend to zero, we obtain $\langle F'(x_n), z \rangle \leq \frac{1}{n}$, whence $|F'(x_n)|_{X'} \leq \frac{1}{n}$, that is $F'(x_n) \to 0$. We stress on the fact that, in this case, when the domain of F is the whole space, the choice $y = x_n - tz$ is possible for every $z \in X$ with |z| = 1 and t > 0. As we are going to see, such a choice is not possible for every z, and every t in a right vicinity of 0, in case that the domain of F is a proper subset D of X and x_n is not interior to D.

In this paper, similar results to Corollary 1.1, in a subset of X, are presented as consequences of Ekeland's principle. Thus, by a simple and direct proof, we obtain variants and extensions of some results of Schechter [14], [15], and a compression critical point theorem established in [11], in a conical annular domain. Finally, we present an application to two-point boundary value problems, as a variational alternative to the fixed point approach (see e.g. [1], [5], [6], [8], [10], [12]).

2. CRITICAL POINT LOCALIZATION THEOREMS

Let X be a Hilbert space with scalar product and norm (\cdot, \cdot) , $|\cdot|_X$, and let Y, Zbe two linear normed spaces with norms $|\cdot|_Y$ and $|\cdot|_Z$, respectively. We shall assume that $X \subset Y$ and $X \subset Z$ with continuous embeddings. Let c_Y, c_Z be the embedding constants, i.e. $|x|_Y \leq c_Y |x|_X$ and $|x|_Z \leq c_Z |x|_X$ for every $x \in X$. Clearly the dual spaces are in relations $Y' \subset X'$ and $Z' \subset X'$ with continuous embeddings too. Denote by P, Q the duality mappings of Y and Z and assume that they are single-valued, i.e.

$$P: Y \to Y', \quad Q: Z \to Z',$$
$$|Px|_{Y'} = |x|_Y, \quad \langle Px, x \rangle = |x|_Y^2 \quad \text{for all } x \in Y;$$
$$|Qx|_{Z'} = |x|_Z, \quad \langle Qx, x \rangle = |x|_Z^2 \quad \text{for all } x \in Z.$$

We shall assume in addition that P and Q are continuous. Let L be the continuous linear operator from X to X' (the canonical isomorphism of X onto X'), given by

$$(x, y) = \langle Lx, y \rangle$$
 for all $x, y \in X$

and let J be its inverse. Then $J: X' \to X$ is a continuous linear operator and

$$(Jx^*, x) = \langle x^*, x \rangle$$
 for all $x^* \in X', x \in X$.

Let K be a wedge of X, i.e. a closed convex subset of X such that $K \neq \{0\}$ and $\lambda K \subset K$ for every $\lambda \in \mathbf{R}_+$. Notice that K can be a cone, i.e. may have the property

 $K \cap (-K) = \{0\}$, and also can be the whole space X. For two positive numbers r, R, denote

$$K_R = \{ x \in K : |x|_Z \le R \}, \quad D_r = \{ x \in K : |x|_Y \ge r \},$$
$$K_{r,R} = \{ x \in K : r \le |x|_Y \text{ and } |x|_Z \le R \},$$

i.e. $K_{r,R} = K_R \cap D_r$. Also by ∂K_R and ∂D_r we shall understand the sets $\{x \in K : |x|_Z = R\}$, $\{x \in K : |x|_Y = r\}$. Obviously, since the embeddings $X \subset Y$ and $X \subset Z$ are continuous, the sets K_R, D_r and $K_{r,R}$ are closed in X. In this section we are interested in critical points of extremum for a real functional $F \in C^1(X)$, which are located in K_R, D_r , or $K_{r,R}$.

We close this introductory section by a basic result (see [2, p. 96]) concerning single-valued duality mappings: For every $x, y \in Y$,

(2.1)
$$\langle Px, y \rangle = |x|_Y \lim_{t \to 0+} t^{-1} \left(|x|_Y - |x - ty|_Y \right).$$

According to this formula, if $\langle Px, y \rangle < 0$, then $|x - ty|_Y > |x|_Y$ for every sufficiently small t > 0, while if $\langle Px, y \rangle > 0$, then $|x - ty|_Y < |x|_Y$ for small enough t > 0. The same is true for Q.

2.1. Critical points of minimum in a ball.

Theorem 2.1. Let $F : X \to \mathbf{R}$ be a C^1 -functional, bounded from below on K_R . Assume that

(2.2)
$$F(x) \ge \inf F(K_R) + c \text{ for all } x \in K_R \text{ with } |x|_X \ge R_0$$

and some $c, R_0 > 0$. In addition assume that for some $\nu > 0$,

(2.3)
$$\langle Qx, JF'(x) \rangle \ge -\nu > -\infty \quad \text{for all } x \in \partial K_R \text{ with } |x|_X \le R_0,$$

and

(2.4) for each
$$x \in K_R$$
 with $|x|_X \leq R_0$ and each $\mu \in \left[-\frac{\nu R_0^2}{R^4}, 0\right]$,
there is $\eta > 0$ with $\eta x - JF'(x) + \mu JQx \in K$.

Then there exists a sequence (x_n) , $x_n \in K_R$, such that $F(x_n) \to \inf F(K_R)$, and one of the following two properties hold:

0.

