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ABSTRACT. A complex nonlinear nonstationary stochastic system of differential equations are

decomposed into nonlinear systems of stochastic perturbed and unperturbed differential equations.

Using this type of decomposition, the fundamental properties of solutions of nonlinear stochastic

unperturbed systems of differential equations are investigated. The fundamental properties are used

to find the representation of solution process of nonlinear stochastic perturbed system in terms of

solution process of nonlinear stochastic unperturbed system.
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1. INTRODUCTION

One of the most well known methods for investigating the nonlinear dynamic

processes in sciences and engineering is the method of nonlinear variation of constant

parameters [10, 11, 12, 14, 29].

Knowing the knowledge of the existence of solution process, the method of varia-

tion of parameters provides a very powerful tool for finding the solution representation

of systems of differential equations [10, 11, 12, 14, 29]. The idea is to decompose a

complex system of differential equations in to two parts in such a way that a system

of differential equations corresponding to the simpler part is either easily solvable

in a closed form or analytically analyzable. However, the over all complex system

of differential equations are neither easily solvable in a closed form nor analytically

analyzable [10, 11]. The method of variation of parameters provides a formula for a

solution to the complex system in terms of the solution process of simpler system of

differential equations.

In this paper, an attempt is made to find a representation of solutions of nonlinear

and nonstationary Itô-Doob type stochastic system of differential equations in terms

of solutions processes of smoother system of Itô-Doob type stochastic differentials.
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The organization is as follows: In section 2, the problem is formulated. In section 3,

several auxiliary results are established for unperturbed system of nonlinear Itô-Doob

type stochastic differential equations. In section 4, a variation of constants formula

is established. In section 5, examples are given to illustrate the usefulness of the

methods. The Developed results are a convenient tool in discussing the properties of

solutions of the perturbed system.

2. PROBLEM FORMULATION

Let us formulate a problem. We consider a mathematical description of a non-

linear dynamic phenomenon under randomly varying environmental perturbations

described by a complex system of nonlinear nonstationary Itô-Doob type systems of

stochastic differential equations:

(2.1) dy = c(t, y)dt+ Σ(t, y)dw(t), y(t0) = x0,

where y ∈ Rn, c ∈ C[J × Rn, Rn], Σ ∈ C[J × Rn, Rn×m], and C[J × Rn, Rn] (C[J ×

Rn, Rn×m]) stands for a class of continuous functions defined on J × Rn into Rn

(Rn×m); n and m are positive integers ; and J = [t0, t0 + a) for some positive real

number a; x0 is an n-dimensional random variable defined on a complete probability

space (Ω,F, P ); w(t) = (w1(t), w2(t), . . . , wm(t))T is an m-dimensional normalized

Wiener process with independent increments; x0 and w(t) are mutually independent

for each t ≥ t0. We decompose complex system of stochastic differential equations

(2.1) into two parts. The decomposition is based on the decomposition of its drift

and diffusion rate functions as follows:

c(t, y) = f(t, y) + F (t, y)

and

Σ(t, y) = σ(t, y) + Υ(t, y)

where the rate functions f(t, y) and σ(t, y) are considered to be simpler form in the

sense of better structure and conceptually smooth. Thus, (2.1) can be rewritten as

(2.2)

dy = [f(t, y) + F (t, y)]dt+ [σ(t, y) + Υ(t, y)]dw(t)

= [f(t, y) + F (t, y)]dt+
∑m

l=1[σ
l(t, y) + Υl(t, y)]dwl(t), y(t0) = x0.

The simpler form of mathematical model of dynamic process corresponding to

(2.2) is described by

(2.3)
dx = f(t, x)dt+ σ(t, x)dw(t)

= f(t, x)dt+
∑m

l=1 σ
l(t, x)dwl(t), x(t0) = x0.

Systems (2.2) and (2.3) are considered to be perturbed and unperturbed systems of

stochastic differential equations, respectively.
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Remark 2.1. In the absence of any reasonable decomposition of the type (2.2), it is

always possible to consider the above decompositions with F (t, y) = c(t, y) − f(t, y)

and Υ(t, y) = Σ(t, y) − σ(t, y) for any suitable choice of rate functions f(t, y) and

σ(t, y).

3. AUXILIARY RESULTS

Our main objective is to develop the variation of constants formula with respect

to (2.3) and its perturbed system (2.2). For this purpose, first we investigate the

Itô-Doob stochastic partial differentials of solution process x(t, t0, x0) of unperturbed

system (2.3) with respect to initial conditions (t0, x0).

In the following, under certain smoothness assumption on the rate functions of

unperturbed stochastic system of differential equations (2.3), we establish the second

order differentials of the solution process of (2.3) with respect to (t0, x0). In this

section, by recalling the existence of differential of solution process of unperturbed

system of stochastic differential equations with respect to initial state, we first es-

tablish the existence of second order differential with respect to x0. Moreover, as

the byproduct, we show that the differentials satisfy Itô-Doob type of stochastic non

homogeneous matrix differential equation.

Lemma 3.1. Assume that σ and f in (2.3) are twice continuously differentiable with

respect to x for fixed t, and fxx , σxx are bounded with respect to x. Furthermore, the

initial value problem (2.3) has a unique solution process x(t, t0, x0) existing for t ≥ t0.

Then

(3.1)
∂

∂x0

Φ(t, t0, x0) =
∂2

∂x2
0

x(t, t0, x0)

exists, and is the solution of the following Itô-Doob type nonhomogeneous stochastic

matrix differential equation:

(3.2) dY = [H(t, t0, x0)Y +P (t)]dt+

m
∑

l=1

[Γl(t, t0, x0)Y +Q(t)]dwl(t), Y (t0) = 0;

where the n×n matricesH(t, t0, x0) = fx(t, x(t, t0, x0)) and Γl(t, t0, x0) = σl
x(t, x(t, t0, x0))

are continuous;

P (t) =

(

∂2

∂x2
f(t, x(t)) ⊗

n
∑

k=1

Φ(t, t0, x0)ek

)

Φ(t, t0, x0);

Q(t) =

(

∂2

∂x2
σl(t, x(t)) ⊗

n
∑

k=1

Φ(t, t0, x0)ek

)

Φ(t, t0, x0),

Φ(t0, t0, x0) is the n× n identity matrix and ⊗ is the tensor product of two matrices.
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Proof. From the assumptions of the lemma, we conclude that Φ(t, t0, x0) = ∂
∂x0

x(t, t0, x0)

exists and is the solution of the Itô-Doob type stochastic matrix differential equations

along the solution process x(t, t0, x0) of (2.3)[11, 23]:

(3.3) dY = H(t, t0, x0)Y dt+ Γ(t, t0, x0)Y dw(t), Y (t0) = In×n.

In the following, we show that ∂2

∂x2

0

x(t, t0, x0) exists and it satisfies the stochastic

differential equation (3.2). For this purpose, we consider the following: For small

λ > 0, let ∆x0 =
∑n

k=1 λek ; where ek = (0, 0, . . . , 1, . . . , 0)T whose k-th component is

1. Moreover, let Φ(t, λ) = Φ(t, t0, x0+∆x0) and Φ(t) = Φ(t, t0, x0) be solutions of (3.3)

through (t0, x0 + ∆x0) and (t0, x0), respectively, and x(t, λ) = x(t, t0, x0 + ∆x0) and

x(t) = x(t, t0, x0) be solutions of (2.3) through (t0, x0 +∆x0) and (t0, x0) respectively.