(i)
$$F'(x_n) \to 0;$$

(ii) $|x_n|_Z = R, \langle Qx_n, JF'(x_n) \rangle \leq 0$ for all n, and
(2.5) $JF'(x_n) - \frac{\langle Qx_n, JF'(x_n) \rangle}{|JQx_n|_X^2} JQx_n \to$

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that any sequence as above has a convergent subsequence, and the boundary condition

(2.6)
$$JF'(x) + \mu JQx \neq 0$$
 for all $x \in \partial K_R$ with $|x|_X \leq R_0$ and $\mu > 0$,

then there exists $x \in K_R$ with

$$F(x) = \inf F(K_R), \quad F'(x) = 0.$$

Proof. From Theorem 1.1 applied to the complete metric space K_R endowed with the metric induced by $|\cdot|_X$, it follows that there exists a sequence (x_n) in K_R such that $F(x_n) \leq \inf F(K_R) + \frac{1}{n}$, whence $F(x_n) \to \inf F(K_R)$, and

(2.7)
$$F(x_n) < F(y) + \frac{1}{n} |y - x_n|_X \text{ for every } y \in K_R \text{ with } y \neq x_n.$$

In view of (2.2), we may assume that $|x_n|_X \leq R_0$. Three cases are possible: (a) There is a subsequence with $x_n = 0$ for all n; (b) There is a subsequence with $0 < |x_n|_Z < R$; (c) The terms of the sequence (x_n) , except possibly a finite number, belong to ∂K_R .

In the first case we have $F(0) = \inf F(K_R)$. Also $F(0) < F(y) + \frac{1}{n} |y|_X$ for every $y \in K_R \setminus \{0\}$ and all n. We claim that F'(0) = 0. Indeed, otherwise, from $\eta 0 - JF'(0) \in K$ and $F'(0) \neq 0$, if in (2.7) we take y = -tJF'(0) for t > 0, we obtain

$$-t \left| JF'(0) \right|_{X}^{2} + o(t) + \frac{t}{n} \left| JF'(0) \right|_{X} \ge 0,$$

whence we derive $|JF'(0)|_X = 0$, a contradiction.

In the second case, we may suppose that $0 < |x_n|_Z < R$ for all n. For a fixed n, apply (2.7) with $y = (1+t)x_n, t \neq 0$. Clearly $y \in K_R$ for |t| small enough. Then

$$t \langle F'(x_n), x_n \rangle + o(|t|) + \frac{|t|}{n} |x_n|_X \ge 0.$$

Dividing by t in each of the cases t > 0, t < 0 and letting $t \to 0$ we obtain

$$-\frac{1}{n} |x_n|_X \le \langle F'(x_n), x_n \rangle \le \frac{1}{n} |x_n|_X.$$

Hence $\langle F'(x_n), x_n \rangle \to 0$ as $n \to \infty$. Next in (2.7) we take $y = x_n + t (x_n - JF'(x_n))$ with t > 0 small enough. We have

$$t \langle F'(x_n), x_n - JF'(x_n) \rangle + o(t) + \frac{t}{n} |x_n - JF'(x_n)|_X \ge 0.$$

Divide by t and let t go to zero to obtain

$$\langle F'(x_n), x_n - JF'(x_n) \rangle + \frac{1}{n} |x_n - JF'(x_n)|_X \ge 0.$$

It follows that

$$|JF'(x_n)|_X^2 \le \langle F'(x_n), x_n \rangle + \frac{1}{n} |x_n - JF'(x_n)|_X$$

whence $|JF'(x_n)|_X \to 0$ as $n \to \infty$. Thus, $F'(x_n) \to 0$ in X' and so, property (i) holds in case (b).

Assume now case (c), i.e. $|x_n|_Z = R$ for all n. Two subcases are now possible: (1) $\langle Qx_n, JF'(x_n) \rangle > 0$ for a subsequence. Then we apply (2.7) to $y = x_n - tJF'(x_n)$. Clearly $y = t(\eta_n x_n - JF'(x_n)) + (1 - t\eta_n) x_n \in K$. Also, according to (2.1), from $\langle Qx_n, JF'(x_n) \rangle > 0$, we have that $|y|_Z \leq R$ for t > 0 small enough. Hence $y \in K_R$. Now (2.7) gives us

$$\langle F'(x_n), JF'(x_n) \rangle = |JF'(x_n)|_X^2 \le \frac{1}{n} |JF'(x_n)|_X^2,$$

whence $JF'(x_n) \to 0$, equivalently $F'(x_n) \to 0$. Thus (i) holds.

(2) Assume $\langle Qx_n, JF'(x_n) \rangle \leq 0$ for all *n* except possibly a finite number of indices. Then in (2.7) we take $y = x_n - t(\varepsilon x_n + z_n)$, where $\varepsilon > 0$, $z_n = JF'(x_n) - \mu_n JQx_n$, $\mu_n = \frac{\langle Qx_n, JF'(x_n) \rangle}{|JQx_n|_X^2}$ and t > 0. Notice that

$$\langle Qx_n, z_n \rangle = 0$$
 and $\langle Qx_n, \varepsilon x_n + z_n \rangle = \varepsilon R^2 > 0$,

which in view of (2.1), guarantees

$$|y|_Z \le |x_n|_Z = R$$

if t > 0 is small enough. Also from

$$R^{2} = |x_{n}|_{Z}^{2} = \langle Qx_{n}, x_{n} \rangle = (JQx_{n}, x_{n}) \le |JQx_{n}|_{X} |x_{n}|_{X} \le R_{0} |JQx_{n}|_{X}$$

we have $|JQx_n|_X \ge \frac{R^2}{R_0}$, and so

(2.8)
$$-\frac{\nu R_0^2}{R^4} \le \mu_n \le 0$$

Then, from (2.4), there is $\eta_n > 0$ with $\eta_n x_n - JF'(x_n) + \mu_n JQx_n \in K$. Consequently