Under the assumptions of Lemma 3.1 and applying Lemma 6.1[11], we conclude that

(3.4) lim
λ→0

Φ(t, λ) = Φ(t) uniformly on J.

We set

(3.5) ∆Φ(t, λ) = Φ(t, λ) − Φ(t), ∆Φ(t0, λ) = 0.

Let R(θ) = ∂
∂x
f(t, x(t, t0, x0 +θ∆x0)) with 0 ≤ θ ≤ 1. From the assumptions, we note

that R is continuously differentiable with respect to θ, and hence

(3.6)
d

dθ
R(θ) = fxx(t, x(t, t0, x0 + θ∆x0)) ⊗ (Φ(t, t0, x0 + θ∆x0)∆x0).

By integrating both sides of (3.6) with respect to θ over an interval [0,1], we have

R(1) − R(0) =

∫ 1

0

fxx(t, x(t, t0, x0 + θ∆x0)) ⊗ (Φ(t, t0, x0 + θ∆x0)∆x0)dθ.

This together with the fact that R(1) = ∂
∂x
f(t, x(t, λ)) and R(0) = ∂

∂x
f(t, x(t)) yields

∂

∂x
f(t, x(t, λ)) −

∂

∂x
f(t, x(t)) = J(t, x(t, λ),Φ(t, λ)),

where

(3.7) J(t, x(t, λ),Φ(t, λ)) =

∫ 1

0

fxx(t, x(t, t0, x0+θ∆x0))⊗(Φ(t, t0, x0+θ∆x0)∆x0)dθ

Similarly, by setting

G(θ) =
m
∑

l=1

∂

∂x
σl(t, x(t, t0, x0 + θ∆x0))

and using the continuous differentiability of G with respect to θ and chain rule, we

have

(3.8)
d

dθ
G(θ) =

m
∑

l=1

σl
xx(t, x(t, t0, x0 + θ∆x0)) ⊗ (Φ(t, t0, x0 + θ∆x0)∆x0).
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By integrating both sides of (3.8) with respect to θ over an interval [0,1], we get

G(1) −G(0) =
m
∑

l=1

∫ 1

0

σl
xx(t, x(t, t0, x0 + θ∆x0)) ⊗ (Φ(t, t0, x0 + θ∆x0)∆x0)dθ.

This together with the fact thatG(1) =
∑m

l=1
∂
∂x
σl(t, x(t, λ)) andG(0) =

∑m

l=1
∂
∂x
σl(t, x(t))

yields
m
∑

l=1

[
∂

∂x
σl(t, x(t, λ)) −

∂

∂x
σl(t, x(t))] =

m
∑

l=1

Λl(t, x(t, λ),Φ(t, λ)),

where

(3.9) Λl(t, x(t),Φ(t, λ)) =

∫ 1

0

σl
xx(t, x(t, t0, x0 +θ∆x0))⊗(Φ(t, t0, x0 +θ∆x0)∆x0)dθ.

Note that the integrals in (3.7) and (3.9) are cauchy-Riemann integrals. Using the

hypotheses of the Lemma, n×n matrices J(t, x(t, λ),Φ(t, λ)) and Λl(t, x(t, λ),Φ(t, λ))

are continuous in (t, x, λ) for l = 1, 2, 3, . . . , m. Furthermore, from (3.7), (3.9) and

the bounded convergence theorem[24], we obtain

(3.10) lim
λ→0

J(t, x(t, λ),Φ(t, λ))

λ
= fxx(t, x(t, t0, x0)) ⊗ (

n
∑

k=1

Φ(t, t0, x0)ek)

and

(3.11) lim
λ→0

Λl(t, x(t, λ),Φ(t, λ))

λ
= σl

xx(t, x(t, t0, x0)) ⊗ (

n
∑

k=1

Φ(t, t0, x0)ek).

From (3.5), using the fact that Φ(t, λ) and Φ(t) are solutions of (3.3), we obtain

d(Φ(t, λ) − Φ(t)) = dΦ(t, λ) − dΦ(t)

= fx(t, x(t, λ))Φ(t, λ)dt+
m
∑

l=1

σl
x(t, x(t, λ))Φ(t, λ)dwl(t)

− [fx(t, x(t))Φ(t)dt+

m
∑

l=1

σl
x(t, x(t))Φ(t)dwl(t)]

= [fx(t, x(t, λ))Φ(t, λ) − fx(t, x(t))Φ(t)]dt

+
m
∑

l=1

[σl
x(t, x(t, λ))Φ(t, λ) − σl

x(t, x(t))Φ(t)]dwl(t).(3.12)

By adding and subtracting fx(t, x(t))Φ(t, λ)dt and
∑m

l=1 σ
l
x(t, x(t))Φ(t, λ)dwl(t) in

(3.12), we obtain

d(Φ(t, λ) − Φ(t)) = [fx(t, x(t, λ))Φ(t, λ) − fx(t, x(t))Φ(t, λ)

+fx(t, x(t))Φ(t, λ) − fx(t, x(t))Φ(t)]dt

+[
m
∑

l=1

σl
x(t, x(t, λ))Φ(t, λ)dwl(t) −

m
∑

l=1

σl
x(t, x(t))Φ(t, λ)dwl(t)
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+

m
∑

l=1

σl
x(t, x(t))Φ(t, λ)dwl(t) −

m
∑

l=1

σl
x(t, x(t))Φ(t)dwl(t)]

= [fx(t, x(t))(Φ(t, λ) − Φ(t)) + (fx(t, x(t, λ)) − fx(t, x(t)))Φ(t, λ)]dt

+

m
∑

l=1

[σl
x(t, x(t))(Φ(t, λ) − Φ(t))

+(σl
x(t, x(t, λ)) − σl

x(t, x(t)))Φ(t, λ)]dwl(t).

This, together with (3.7), (3.9) and the definitions of ∆Φ(t, λ) in (3.5), yields

d(
∆Φ(t, λ)

λ
) = [fx(t, x(t))

∆Φ(t, λ)

λ
+
J(t, x(t, λ),Φ(t, λ))

λ
Φ(t, λ)]dt(3.13)

+
m
∑

l=1

[σl
x(t, x(t))

∆Φ(t, λ)

λ
+

Λl(t, x(t, λ),Φ(t, λ))

λ
Φ(t, λ)]dwl(t).

(3.14)

From (3.10) and (3.11), system (3.2) can be considered as the nominal system

corresponding to (3.13) with initial data Y (t0) = 0. It is obvious that the initial

value problem (3.13) satisfies all the hypothesis of Lemma 6.1 [11], and hence by its

application, we have

(3.15) lim
λ→0

∆Φ(t, λ)

λ
= Y (t) uniformly on J,

where Y (t) is the solution process of (3.13). Because of (3.4) and (3.5), we note that

the limit of ∆Φ(t,λ)
λ

in (3.13) is equivalent to ∂
∂x0

Φ(t, t0, x0). Thus ∂
∂x0

Φ(t, t0, x0) is the

solution process of (3.2). Moreover, ∂
∂x0

Φ(t, t0, x0) = ∂2

∂x2

0

x(t, t0, x0).