$$y = t \left[\eta_n x_n - JF'(x_n) + \mu_n JQx_n \right] + \left(1 - t\varepsilon - t\eta_n \right) x_n \in K$$

since $1 - t\varepsilon - t\eta_n$ is positive for small t > 0. Applying (2.7) we obtain

$$-t \left\langle F'(x_n), \varepsilon x_n + z_n \right\rangle + o(t) + \frac{t}{n} \left| \varepsilon x_n + z_n \right|_X \ge 0,$$

whence

$$-\langle F'(x_n), \varepsilon x_n + z_n \rangle + \frac{1}{n} |\varepsilon x_n + z_n|_X \ge 0,$$

and letting $\varepsilon \to 0$,

$$-\langle F'(x_n), z_n \rangle + \frac{1}{n} |z_n|_X \ge 0,$$

or equivalently

$$-(JF'(x_n), z_n) + \frac{1}{n}|z_n|_X \ge 0.$$

Since $\langle Qx_n, z_n \rangle = 0$, this is equivalent to the inequality

$$-|z_n|_X^2 + \frac{1}{n}|z_n|_X \ge 0.$$

Thus $|z_n|_X \leq \frac{1}{n}$ and so $z_n \to 0$ as desired.

For the last part of the theorem, assume via the Palais-Smale condition, that $x_n \to x$. In case (i) we immediately obtain F'(x) = 0. In case (ii), (2.8) guarantees, at least for a subsequence, that $\mu_n \to -\mu \leq 0$, and so $JF'(x) + \mu JQx = 0$, where $x \in \partial K_R$ and $\mu \geq 0$. The case $\mu > 0$ being excluded by the boundary condition (2.6), it remains that JF'(x) = 0, that is F'(x) = 0.

Remark 2.1. (a) Condition (2.2) is trivial if X = Z (in this case, take R_0 any number greater than R to see that there are no elements $x \in K_R$ with $|x|_X \ge R_0$).

(b) In particular, condition (2.4) holds if $x - JF'(x) \in K$ for every $x \in K$ and JQ is the identity map.

(c) Condition (2.4) trivially holds when K = X; the case X = Z = K was considered in [13].

2.2. Critical points of minimum outside the ball. We now look for critical points of extremum in the set D_r , where r > 0 is a given number.

Theorem 2.2. Let $F : X \to \mathbf{R}$ be a C^1 -functional, bounded from below on D_r . Assume that

(2.9)
$$F(x) \ge \inf F(D_r) + c \text{ for all } x \in D_r \text{ with } |x|_x \ge R_0$$

and some $c, R_0 > 0$. In addition assume that for some $\nu > 0$,

(2.10)
$$\langle Px, JF'(x) \rangle \leq \nu < \infty \text{ for all } x \in \partial D_r \text{ with } |x|_X \leq R_0,$$

and

(2.11) for each
$$x \in D_r$$
 with $|x|_X \leq R_0$ and each $\mu \in [0, \frac{\nu R_0^2}{r^4}]$,
there is $\eta > 0$ with $\eta x - JF'(x) + \mu JPx \in K$.

Then there exists a sequence (x_n) , $x_n \in D_r$, such that $F(x_n) \to \inf F(D_r)$, and one of the following two properties holds:

(i)
$$F'(x_n) \to 0;$$

(ii) $|x_n|_Y = r, \langle Px_n, JF'(x_n) \rangle \ge 0$ for all n, and
(2.12) $JF'(x_n) - \frac{\langle Px_n, JF'(x_n) \rangle}{|JPx_n|_X^2} JPx_n \to 0.$

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that any sequence as above has a convergent subsequence, and the following boundary condition holds

 $JF'(x) + \mu JPx \neq 0$ for all $x \in \partial D_r$ with $|x|_X \leq R_0$ and $\mu < 0$,

then there exists $x \in D_r$ with

$$F(x) = \inf F(D_r), \quad F'(x) = 0.$$

Proof. We apply Theorem 1.1 in D_r . The resulting sequence (x_n) clearly satisfies $|x_n|_X \leq R_0$ and is now in one of the cases: (a) There is a subsequence of (x_n) with $|x_n|_Y > r$; (b) The terms of the sequence (x_n) , except possibly a finite number, belong to ∂D_r . In the first case one proceeds like in case (b) of the proof of Theorem 2.1. In the second case, we are in one of the following situations: (1) $\langle Px_n, JF'(x_n) \rangle < 0$ for a subsequence. Then we apply (2.7) to $y = x_n - tJF'(x_n)$. Clearly $y = t(\eta_n x_n - JF'(x_n)) + (1 - t\eta_n) x_n \in K$. Also, according to (2.1), from $\langle Px_n, JF'(x_n) \rangle < 0$, we have that $|y|_Y \geq r$ for t > 0 small enough. Hence $y \in D_r$. Now (2.7) gives us

$$\langle F'(x_n), JF'(x_n) \rangle = |JF'(x_n)|_X^2 \le \frac{1}{n} |JF'(x_n)|_X$$

whence $JF'(x_n) \to 0$, that is (i) holds; (2) otherwise, $\langle Px_n, JF'(x_n) \rangle \geq 0$ for all n, except possibly a finite number of indices. Then in (2.7), we take $y = x_n - t(-\varepsilon x_n + z_n)$, where $t, \varepsilon > 0$, $z_n = JF'(x_n) - \mu_n JPx_n$ and $\mu_n = \frac{\langle Px_n, JF'(x_n) \rangle}{|JPx_n|_X^2}$. This choice of y is correct. Indeed,

$$y = t\left(\eta_n x_n - JF'\left(x_n\right) + \mu_n JPx_n\right) + \left(1 - t\eta_n + t\varepsilon\right)x_n \in K$$

since $1 - t\eta_n + t\varepsilon$ is positive for small t > 0; in addition, since $\langle Px_n, -\varepsilon x_n + z_n \rangle = -\varepsilon r^2 < 0$, again in view of (2.1), we have that $|y|_Y \ge r$ for t > 0 small enough. Then (2.7) gives

$$\langle F'(x_n), -\varepsilon x_n + z_n \rangle \leq \frac{1}{n} |-\varepsilon x_n + z_n|_X,$$

whence after passing to limit with $\varepsilon \to 0$, we deduce that $\langle F'(x_n), z_n \rangle \leq \frac{1}{n} |z_n|_X$. Now observe that

$$\langle F'(x_n), z_n \rangle = \langle F'(x_n) - \mu_n P x_n, z_n \rangle = (JF'(x_n) - \mu_n J P x_n, z_n)$$
$$= |z_n|_X^2.$$

As a result $|z_n|_X \leq \frac{1}{n}$, which shows that $z_n \to 0$ as desired. The proof of the last part of the theorem is similar to that of Theorem 2.1.

Remark 2.2. In particular, condition (2.11) holds if $x - JF'(x) \in K$ for every $x \in K$ and $JP(K) \subset K$.

2.3. Critical points of minimum in annular domains. Combining the ideas of Theorems 2.1 and 2.2 we obtain critical point theorems in the annular domain

$$K_{r,R} := \{ x \in K : r \le |x|_Y, |x|_Z \le R \}$$

We shall assume that there exist elements x in $K_{r,R}$ with $r < |x|_Y$ and $|x|_Z < R$; for instance, if $x_0 \in K$, $|x_0|_Z = 1$ and numbers r, R are such that $r < |x_0|_Y R$, then μx_0 is such an element, i.e. $r < |\mu x_0|_Y$ and $|\mu x_0|_Z < R$, for each μ satisfying $\frac{r}{|x_0|_Y} < \mu < R$.

Theorem 2.3. Let $F : X \to \mathbf{R}$ be a C^1 -functional, bounded from below on $K_{r,R}$. Assume that for some $c, R_0 > 0$,

(2.13)
$$F(x) \geq \inf F(K_{r,R}) + c \text{ for all } x \in K_{r,R} \text{ satisfying}$$

either $|x|_X \geq R_0$, or both $|x|_Y = r$, $|x|_Z = R$.

In addition assume that conditions (2.3), (2.4), (2.10) and (2.11) hold. Then there exists a sequence (x_n) , $x_n \in K_{r,R}$ such that $F(x_n) \to \inf F(K_{r,R})$, and one of the following three situations holds:

(i)
$$F'(x_n) \to 0;$$

(ii) $|x_n|_Y = r, \langle Px_n, JF'(x_n) \rangle \ge 0$ for all n, and
 $Px_n, JF'(x_n) \land Px_n, JF'(x_n) \land DF'(x_n) \land DF'($

(2.14)
$$JF'(x_n) - \frac{\langle Px_n, JF'(x_n) \rangle}{|JPx_n|_X^2} JPx_n \to 0;$$

(iii) $|x_n|_Z = R$, $\langle Qx_n, JF'(x_n) \rangle \leq 0$ for all n, and

(2.15)
$$JF'(x_n) - \frac{\langle Qx_n, JF'(x_n) \rangle}{|JQx_n|_X^2} JQx_n \to 0.$$

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that any sequence as above has a convergent subsequence, and the boundary conditions

(2.16)
$$JF'(x) + \mu JQx \neq 0$$
 for all $x \in \partial K_R$ with $|x|_X \leq R_0$ and $\mu > 0$;
 $JF'(x) + \mu JPx \neq 0$ for all $x \in \partial D_r$ with $|x|_X \leq R_0$ and $\mu < 0$,

then there exists $x \in K_{r,R}$ with

$$F(x) = \inf F(K_{r,R}), \quad F'(x) = 0.$$

Proof. Obviously, the result is a joint consequence of Theorems 2.1 and 2.2. The additional hypothesis that $F(x) \ge \inf F(K_{r,R}) + c$ for all $x \in K_{r,R}$ satisfying both equalities $|x|_Y = r$, $|x|_Z = R$ is needed to guarantee that whenever $|x_n|_Y = r$, we have $|x_n|_Z < R$, making possible the choices $y = x_n - tJF'(x_n)$ and $y = x_n - t(-\varepsilon x_n + z_n)$ as in the proof of Theorem 2.2, i.e. $|y|_Z \le R$ for t > 0 small enough. Similarly, if $|x_n|_Z = R$, we will have $|x_n|_Y > r$, and thus for $y = x_n - tJF'(x_n)$ and $y = x_n - t(\varepsilon x_n + z_n)$ as in the proof of Theorem 2.1, the necessary inequality $|y|_Y \ge r$ holds for t > 0 small enough.

2.4. **Dual results for maxima.** The dual result of Theorem 2.1 for maxima is the following theorem.

Theorem 2.4. Let $F : X \to \mathbf{R}$ be a C^1 -functional, bounded from above on K_R . Assume that

(2.17)
$$F(x) \le \sup F(K_R) - c \text{ for all } x \in K_R \text{ with } |x|_X \ge R_0$$

362

and some $c, R_0 > 0$. In addition assume that for some $\nu > 0$,

(2.18)
$$\langle Qx, JF'(x) \rangle \leq \nu < \infty \quad \text{for all } x \in \partial K_R \text{ with } |x|_X \leq R_0,$$

and

(2.19) for each
$$x \in K_R$$
 with $|x|_X \leq R_0$ and each $\mu \in \left[-\frac{\nu R_0^2}{R^4}, 0\right]$,
there is $\eta > 0$ with $\eta x + JF'(x) + \mu JQx \in K$.