Example 3.1. Let us consider a scalar nonlinear unperturbed stochastic differential

equation:

(3.16) dx = αx(ρ− x)dt+ βxdw(t), x(t0) = x0.

where α, β and ρ are any constant. Find ∂
∂x0

x(t, t0, x0) and ∂2

∂x2

0

x(t, t0, x0).

Solution: We note that f(t, x) = αx(ρ − x) and σ(t, x) = βx are continuously

differentiable with respect to x. In fact ∂
∂x
f(t, x) = α(ρ − 2x), ∂2

∂x2 f(t, x) = −2αx,
∂
∂x
σ(t, x) = β, and ∂2

∂x2σ(t, x) = 0. The closed form solution of (3.16) is

x(t, t0, x0) =
[

Φ(t, t0)x
−1
0 + α

∫ t

t0

Φ(t, s)ds)
]

−1

,

where Φ(t, t0) = exp[−(αρ− 1
2
β2)(t− t0)− β(w(t)−w(t0))]. The partial derivative of

solution processes x(t, t0, x0) with respect to x0 is

(3.17)
∂

∂x0
x(t, t0, x0) =

Φ(t, t0)

(Φ(t, t0) + αx0

∫ t

t0
Φ(t, s)ds)2



NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 439

and

(3.18)
∂2

∂x2
0

x(t, t0, x0) =
−2αΦ(t, t0)

∫ t

t0
Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t

t0
Φ(t, s)ds)3

.

Moreover, ∂2

∂x2

0

x(t, t0, x0) satisfies the following matrix differential equation:

dY =
[[

α(ρ− 2
[

Φ(t, t0)x
−1
0 + α

∫ t

t0

Φ(t, s)ds
]

−1)]

(3.19)

× Y − 2αΦ2(t, t0)]dt+ βY dw(t), Y (t0) = 0;

The following result shows the existence of partial differential of solution process

of (2.3) with respect to t0.

Lemma 3.2. Let us assume that all the hypothesis of Lemma 3.1 be satisfied. Let

x(t, t0, x0) be the solution process of (2.3) existing for t ≥ t0. Then

∂t0x(t, t0, x0)

exists and:

∂t0x(t, t0, x0) =
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0)σ

l(t0, x0)σ
l
j(t0, x0)

)

n×1

dt0

+Φ(t, t0, x0)[

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0) − f(t0, x0)]dt0

−

m
∑

l=1

Φ(t, t0, x0)σ
l(t0, x0)dwl(t0)(3.20)

with

∂t0x(t0, t0, x0) =

[

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0) − f(t0, x0)

]

dt0(3.21)

−

m
∑

l=1

σl(t0, x0)dwl(t0)

Proof. Let ∆t0 = λ > 0 be a positive increment to t0, and define

(3.22) ∆x(t, λ) = x(t, t0 + λ, x0) − x(t, t0, x0)

where x(t, t0 +λ, x0) and x(t, t0, x0) are solution processes of (2.3) through (t0 +λ, x0)

and (t0, x0), respectively. Let

∆x(t0) = x(t0 + λ, t0, x0) − x(t0, t0, x0).

Set R(θ) = x(t, t0+λ, x0+θ∆x(t0)). It is obvious that R is continuously differentiable

with respect to θ, and hence

d

dθ
R(θ) =

∂

∂x0

x(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)(3.23)
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= Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0).

By integrating both sides of (3.23) with respect to θ over an interval [0,1], we have

R(1) −R(0) =

∫ 1

0

Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)dθ.

This, together with the fact that R(1) = x(t, t0 + λ, x(t0 + λ, t0, x0)) and R(0) =

x(t, t0 + λ, x0), yields

(3.24)

x(t, t0 + λ, x(t0 + λ, t0, x0))− x(t, t0 + λ, x0) =

∫ 1

0

Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)dθ.

Because of the uniqueness of solution of (2.3) we have x(t, t0, x0) = x(t, t0 + λ, x(t0 +

λ, t0, x0)) and equation (3.24) can be written as

(3.25) x(t, t0 + λ, x0) − x(t, t0, x0) = −

∫ 1

0

Φ(t, t0 + λ, x0 + θ∆x(t0))∆x(t0)dθ.

By adding and subtracting Φ(t, t0 + λ, x0)∆x(t0) , Φ(t, t0 + λ, x(t0 + λ, t0, x0))∆x(t0)

and Φ(t, t0, x0)∆x(t0) in (3.25) and using the fact that

(3.26) Φ(t, t0, x0) = Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0),

we have

∆x(t, λ) = −

∫ 1

0

[Φ(t, t0 + λ, x0 + θ∆x(t0)) − Φ(t, t0 + λ, x0)]∆x(t0)dθ

(3.27)

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0)) − Φ(t, t0 + λ, x0)]∆x(t0)

+ [Φ(t, t0, x0) − Φ(t, t0 + λ, x(t0 + λ, t0, x0))]∆x(t0) − Φ(t, t0, x0)∆x(t0)

= −

∫ 1

0

[Φ(t, t0 + λ, x0 + θ∆x(t0)) − Φ(t, t0 + λ, x0)]∆x(t0)dθ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0)) − Φ(t, t0 + λ, x0)]∆x(t0)

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0)

− Φ(t, t0 + λ, x(t0 + λ, t0, x0))]∆x(t0)

− Φ(t, t0, x0)∆x(t0)

= −

∫ 1

0

[Φ(t, t0 + λ, x0 + θ∆x(t0)) − Φ(t, t0 + λ, x0)]∆x(t0)dθ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0)) − Φ(t, t0 + λ, x0)]∆x(t0)

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0) − Φ(t0, t0, x0))]∆x(t0)

− Φ(t, t0, x0)∆x(t0).
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We set G(ψ) = Φ(t, t0 + λ, x0 + ψθ∆x(t0)) for 0 ≤ ψ ≤ 1. It is obvious that G is

continuously differentiable with respect to ψ, and hence

(3.28)
d

dψ
G(ψ) =

∂

∂x0
Φ(t, t0 + λ, x0 + ψθ∆x(t0)) ⊗ (θ∆x(t0))

By integrating both sides of (3.28) with respect to ψ over an interval [0,1], we have

G(1) −G(0) =

∫ 1

0

∂

∂x0
Φ(t, t0 + λ, x0 + ψθ∆x(t0)) ⊗ (θ∆x(t0))dψ.

This together with G(1) = Φ(t, t0 +λ, x0 +θ∆x(t0)) and G(0) = Φ(t, t0 +λ, x0) yields

(3.29)

Φ(t, t0+λ, x0+θ∆x(t0))−Φ(t, t0+λ, x0) =

∫ 1

0

∂

∂x0
Φ(t, t0+λ, x0+ψθ∆x(t0))⊗(θ∆x(t0))dψ

Similarly, by setting g(β) = Φ(t, t0 + λ, x0 + β∆x(t0)) for 0 ≤ β ≤ 1, and repeating

the previous argument, we obtain

(3.30)
d

dβ
g(β) =

∂

∂x0
Φ(t, t0 + λ, x0 + β∆x(t0)) ⊗ ∆x(t0).

This together with g(1) = Φ(t, t0 + λ, x0 + ∆x(t0)) and g(0) = Φ(t, t0 + λ, x0) yields

(3.31)

Φ(t, t0+λ, x0+∆x(t0))−Φ(t, t0+λ, x0) =

∫ 1

0

∂

∂x0

Φ(t, t0+λ, x0+β∆x(t0))⊗∆x(t0)dβ.

Using (3.29) and (3.31), (3.27) reduces to

∆x(t, λ) = −

∫ 1

0

∫ 1

0

∂

∂x0
Φ(t, t0 + λ, x0 + ψθ∆x(t0))

(3.32)

⊗ (θ∆x(t0))∆x(t0)dψdθ

+

∫ 1

0

∂

∂x0

Φ(t, t0 + λ, x0 + β∆x(t0)) ⊗ ∆x(t0)∆x(t0)dβ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0) − Φ(t0, t0, x0))]∆x(t0)

− Φ(t, t0, x0)∆x(t0).

Adding and subtracting ∂
∂x0

Φ(t, t0 +λ, x0)⊗ (θ∆x(t0))∆x(t0) and ∂
∂x0

Φ(t, t0 +λ, x0)⊗

(∆x(t0))∆x(t0) in (3.32) yields,

∆x(t, λ) = −

∫ 1

0

∫ 1

0

∂

∂x0
[Φ(t, t0 + λ, x0 + ψθ∆x(t0))

(3.33)

− Φ(t, t0 + λ, x0)] ⊗ (θ∆x(t0))∆x(t0)dψdθ

+

∫ 1

0

∂

∂x0
[Φ(t, t0 + λ, x0 + β∆x(t0)) − Φ(t, t0 + λ, x0)] ⊗ ∆x(t0)∆x(t0)dβ

+ [Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0) − Φ(t0, t0, x0))]∆x(t0)



442 T. ZERIHUN AND G. S. LADDE

+
1

2

∂

∂x0
Φ(t, t0 + λ, x0) ⊗ ∆x(t0)∆x(t0) − Φ(t, t0, x0)∆x(t0).

Using the bounded convergence theorem[28], the concept of Itô-Doob type differential

and sufficiently small increment ∆t0 to t0, (3.33) reduces to

∂t0x(t, t0, x0) = [Φ(t, t0, x0)dΦ(t0)]dx(t0)(3.34)

+
1

2

∂

∂x0
Φ(t, t0, x0) ⊗ dx(t0)dx(t0) − Φ(t, t0, x0)dx(t0)

= Φ(t, t0, x0)

m
∑

l=1

σl
x(t0, x0)dwl(t0)

m
∑

l=1

σl(t0, x0)dwl(t0)

+
1

2

∂

∂x0
Φ(t, t0, x0) ⊗

m
∑

l=1

σl(t0, x0)dwl(t0)

m
∑

l=1

σl(t0, x0)dwl(t0)

− Φ(t, t0, x0)[f(t0, x0)dt0 +

m
∑

l=1

σl(t0, x0)dwl(t0)]

=
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, t0, x0)σ
l(t0, x0)σ

l
j(t0, x0)

)

n×1

dt0

+ Φ(t, t0, x0)[
m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0) − f(t0, x0)]dt0

−

m
∑

l=1

Φ(t, t0, x0)σ
l(t0, x0)dwl(t0)

This shows that ∂t0x(t, t0, x0) exists and it is represented as in (3.20). This together

with t = t0 and (3.2) yields (3.21).

Example 3.2. Let us consider a scalar linear unperturbed stochastic differential

equation:

(3.35) dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0,

where f and σ are any differentiable functions defined on J = [t0, t0+a] into R, where

a > 0. Find ∂t0x(t, t0, x0).

Solution: Note that f(t, x) = f(t)x and σ(t, x) = σ(t)x are continuously dif-

ferentiable with respect to x. Moreover, ∂
∂x
f(t, x) = f(t) and ∂

∂x
σ(t, x) = σ(t). The

closed form solution of (3.35) is given by

x(t, t0, x0) = Φ(t, t0)x0.

Let us consider the following:

x(t, t0 + λ, x0) − x(t, t0, x0)(3.36)

= x(t, t0 + λ, x0) − x(t, t0 + λ, x(t0 + λ, t0, x0))

= Φ(t, t0 + λ)x0 − Φ(t, t0 + λ)x(t0 + λ, t0, x0)
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= −Φ(t, t0 + λ)[x(t0 + λ, t0, x0) − x0]

= −Φ(t, t0 + λ)∆x(t0)

= −[Φ(t, t0 + λ) − Φ(t, t0) + Φ(t, t0)]∆x(t0)

= −[Φ(t, t0 + λ) − Φ(t, t0)]∆x(t0) − Φ(t, t0)∆x(t0)

= [Φ(t, t0) − Φ(t, t0 + λ)]∆x(t0) − Φ(t, t0)∆x(t0)

= [Φ(t, t0 + λ)Φ(t0 + λ, t0) − Φ(t, t0 + λ)]∆x(t0) − Φ(t, t0)∆x(t0)

= Φ(t, t0 + λ)[Φ(t0 + λ, t0) − I]∆x(t0) − Φ(t, t0)∆x(t0)

= Φ(t, t0 + λ)∆Φ(t0, t0)∆x(t0) − Φ(t, t0)∆x(t0).

Using the bounded convergence theorem [28], the concept of Itô-Doob type differential

and sufficiently small increment λ to t0, (3.36) reduces to

∂t0x(t, t0, x0) = Φ(t, t0)dΦ(t0, t0)dx(t0) − Φ(t, t0)dx(t0)(3.37)

= Φ(t, t0)[f(t0)Φ(t0, t0)dt0 + σ(t0)Φ(t0, t0)dw(t0)]

quad× [f(t0)x0dt0 + σ(t0)x0dw(t0)]

− Φ(t, t0)[f(t0)x0dt0 + σ(t0)x0dw(t0)]

= Φ(t, t0)σ(t0)σ(t0)x0dt0 − Φ(t, t0)[f(t0)x0dt0 + σ(t0)x0dw(t0)]

= Φ(t, t0)[σ
2(t0) − f(t0)]x0dt0 − Φ(t, t0)σ(t0)x0dw(t0).

Example 3.3. Let us consider a scalar linear perturbed stochastic differential equa-

tion:

(3.38) dx = [f(t)x+ p(t)]dt+ [σ(t)x+ q(t)]dw(t), x(t0) = x0,

where f , σ, p and q are any differentiable functions defined on J = [t0, t0 + a] into R,

where a > 0. Find ∂t0x(t, t0, x0).

Solution: Note that f(t, x) = f(t)x+p(t) and σ(t, x) = σ(t)x+q(t) are continu-

ously differentiable with respect to x. Moreover, ∂
∂x
f(t, x) = f(t) and ∂

∂x
σ(t, x) = σ(t).

Using the application of lemma (3.2) we obtain

∂t0x(t, t0, x0) = Φ(t, t0)[(σ
2(t0) − f(t0))x0 + σ(t0)q(t0) − p(t0)]dt0(3.39)

−Φ(t, t0)[σ(t0)x0 + q(t0)]dw(t0).