Then there exists a sequence (x_n) , $x_n \in K_R$, such that $F(x_n) \to \sup F(K_R)$, and and one of the following two properties holds:

(i)
$$F'(x_n) \to 0$$
;
(ii) $|x_n|_Z = R$, $\langle Qx_n, JF'(x_n) \rangle \ge 0$ for all n , and
 $\langle Qx_n, JF'(x_n) \rangle \ge 0$

(2.20)
$$JF'(x_n) - \frac{\langle Qx_n, JF'(x_n) \rangle}{|JQx_n|_X^2} JQx_n \to 0.$$

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that any sequence as above has a convergent subsequence, and the boundary condition

 $JF'(x) + \mu JQx \neq 0$ for all $x \in \partial K_R$ with $|x|_X \leq R_0$ and $\mu < 0$,

then there exists $x \in K_R$ with

$$F(x) = \sup F(K_R), \quad F'(x) = 0.$$

Proof. Apply Theorem 2.1 to the functional -F.

The dual result of Theorem 2.2 for maxima is the following theorem.

Theorem 2.5. Let $F : X \to \mathbf{R}$ be a C^1 -functional, bounded from above on D_r . Assume that

(2.21)
$$F(x) \le \sup F(D_r) - c \text{ for all } x \in D_r \text{ with } |x|_X \ge R_0$$

and some $c, R_0 > 0$. In addition assume that for some $\nu > 0$,

(2.22)
$$\langle Px, JF'(x) \rangle \ge -\nu > -\infty \text{ for all } x \in \partial D_r \text{ with } |x|_X \le R_0,$$

and

(2.23) for each
$$x \in D_r$$
 with $|x|_X \leq R_0$ and each $\mu \in \left[0, \frac{\nu R_0^2}{r^4}\right]$,
there is $\eta > 0$ with $\eta x + JF'(x) + \mu JPx \in K$.

Then there exists a sequence (x_n) , $x_n \in D_r$, such that $F(x_n) \to \sup F(D_r)$, and and one of the following two properties holds:

(i)
$$F'(x_n) \to 0;$$

R. PRECUP

(ii)
$$|x_n|_Y = r$$
, $\langle Px_n, JF'(x_n) \rangle \leq 0$ for all n , and

(2.24)
$$JF'(x_n) - \frac{\langle Px_n, JF'(x_n) \rangle}{|JPx_n|_X^2} JPx_n \to 0.$$

If in addition F satisfies a Palais-Smale type compactness condition guaranteeing that any sequence as above has a convergent subsequence, and the boundary condition

$$JF'(x) + \mu JPx \neq 0$$
 for all $x \in \partial D_r$ with $|x|_X \leq R_0$ and $\mu > 0$,

then there exists $x \in D_r$ with

$$F(x) = \sup F(D_r), \quad F'(x) = 0.$$

Obviously, a dual result of Theorem 2.3, in the annulus can also be stated.

Remark 2.3. (a) In case that JF'(x) = x - N(x), which happens in most applications, the boundary conditions (2.16) read as follows

(2.25)
$$N(x) \neq x + \mu JPx \text{ for } |x|_Y = r, \ |x|_X \le R_0 \text{ and } \mu < 0;$$

(2.26)
$$N(x) \neq x + \mu JQx \text{ for } |x|_Z = R, \ |x|_X \leq R_0 \text{ and } \mu > 0$$

and can be seen as a compression type property of the operator N, on the annular domain $K_{r,R}$.

(b) For X = Z = K, Theorems 2.1 and 2.4 reduce to some results by Schechter [14], [15, Theorems 5.3.3, 5.5.5] in a ball of a Hilbert space.

(c) Theorem 2.3 is a version of a theorem first established in [11] by a completely different technique. Thus, Ekeland's principle gives us a direct and simple alternative proof to such type of theorems.

3. APPLICATION

Consider the two-point boundary value

(3.1)
$$\begin{cases} -u''(t) = f(t, u(t)), & t \in I, \\ u(0) = u(1) = 0, \end{cases}$$

where I = [0, 1] and $f : I \times \mathbf{R} \to \mathbf{R}$ is a Carathéodory function, i.e. $f(\cdot, u)$ is measurable for each $u \in \mathbf{R}$ and $f(t, \cdot)$ is continuous for almost every $t \in I$. In addition it is assumed that for each b > 0 there exists $h_b \in L^1(I)$ such that $|f(t, \tau)| \leq h_b(t)$ for $|\tau| \leq b$ and almost every $t \in I$; in this case we say that f is a L^1 -Carathéodory function.