In the following, we state and prove the existence of Itô-Doob type mixed partial

differentials of solution process of (2.3).

Lemma 3.3. Assume that all the hypothesis of Lemma 3.1 hold. Let x(t, t0, x0)

be the solution process of (2.3) existing for t ≥ t0. Then the mixed Itô-Doob type

partial differentials ∂x0
(∂t0x(t, t0, x0)) and ∂t0(∂x0

x(t, t0, x0)) exists and they are equal.
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Moreover,

∂x0
(∂t0x(t, t0, x0)) = −

[

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0)σ

l(t0, x0)σ
l
j(t0, x0)

)

n×1

(3.40)

+

m
∑

l=1

Φ(t, t0, x0)σ
l
x(t0, x0)σ

l(t0, x0)
]

dt0

With initial condition:

(3.41) ∂x0
(∂t0x(t0)) = −

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0)dt0

Proof. Let ∆x(t0) = x(t0 + λ, t0, x0) − x(t0, t0, x0). Using (3.26), Lemma (3.1) and

the continuous dependence of solution process of (3.1), we examine the following

differential:

∂x0
x(t, t0 + λ, x0) − ∂x0

x(t, t0, x0)(3.42)

=
∂

∂x0
x(t, t0 + λ, x0)dx0 +

1

2
(
∂

∂x0
Φ(t, t0 + λ, x0) ⊗ dx0)dx0

−[
∂

∂x0
x(t, t0, x0)dx0 +

1

2
(
∂

∂x0
Φ(t, t0, x0) ⊗ dx0)dx0]

= [Φ(t, t0 + λ, x0) − Φ(t, t0, x0)]dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0) − Φ(t, t0, x0)) ⊗ dx0]dx0.

Since Φ(t, t0, x0) = Φ(t, t0+λ, x(t0+λ, t0, x0))Φ(t0+λ, t0, x0), by adding and subtract-

ing Φ(t, t0 + λ, x(t0 + λ, t0, x0))dx0 in (3.42), using generalized mean value theorem

and algebraic manipulations, we get

∂x0
x(t, t0 + λ, x0) − ∂x0

x(t, t0, x0)

(3.43)

= [Φ(t, t0 + λ, x0) − Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0)]dx0

+
1

2
[
∂

∂x0
(Φ(t, t0 + λ, x0) − Φ(t, t0, x0)) ⊗ dx0]dx0

= [Φ(t, t0 + λ, x0) − Φ(t, t0 + λ, x(t0 + λ, t0, x0)) + Φ(t, t0 + λ, x(t0 + λ, t0, x0))

− Φ(t, t0 + λ, x(t0 + λ, t0, x0))Φ(t0 + λ, t0, x0)]dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0) − Φ(t, t0, x0)) ⊗ dx0]dx0

= −[

∫ 1

0

∂

∂x0

Φ(t, t0 + λ, x0 + θ∆x(t0)) ⊗ ∆x(t0)dθ]dx0

− Φ(t, t0 + λ, x(t0 + λ, t0, x0))(Φ(t0 + λ, t0, x0) − In×n)dx0

+
1

2
[
∂

∂x0

(Φ(t, t0 + λ, x0) − Φ(t, t0, x0)) ⊗ dx0]dx0
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Again by adding and subtracting ∂
∂x0

Φ(t, t0 + λ, x0) ⊗ ∆x(t0)dx0 in (3.43), we get

∂x0
x(t, t0 + λ, x0) − ∂x0

x(t, t0, x0)

(3.44)

= −[

∫ 1

0

∂

∂x0

(Φ(t, t0 + λ, x0 + θ∆x(t0)) − Φ(t, t0 + λ, x0)) ⊗ ∆x(t0)dθ]dx0

− Φ(t, t0 + λ, x(t0 + λ, t0, x0))∆Φ(t0)dx0 −
∂

∂x0

Φ(t, t0 + λ, x0)) ⊗ ∆x(t0)dx0

+
1

2
[
∂

∂x0
(Φ(t, t0 + λ, x0) − Φ(t, t0, x0)) ⊗ dx0]dx0

For sufficiently small ∆t0 = λ > 0, uniform convergence theorem, solution process of

Itô-Doob type stochastic differential equations (2.3) and (3.3), Itô-Doob calculus and

continuous dependence of solutions with respect to initial conditions, we obtain

∂t0(∂x0
x(t, t0, x0)) = −

[

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0)σ

l(t0, x0)σ
l
j(t0, x0)

)

n×1

(3.45)

+

m
∑

l=1

Φ(t, t0, x0)σ
l
x(t0, x0)σ

l(t0, x0)
]

dt0.

On the other hand, using (3.20) we examine the following differential

∂t0x(t, t0, x0 + ∆x0) − ∂t0x(t, t0, x0)

(3.46)

= [
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0 + ∆x0)σ

l(t0, x0 + ∆x0)σ
l
j(t0, x0 + ∆x0)

)

n×1

+ Φ(t, t0, x0 + ∆x0)[
m
∑

l=1

σl
x(t0, x0 + ∆x0)σ

l(t0, x0 + ∆x0) − f(t0, x0 + ∆x0)]]dt0

−
m
∑

l=1

Φ(t, t0, x0 + ∆x0)σ
l(t0, x0 + ∆x0)dwl(t0)

− [[
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0)σ

l(t0, x0)σ
l
j(t0, x0)

)

n×1

+ Φ(t, t0, x0)[

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0) − f(t0, x0)]]dt0 −

m
∑

l=1

Φ(t, t0, x0)σ
l(t0, x0)dwl(t0)]

= [
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, t0, x0 + ∆x0)σ
l(t0, x0 + ∆x0)σ

l
j(t0, x0 + ∆x0)

)

n×1

−
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, t0, x0)σ
l(t0, x0)σ

l
j(t0, x0)

)

n×1

]dt0
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+ Φ(t, t0, x0 + ∆x0)[

m
∑

l=1

σl
x(t0, x0 + ∆x0)σ

l(t0, x0 + ∆x0) − f(t0, x0 + ∆x0)]dt0

− Φ(t, t0, x0)[

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0) − f(t0, x0)]dt0

−

m
∑

l=1

Φ(t, t0, x0 + ∆x0)σ
l(t0, x0 + ∆x0)dwl(t0) +

m
∑

l=1

Φ(t, t0, x0)σ
l(t0, x0)dwl(t0).

By adding and subtracting Φ(t, t0, x0)
∑m

l=1 σ
l(t0, x0 + ∆x0)dwl(t0) in (3.46) yields

∂t0x(t, t0, x0 + ∆x0) − ∂t0x(t, t0, x0)

(3.47)

= [
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0 + ∆x0)σ

l(t0, x0 + ∆x0)σ
l
j(t0, x0 + ∆x0)

)

n×1

−
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, t0, x0)σ

l(t0, x0)σ
l
j(t0, x0)

)

n×1

]dt0

+ Φ(t, t0, x0 + ∆x0)[

m
∑

l=1

σl
x(t0, x0 + ∆x0)σ

l(t0, x0 + ∆x0) − f(t0, x0 + ∆x0)]dt0

− Φ(t, t0, x0)[

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0) − f(t0, x0)]dt0

− [Φ(t, t0, x0 + ∆x0) − Φ(t, t0, x0)]
m
∑

l=1

σl(t0, x0 + ∆x0)dwl(t0)

− Φ(t, t0, x0)
m
∑

l=1

(σl(t0, x0 + ∆x0) − σl(t0, x0))dwl(t0)

From the continuity of rate coefficient matrices and the continuous dependence

of solution process, we have

∂x0
(∂t0x(t, t0, x0)) = −[

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, t0, x0)σ
l(t0, x0)σ

l
j(t0, x0)

)

n×1

(3.48)

+
m
∑

l=1

Φ(t, t0, x0)σ
l
x(t0, x0)σ

l(t0, x0)]dt0

This establishes the proof of (3.40). Since ∂
∂x0

Φ(t0, t0, x0) = 0 and Φ(t0, t0, x0) = In×n

at t = t0, we have

(3.49) ∂x0
(∂t0x(t0)) = −

m
∑

l=1

σl
x(t0, x0)σ

l(t0, x0)dt0.

This completes the proof of the Lemma.
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Example 3.4. Let us consider a scalar linear unperturbed stochastic differential

equation:

(3.50) dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0,

where f and σ are any differentiable functions defined on J = [t0, t0+a] into R, where

a > 0. Find ∂x0
(∂t0x(t, t0, x0)).

Solution: Note that f(t, x) = f(t)x and σ(t, x) = σ(t)x are continuously dif-

ferentiable with respect to x. Moreover, ∂
∂x
f(t, x) = f(t) and ∂

∂x
σ(t, x) = σ(t). The

closed form solution of (3.50) is given by

x(t, t0, x0) = Φ(t, t0)x0.

Using (3.26), Lemma (3.1) and the continuous dependence of solution process of

(3.1), we examine the following differential:

∂x0
x(t, t0 + λ, x0) − ∂x0

x(t, t0, x0)(3.51)

= [
∂

∂x0
x(t, t0 + λ, x0) −

∂

∂x0
x(t, t0 + λ, x(t0 + λ, t0, x0))]dx0

= [Φ(t, t0 + λ) − Φ(t, t0)]dx0

= [Φ(t, t0 + λ) − Φ(t, t0 + λ)Φ(t0 + λ, t0)]dx0

= −Φ(t, t0 + λ)[Φ(t0 + λ, t0) − Φ(t0, t0)]dx0

= −Φ(t, t0 + λ)∆Φ(t0, t0)dx0.

Using the bounded convergence theorem[28], the concept of Itô-Doob type differential

and sufficiently small increment λ to t0, (3.51) reduces to

∂t0(∂x0
x(t, t0, x0))

(3.52)

= −Φ(t, t0)dΦ(t0, t0)dx0

= −Φ(t, t0)[f(t0)Φ(t0, t0)dt0 + σ(t0)Φ(t0, t0)dw(t0)][f(t0)x0dt0 + σ(t0)x0dw(t0)]

= −Φ(t, t0)σ
2(t0)x0dt0.

4. METHOD OF VARIATION OF CONSTANTS FORMULA

In this section we shall establish the method of variation of constants formula

with respect to (2.3) and its perturbed system (2.2).

Theorem 4.1. Let the assumption of Lemma 3.1 be satisfied. Let y(t, t0, x0) and

x(t, t0, x0) be solution processes of (2.2) and (2.3), respectively, through the same
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initial data (t0, x0), for all t ≥ t0. Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[

−
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Υl
j(s, y(s))

)

n×1

(4.1)

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))Υ
l(s, y(s))σl

j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Υ

l(s, y(s))Υl
j(s, y(s))

)

n×1

+ Φ(t, s, y(s))[F (s, y(s))−

m
∑

l=1

σl
x(s, y(s))Υ

l(s, y(s))]
]

ds

+

m
∑

l=1

∫ t

t0

Φ(t, s, y(s))Υl(s, y(s))dwl(s).

Proof. From the application of Lemmas 3.1, 3.2, 3.3 and the Itô-Doob differential

formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0
x(t, s, y(s)) + ∂x0

(∂t0x(t, s, y(s)))

(4.2)

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗ dy)dy

=
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))σl

j(s, y(s))

)

n×1

ds

+ Φ(t, s, y(s))(
m
∑

l=1

σl
x(s, y(s))σ

l(s, y(s)) − f(s, y(s)))ds

− Φ(t, s, y(s))
m
∑

l=1

σl(s, y(s))dwl(s) + Φ(t, s, y(s))dy(s)

−

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))(σl
j(s, y(s)) + Υl

j(s, y(s)))

)

n×1

ds

− Φ(t, s, y(s))

m
∑

l=1

σl
x(s, y(s))(σ

l(s, y(s)) + Υl(s, y(s)))ds

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

σl(s, y(s))dwl(s)

m
∑

l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s)) ⊗
m
∑

l=1

Υl(s, y(s))dwl(s)
m
∑

l=1

σl(s, y(s))dwl(s)
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+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

σl(s, y(s))dwl(s)

m
∑

l=1

Υl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

Υl(s, y(s))dwl(s)

m
∑

l=1

Υl(s, y(s))dwl(s)

By simplifying (4.2), we get

dsx(t, s, y(s)) =
[

−
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))Υl

j(s, y(s))

)

n×1

(4.3)

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Υ

l(s, y(s))σl
j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Υ

l(s, y(s))Υl
j(s, y(s))

)

n×1

+ Φ(t, s, y(s))[F (s, y(s))−

m
∑

l=1

σl
x(s, y(s))Υ

l(s, y(s))]
]

ds

+
m
∑

l=1

Φ(t, s, y(s))Υl(s, y(s))dwl(s).

Since the right hand side of (4.3) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (4.1).

Corollary 4.2. Let the assumption of Lemma 3.1 be satisfied, except that only c(t, y)

in (2.2) can be decomposed. Let y(t, t0, x0) and x(t, t0, x0) be solution processes of

(2.2) and (2.3), respectively, through the same initial data (t0, x0), for all t ≥ t0.

Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))σl

j(s, y(s))

)

n×1

(4.4)

−

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

+ Φ(t, s, y(s))(

m
∑

l=1

[σl
x(s, y(s))σ

l(s, y(s)) − σl
x(s, y(s))Σ

l(s, y(s))]

+ F (s, y(s)))
]

ds

+

m
∑

l=1

∫ t

t0

Φ(t, s, y(s))[Σl(s, y(s))− σl(s, y(s))]dwl(s)
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Proof. From the application of Lemmas 3.1, 3.2, 3.3 and the Itô-Doob differential

formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0
x(t, s, y(s)) + ∂x0

(∂t0x(t, s, y(s)))

(4.5)

+
1

2
(
∂

∂x0

Φ(t, s, y(s)) ⊗ dy)dy

=
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))σl
j(s, y(s))

)

n×1

ds

+ Φ(t, s, y(s))(

m
∑

l=1

σl
x(s, y(s))σ

l(s, y(s)) − f(s, y(s)))ds

− Φ(t, s, y(s))

m
∑

l=1

σl(s, y(s))dwl(s)

+ Φ(t, s, y(s))[(f(s, y(s)) + F (s, y(s)))ds+

m
∑

l=1

Σl(s, y(s))dwl(s)]

−

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))Σl

j(s, y(s))

)

n×1

ds

− Φ(t, s, y(s))
m
∑

l=1

σl
x(s, y(s))Σ

l(s, y(s))ds

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

Σl(s, y(s))dwl(s)

m
∑

l=1

Σl(s, y(s))dwl(s)

By simplifying (4.5), we get

dsx(t, s, y(s)) =
[1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))σl

j(s, y(s))

)

n×1

(4.6)

−

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

+ Φ(t, s, y(s))(

m
∑

l=1

[σl
x(s, y(s))σ

l(s, y(s))− σl
x(s, y(s))Σ

l(s, y(s))]

+ F (s, y(s)))
]

ds

+

m
∑

l=1

Φ(t, s, y(s))[Σl(s, y(s)) − σl(s, y(s))]dwl(s)
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Since the right hand side of (4.6) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (4.4).