We shall apply the abstract results from Section 2 to spaces: $X = Z = H_0^1(I)$ endowed with the scalar product and norm

$$(u,v) = \int_{I} u'(t) v'(t) dt, \quad |u|_{H_{0}^{1}(I)} = \left(\int_{I} u'(t)^{2} dt\right)^{1/2},$$

 $Y = L^{p}(I)$, where p > 1, and to the functional $F : H_{0}^{1}(I) \to \mathbf{R}$,

$$F(u) = \int_{I} \left(\frac{1}{2} u'(t)^{2} - g(t, u(t)) \right) dt,$$

where $g: I \times \mathbf{R} \to \mathbf{R}$ is defined by

$$g(t,\tau) = \int_0^\tau f(t,s) \, ds$$

Here $L: H_0^1(I) \to H^{-1}(I), Lu = -u''; J: H^{-1}(I) \to H_0^1(I), Jv = u$, where u is the unique weak solution of the problem

$$\begin{cases} -u'' = v, \ t \in I, \\ u(0) = u(1) = 0, \end{cases}$$

that is $u \in H_0^1(I)$ and $(u, w) = \langle v, w \rangle$ for all $w \in H_0^1(I)$. Also, Q = L and $P : L^p(I) \to L^q(I), \frac{1}{p} + \frac{1}{q} = 1$ is defined by

$$(Pu)(t) = |u|_{L^{p}(I)}^{2-p} |u(t)|^{p-2} u(t).$$

We have $F'(u) = -u'' - f(\cdot, u)$ and JF'(u) = u - N(u), where

$$N(u) = Jf(\cdot, u) = \int_{I} G(\cdot, s) f(s, u(s)) ds,$$

with the Green function G(t,s) = s(1-t) for $0 \le s \le t \le 1$, G(t,s) = t(1-s) for $0 \le t < s \le 1$. Notice that since the embedding of $H_0^1(I)$ into C(I) is compact, the operator N is completely continuous from $H_0^1(I)$ to itself guaranteeing the Palais-Smale condition.

We shall be interested into positive solutions and therefore we assume that

$$(3.2) f(I \times \mathbf{R}_+) \subset \mathbf{R}_+$$

Then N maps positive functions into positive functions. Moreover, if we fix a subinterval $[t_0, t_1] \subset (0, 1)$, then we have $G(t, s) \leq G(s, s)$ for all $t, s \in [0, 1]$ and $G(t, s) \geq MG(s, s)$ for every $t \in I_0 := [t_0, t_1], s \in [0, 1]$, where

$$M = \min \left\{ t_0, 1 - t_1 \right\}.$$

Then, for each $h \in L^1(I, \mathbf{R}_+)$, $t \in I_0$ and $t' \in I$,

$$(Jh) (t) = \int_{I} G(t,s) h(s) ds \ge M \int_{I} G(s,s) h(s) ds$$

$$\ge M \int_{I} G(t',s) h(s) ds = M (Jh) (t') ,$$

and consequently, $(Jh)(t) \ge M |Jh|_{L^{p}(I)}$ $(t \in I_{0})$. Hence if we consider the cone

$$K = \left\{ u \in H_0^1(I) : u \ge 0 \text{ on } I; \ u(t) \ge M |u|_{L^p(I)} \text{ for } t \in I_0 \right\},\$$

then $N(K) \subset K$, equivalently $u - JF'(u) \in K$ for every $u \in K$. In addition, JQ is the identity map and since P maps positive functions into positive functions,

 $(JP)(K) \subset K$. Consequently, according to Remarks 2.1 (b) and 2.2, conditions (2.4) and (2.11) hold.

Notice that F is bounded from below in $K_{r,R}$ for every r, R. Indeed, for each $u \in K_{r,R}$, since $u(t) \leq |u|_{H^1_0(I)}$ for every $t \in I$, we have

$$F(u) = \int_{I} \left(\frac{1}{2} u'(t)^{2} - g(t, u(t)) \right) dt$$

$$\geq -\int_{I} g(t, u(t)) dt \geq -\int_{I} g(t, R) dt > -\infty$$

Hence

$$m := \inf F\left(K_{r,R}\right) > -\infty$$

Let χ_{I_0} be the characteristic function of the interval I_0 , i.e. $\chi_{I_0}(t) = 1$ if $t \in I_0$, $\chi_{I_0}(t) = 0$ for $t \in I \setminus I_0$, and let

$$\phi\left(t\right) = \frac{\sqrt{2}}{\pi}\sin\pi t$$

be the positive eigenfunction corresponding to the first eigenvalue $\lambda = \pi^2$, with $|\phi|_{H_0^1(I)} = 1$. Notice that if $0 < r < |\phi|_{L^p(I)} R$, then $\mu \phi \in K_{r,R}$ for $\frac{r}{|\phi|_{L^p(I)}} \le \mu \le R$.

Theorem 3.1. Assume that $f: I \times \mathbf{R} \to \mathbf{R}$ is a L^1 -Carathéodory function, $f(I \times \mathbf{R}_+) \subset \mathbf{R}_+$, and that there are two numbers r, R with $0 < r < |\phi|_{L^p(I)} R$ such that

(3.3)
$$\left| J\left(\chi_{I_0} \inf_{\tau \in [Mr,\infty)} f\left(\cdot,\tau\right)\right) \right|_{L^p(I)} \ge r,$$

(3.4)
$$\left|\sup_{\tau\in[0,R]}f(\cdot,\tau)\right|_{L^{1}(I)} \leq R,$$

(3.5) $F(u) \ge m + c \text{ for every } u \in K_{r,R} \text{ with } |u|_{L^p(I)} = r \text{ and } |u|_{H^1_0(I)} = R.$

Then (3.1) has a solution u in $K_{r,R}$ which minimizes F on $K_{r,R}$.