Corollary 4.3. Let the assumption of Lemma 3.1 be satisfied, except that only Σ(t, y)

in (2.2) can be decomposed. Let y(t, t0, x0) and x(t, t0, x0) be solution processes of

(2.2) and (2.3), respectively, through the same initial data (t0, x0), for all t ≥ t0.

Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Υ

l(s, y(s))σl
j(s, y(s))

)

n×1

(4.7)

−
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Υl
j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))Υ
l(s, y(s))Υl

j(s, y(s))

)

n×1

+ Φ(t, s, y(s))[c(s, y(s))− f(s, y(s))−
m
∑

l=1

σl
x(s, y(s))Υ

l(s, y(s))]
]

ds

+
m
∑

l=1

∫ t

t0

Φ(t, s, y(s))Υl(s, y(s))dwl(s).

Proof. From the application of Lemmas 3.1, 3.2, 3.3 and the Itô-Doob differential

formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0
x(t, s, y(s)) + ∂x0

(∂t0x(t, s, y(s)))

(4.8)

+
1

2
(
∂

∂x0

Φ(t, s, y(s)) ⊗ dy)dy

=
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))σl
j(s, y(s))

)

n×1

ds

+ Φ(t, s, y(s))(

m
∑

l=1

σl
x(s, y(s))σ

l(s, y(s)) − f(s, y(s)))ds

− Φ(t, s, y(s))

m
∑

l=1

σl(s, y(s))dwl(s)

+ Φ(t, s, y(s))[c(s, y(s))ds+

m
∑

l=1

(σl(s, y(s)) + Υl(s, y(s)))dwl(s)]

−

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))(σl

j(s, y(s)) + Υl
j(s, y(s)))

)

n×1

ds
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− Φ(t, s, y(s))

m
∑

l=1

σl
x(s, y(s))(σ

l(s, y(s)) + Υl(s, y(s)))ds

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

σl(s, y(s))dwl(s)

m
∑

l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

Υl(s, y(s))dwl(s)

m
∑

l=1

σl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s)) ⊗
m
∑

l=1

σl(s, y(s))dwl(s)
m
∑

l=1

Υl(s, y(s))dwl(s)

+
1

2
(
∂

∂x0

Φ(t, s, y(s)) ⊗
m
∑

l=1

Υl(s, y(s))dwl(s)
m
∑

l=1

Υl(s, y(s))dwl(s)

By simplifying (4.8), we get

dsx(t, s, y(s)) =
[1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Υ

l(s, y(s))σl
j(s, y(s))

)

n×1

(4.9)

−
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Υl
j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))Υ
l(s, y(s))Υl

j(s, y(s))

)

n×1

+ Φ(t, s, y(s))[c(s, y(s))− f(s, y(s)) −
m
∑

l=1

σl
x(s, y(s))Υ

l(s, y(s))]
]

ds

+
m
∑

l=1

Φ(t, s, y(s))Υl(s, y(s))dwl(s).

Since the right hand side of (4.9) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (4.7).

Corollary 4.4. Let the assumption of Lemma 3.1 be satisfied, except that c(t, y)

in (2.2) and Σ(t, y) in (2.3) cannot be decomposed. Let y(t, t0, x0) and x(t, t0, x0)

be solution processes of (2.2) and (2.3), respectively, through the same initial data

(t0, x0), for all t ≥ t0. Then

y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

[1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))σl

j(s, y(s))

)

n×1

(4.10)

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))Σ
l(s, y(s))Σl

j(s, y(s))

)

n×1
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−

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

+ Φ(t, s, y(s))
[

m
∑

l=1

σl
x(s, y(s))(σ

l(s, y(s))

− Σl(s, y(s))) + c(s, y(s)) − f(s, y(s))
]]

ds

+

m
∑

l=1

∫ t

t0

Φ(t, s, y(s))[Σl(s, y(s))− σl(s, y(s))]dwl(s).

Proof. From the application of Lemmas 3.1, 3.2, 3.3 and the Itô-Doob differential

formula with respect to s for t0 ≤ s ≤ t, we have

dsx(t, s, y(s)) = ∂t0x(t, s, y(s)) + ∂x0
x(t, s, y(s)) + ∂x0

(∂t0x(t, s, y(s)))

(4.11)

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗ dy)dy

=
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))σl
j(s, y(s))

)

n×1

ds

+ Φ(t, s, y(s))[(

m
∑

l=1

σl
x(s, y(s))σ

l(s, y(s)) − f(s, y(s)))ds

−
m
∑

l=1

σl(s, y(s))dwl(s)]

+ Φ(t, s, y(s))[c(s, y(s))ds+
m
∑

l=1

Σl(s, y(s))dwl(s)]

−

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

ds

− Φ(t, s, y(s))

m
∑

l=1

σl
x(s, y(s))Σ

l(s, y(s))ds

+
1

2
(
∂

∂x0
Φ(t, s, y(s)) ⊗

m
∑

l=1

Σl(s, y(s))dwl(s)
m
∑

l=1

Σl(s, y(s))dwl(s)

By simplifying (4.11), we get

dsx(t, s, y(s)) =
[1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))σ
l(s, y(s))σl

j(s, y(s))

)

n×1

+
1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0

Φij(t, s, y(s))Σ
l(s, y(s))Σl

j(s, y(s))

)

n×1
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−

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

+ Φ(t, s, y(s))
[

m
∑

l=1

σl
x(s, y(s))(σ

l(s, y(s))

− Σl(s, y(s))) + c(s, y(s))− f(s, y(s))
]]

ds

+

m
∑

l=1

Φ(t, s, y(s))[Σl(s, y(s)) − σl(s, y(s))]dwl(s).

Since the right hand side of (4.12) is continuous with respect to s, we integrate from

t0 to t, and obtain the variation of constant formula (4.10).

Remark 4.1. In Corollary (4.4), if

1. σ(t, x) = 0 and c(t, x) = f(t, x), then the variation of constant formula reduces

to

y(t, t0, x0) = x(t, t0, x0)(4.12)

+

∫ t

t0

1

2

(

n
∑

j=1

m
∑

l=1

∂

∂x0
Φij(t, s, y(s))Σ

l(s, y(s))Σl
j(s, y(s))

)

n×1

ds

+
m
∑

l=1

∫ t

t0

Φ(t, s, y(s))Σl(s, y(s))dwl(s).