Proof. Clearly (3.5) means (2.13). Also, since N maps bounded sets into bounded sets, conditions (2.3) and (2.10) hold. Now we show condition (2.26). Assume the contrary. Then $N(u) = (1 + \mu)u$ for some $u \in K_{r,R}$ with $|u|_{H_0^1(I)} = R$ and $\mu > 0$. Since

$$0 \le u(t) = \int_0^t u'(s) \, ds \le \left(\int_I u'(s)^2 \, ds\right)^{\frac{1}{2}} = |u|_{H^1_0(I)},$$

we deduce that

$$\begin{aligned} R^2 &= |u|_{H_0^1(I)}^2 = \frac{1}{1+\mu} \left(N\left(u\right), u \right) < \left(Jf\left(\cdot, u\right), u \right) = \left\langle f\left(\cdot, u\right), u \right\rangle \\ &= \int_I f\left(t, u\left(t\right)\right) u\left(t\right) dt \le R \int_I \sup_{\tau \in [0,R]} f\left(t, \tau\right) dt. \end{aligned}$$

Hence $R < |\sup_{\tau \in [0,R]} f(\cdot,\tau)|_{L^{1}(I)}$, a contradiction to (3.4). Next we check (2.25). Assume the contrary, i.e. $N(u) = u + \mu JPu$ for some $u \in K_{r,R}$ with $|u|_{L^{p}(I)} = r$ and $\mu < 0$. One has $u(t) \ge Mr$ in I_{0} , whence $f(t, u(t)) \ge \inf_{\tau \in [Mr,\infty)} f(t,\tau)$ for $t \in I_{0}$, that is

$$f(t, u(t)) \ge \chi_{I_0}(t) \inf_{\tau \in [Mr,\infty)} f(t, \tau)$$
 for all $t \in I$.

Then, on (0, 1) we have

$$u > u + \mu JPu = N(u) = Jf(\cdot, u) \ge J\left(\chi_{I_0} \inf_{\tau \in [Mr,\infty)} f(\cdot, \tau)\right).$$

Consequently

$$\left|u\right|_{L^{p}(I)} > \left|J\left(\chi_{I_{0}}\inf_{\tau\in[Mr,\infty)}f\left(\cdot,\tau\right)\right)\right|_{L^{p}(I)},$$

which is excluded by (3.3).

The next three remarks are concerning with condition (3.5).

Remark 3.1. If g is such that

(3.6)
$$g(t,u) \le a(t) u^{p-1} + b(t) \text{ for all } u \in \mathbf{R}_+, \text{ a.e. } t \in I,$$

where p > 1, $a \in L^{p}(I)$ and $b \in L^{1}(I)$, then a sufficient condition for (3.5) to hold is that

(3.7)
$$\int_{I} g(t, R\phi(t)) dt > |a|_{L^{p}(I)} r^{p-1} + |b|_{L^{1}(I)}$$

Indeed, for each $u \in K$ with $|u|_{L^p(I)} = r$ and $|u|_{H_0^1(I)} = R$ we have via Hölder's inequality

$$F(u) \ge \frac{R^2}{2} - \int_I \left[a(t) u(t)^{p-1} + b(t) \right] dt \ge \frac{R^2}{2} - |a|_{L^p(I)} r^{p-1} - |b|_{L^1(I)}.$$

On the other hand, since $|\phi|_{H^1_0(I)} = 1$,

$$F(R\phi) = \frac{R^2}{2} - \int_I g(t, R\phi(t)) dt.$$

Hence

$$F(u) \ge F(R\phi) + c \ge m + c,$$

where

$$c = \int_{I} g\left(t, R\phi\left(t\right)\right) dt - |a|_{L^{p}(I)} r^{p-1} - |b|_{L^{1}(I)} > 0.$$

We note that by (3.6), condition (3.7) implies $r < |\phi|_{L^p(I)} R$, and so $R\phi \in K_{r,R}$.

Remark 3.2. If f is such that (3.6) holds for $p \in (1,3)$, then condition (3.5) is satisfied if R is sufficiently large and $r < |\phi|_{L^{p}(I)} R$. Indeed,

$$F(u) \geq \frac{1}{2} |u|_{H_0^1(I)}^2 - |a|_{L^p(I)} |u|_{L^p(I)}^{p-1} - |b|_{L^1(I)}$$

$$\geq \frac{1}{2} |u|_{H_0^1(I)}^2 - |a|_{L^p(I)} |u|_{H_0^1(I)}^{p-1} - |b|_{L^1(I)}.$$

Since p < 3, for each $B \in (0, 1)$, there exists $R_B \in \mathbf{R}_+$ with

(3.8)
$$F(u) \ge \frac{B^2}{2} |u|_{H_0^1(I)}^2 \quad \text{for } |u|_{H_0^1(I)} \ge R_B.$$

Let $B := \frac{r}{|\phi|_{L^p(I)}R}$. Then for $|u|_{H^1_0(I)} = R \ge R_B$, we obtain

$$F(u) \ge \frac{r^2}{2 |\phi|_{L^p(I)}^2} = F(\mu \phi) + c,$$

where $\mu > 0$ is such that $\mu |\phi|_{L^{p}(I)} = r$, and $c = \int_{I} g(t, \mu \phi(t)) dt > 0$. Hence, in particular, $F(u) \ge F(\mu \phi) + c \ge m + c$ for every $u \in K_{r,R}$ satisfying $|u|_{H_{0}^{1}(I)} = R$ and $|u|_{L^{p}(I)} = r$, as claimed.

Remark 3.3. If following [7], [9] we assume that a function $\alpha \in L^1(I)$ exists such that there is $\delta > 0$ with $\int_I (u'(t)^2 - \alpha(t) u(t)^2) dt \ge \delta |u|^2_{H^1_0(I)}$ for every $u \in H^1_0(I)$, and for every $\varepsilon > 0$, there are $\beta_{\varepsilon}, \gamma_{\varepsilon} \in L^1(I)$ with

$$2g(t, u) \le (\varepsilon + \alpha(t)) u^2 + \beta_{\varepsilon}(t) u + \gamma_{\varepsilon}(t)$$

for $(t, u) \in I \times \mathbf{R}_+$, then condition (3.5) holds if R is sufficiently large and $r < |\phi|_{L^p(I)} \delta R$. Indeed, for a fixed $\varepsilon < \delta$ and each $u \in H^1_0(I, \mathbf{R}_+)$ we have

$$F(u) \geq \frac{1}{2} \int_{I} \left[u'(t)^{2} - \alpha(t) u(t)^{2} - \varepsilon u(t)^{2} - \beta_{\varepsilon}(t) u(t) - \gamma_{\varepsilon}(t) \right] dt$$

$$\geq \frac{1}{2} \left(\delta - \varepsilon \right) \left| u \right|_{H_{0}^{1}(I)}^{2} - \left| \beta_{\varepsilon} \right|_{L^{1}(I)} \left| u \right|_{H_{0}^{1}(I)} - \left| \gamma_{\varepsilon} \right|_{L^{1}(I)}.$$

Thus for each $B < \delta - \varepsilon$ there exists $R_B \in \mathbf{R}_+$ such that (3.8) holds. Now if we take $B = \frac{r}{|\phi|_{L^p(I)}R}$, we have $B < \delta$ and we can choose ε any positive number less than $\delta - B$. The assertion now follows as in the previous remark.

Assuming now a monotonicity property of f with respect to the second variable and taking into account Theorem 3.1 and Remark 3.1, we can state the following multiplicity result.

Theorem 3.2. Assume that $f : I \times \mathbf{R}_+ \to \mathbf{R}_+$ is a Carathéodory function such that $f(t, \cdot)$ is nondecreasing on \mathbf{R}_+ and

$$g(t, u) \le a(t) u^{p-1} + b(t) \quad (u \in \mathbf{R}_+)$$

for almost every $t \in I$, where p > 1, $a \in L^{p}(I)$, $b \in L^{1}(I)$.

 $1^0 \text{ Let } (r_i)_{1 \le i \le k}, (R_i)_{1 \le i \le k} \ (k \le \infty) \text{ be increasing finite or infinite sequences such that } R_i < r_{i+1} \ (1 \le i \le k-1),$

(3.9)
$$\int_{I} g(t, R_{i}\phi(t)) dt > |a|_{L^{p}(I)} r_{i}^{p-1} + |b|_{L^{1}(I)},$$

(3.10)
$$|J(\chi_{I_0}f(\cdot, Mr_i))|_{L^p(I)} \ge r_i,$$

$$(3.11) |f(\cdot, R_i)|_{L^1(I)} \le R_i$$

for all *i*. Then (3.1) has *k* (respectively, when $k = \infty$, an infinite sequence of) distinct positive solutions $u_i \in K_{r_i,R_i}$ which minimizes *F* on K_{r_i,R_i} .

2⁰ Let $(r_i)_{i\geq 1}$, $(R_i)_{i\geq 1}$ be decreasing infinite sequences such that $R_{i+1} < r_i$ $(1 \leq i \leq k-1)$ and conditions (3.9)–(3.11) hold for all *i*. Then (3.1) has an infinite sequence of distinct positive solutions $u_i \in K_{r_i,R_i}$ which minimizes F on K_{r_i,R_i} .

Remark 3.4. In the autonomous case, when f does not depend on t, conditions (3.10) and (3.11) read as follows

$$\frac{f\left(Mr_{i}\right)}{Mr_{i}} \geq \frac{1}{M\left|J\left(\chi_{I_{0}}\right)\right|_{L^{p}\left(I\right)}}, \quad \frac{f\left(R_{i}\right)}{R_{i}} \leq 1$$

showing that the function $f(\tau)/\tau$ oscillates above and below the values $\frac{1}{M|J(\chi_{I_0})|_{L^p(I)}}$ and 1, respectively.

Acknowledgement. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

REFERENCES

- R. Agarwal, M. Meehan, D. O'Regan and R. Precup, Location of nonnegative solutions for differential equations on finite and semi-infinite intervals, *Dynam. Systems Appl.*, 12:323–331, 2003.
- [2] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [3] I. Ekeland, Sur les problèmes variationnels, C. R. Acad. Sci. Paris Sér. A-B, 275:1057–1059, 1972.
- [4] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47:324–353, 1974.
- [5] L. H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184:640–648, 1994.
- [6] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120:743-748, 1994.
- [7] A. Fonda and J. Mawhin, Quadratic forms, weighyed eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, *Proc. Royal Soc. Edinburgh*, 112A:145–153, 1989.
- [8] D. Guo and V. Laksmikantham, Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. Math. Anal. Appl., 129:211–222, 1988.
- [9] J. Mawhin, Nonlinear variational two-point boundary value problems, in Variational Methods, H. Berestycki, J.-M. Coron and I. Ekeland eds., Birkhäuser, 1990, pp 209–218.
- [10] D. O'Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl., 309:383–391, 2005.
- [11] R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, *Nonlinear Anal.*, 75:834–851, 2012.
- [12] R. Precup, Abstract weak Harnack inequality, multiple fixed points and p-Laplace equations, J. Fixed Point Theory Appl., doi 10.1007/s11784-012-0091-2.

- [13] R. Precup, On a bounded critical point theorem of Schechter, Stud. Univ. Babeş-Bolyai Math., 58:87–95, 2013.
- [14] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, *Trans. Amer. Math. Soc.*, 331:681–703, 1992.
- [15] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999.