2. f(t, x) = 0 and Σ(t, x) = σ(t, x), then the variation of constant formula reduces

to

(4.13) y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

Φ(t, s, y(s))c(s, y(s))d(s).

5. EXAMPLES

Example 5.1. Consider a scalar linear unperturbed and perturbed stochastic differ-

ential equations:

(5.1) dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0,

and

(5.2) dy = [f(t)y + p(t)]dt+ [σ(t)y + q(t)]dw(t), y(t0) = x0,

where f , σ, p and q are any differentiable functions defined on J = [t0, t0 + a] into R,

where a > 0. Then

(5.3) y(t, t0, x0) = x(t, t0, x0)+

∫ t

t0

Φ(t, s)[p(s)−σ(s)q(s)]d(s)+

∫ t

t0

Φ(t, s)q(s)dw(s).
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Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of

(5.1) and (5.2) through (t0, x0), respectively. Since x(t) = x(t, t0, x0) = Φ(t, t0)x0 [11],

the partial derivative of x(t, t0, x0) with respect to x0 will be ∂
∂x0

x(t, t0, x0) = Φ(t, t0).

Moreover, ∂2

∂x2

0

x(t, t0, x0) = 0. From Lemma (3.2), the partial differential of x(t, t0, x0)

with respect to t0 is given by

(5.4) ∂t0x(t, t0, x0) = Φ(t, t0)[σ
2(t0) − f(t0)]x0dt0 − Φ(t, t0)σ(t0)x0dw(t0)

At t = t0, we have

(5.5) ∂t0x(t0, t0, x0) = [σ2(t0) − f(t0)]x0dt0 − σ(t0)x0dw(t0)

Moreover, from Lemma (3.3), the corresponding Itô-Doob mixed partial differential

of solution process x(t0, t0, x0) of (5.1) is given by

(5.6) ∂t0x0
x(t, t0, x0) = −Φ(t, t0)σ

2(t0)x0dt0

Using the method of variational constants, Theorem 4.1, the solution of (5.2) is given

by (5.3).

Example 5.2. Consider a scalar nonlinear unperturbed and perturbed stochastic

differential equations:

(5.7) dx = f(t)xdt+ σ(t)xdw(t), x(t0) = x0,

and

(5.8) dy = [f(t)y − p(t)
1

2
y3]dt+ σ(t)ydw(t), y(t0) = x0,

where f , σ and p are any differentiable functions defined on J into R. Then

(5.9) y(t, t0, x0) = x(t, t0, x0) +

∫ t

t0

Φ(t, s)[
1

2
p(t)y3(s)]ds.

Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of

(5.7) and (5.8) through (t0, x0), respectively. The partial differential of x(t, t0, x0)

with respect to initial data is given in Example 1. The closed form solution of (5.8)

is

(5.10) y(t, t0, x0) =
Φ(t, t0)|x0|

√

1 + x2
0

∫ t

t0
p(s)Φ2(t, s)ds

.

The partial differential of y(t, t0, x0) with respect to t0 is

(5.11)

∂t0y(t, t0, x0) = Φ(t, t0)[(f(t0) + σ2(t0))x0 −
1

2
p(t)x0

3]dt0 − Φ(t, t0)σ(t0)x0dw(t0).

At t = t0, we have

(5.12) ∂t0y(t0, t0, x0) = [(f(t0) + σ2(t0))x0 −
1

2
p(t)x0

3]dt0 − σ(t0)x0dw(t0)
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Moreover, the corresponding Itô-Doob mixed partial differential of solution process

y(t0, t0, x0) of (5.7) is given by

(5.13) ∂t0x0
y(t0, t0, x0) = −Φ(t, t0)σ

2(t0)x0dt0

Using the method of variational constants, Theorem 4.1, the solution of (5.8) is given

by (5.9).

Example 5.3. Consider a nonlinear unperturbed and perturbed stochastic differen-

tial equation:

(5.14) dx = αx(n− x)dt+ βxdw(t), x(t0) = x0,

and

(5.15) dy = [αy(n− y) + g(t, y)]dt+ [βy + σ(t, y)]dw(t), y(t0) = x0,

where α, β and n are any constant, g and σ are differentiable functions. Then

y(t, t0, x0) = x(t, t0, x0)

(5.16)

+

∫ t

t0

[

1

2

∂

∂x0

Φ(t, s, y(s))σ2(s, y(s)) + Φ(t, s, y(s))[g(s, y(s))− βσ(s, y(s))]

]

ds

+

∫ t

t0

Φ(t, s)σ(s, y(s))dw(s).

Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes

of (5.14) and (5.15) through (t0, x0), respectively. The partial derivative of solution

processes x(t, t0, x0) with respect to x0 is

(5.17)
∂

∂x0
x(t, t0, x0) =

Φ(t, t0)

(Φ(t, t0) + αx0

∫ t

t0
Φ(t, s)ds)2

and

(5.18)
∂2

∂x2
0

x(t, t0, x0) =
−2αΦ(t, t0)

∫ t

t0
Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t

t0
Φ(t, s)ds)3

.

Moreover, the partial differential of x(t, t0, x0) with respect to t0 is

∂t0x(t, t0, x0) =
−αβ2x2

0Φ(t, t0)
∫ t

t0
Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t

t0
Φ(t, s)ds)3

(5.19)

+ β2Φ(t, t0)x0 − Φ(t, t0)αx0(n− x0)dt0 − Φ(t, t0)βx0dw(t0).

The corresponding Itô-Doob mixed partial differential of solution process x(t, t0, x0)

of (5.14) is given by

(5.20) ∂t0x0
x(t, t0, x0) =

[

2αβ2x2
0Φ(t, t0)

∫ t

t0
Φ(t, s)ds

(Φ(t, t0) + αx0

∫ t

t0
Φ(t, s)ds)3

+ Φ(t, t0)β
2x0

]

dt0.
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Using the method of variational constants, Theorem (4.1) with f(t, x) = αx(n − x),

σ(t, x) = βx the solution of (5.15) is given by (5.16).

Example 5.4. Consider a scalar linear unperturbed and perturbed stochastic differ-

ential equation as:

(5.21) dx = A(t)xdt+

m
∑

l=1

σl(t)xdwl(t), x(t0) = x0,

and

(5.22) dy = [A(t)y + P (t)]dt+

m
∑

l=1

(σl(t)y + Υl(t))dwl(t), y(t0) = x0,

where A and σl are any differentiable functions defined on J into Rn×n and P , Υl are

any differentiable functions defined on J into Rn.Then

(5.23)

y(t, t0, x0) = x(t, t0, x0)+

∫ t

t0

Φ(t, s)[P (s)−
m
∑

l=1

σl(s)Υl(s)]ds+
m
∑

l=1

∫ t

t0

Φ(t, s)Υl(s)dwl(s).

Solution: Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solution processes of

(5.21) and (5.22) through (t0, x0), respectively. The partial differential of x(t, t0, x0)

with respect to initial data is given in Example 1. Using the method of variational

constants, Theorem 4.1 with f(t, x) = A(t)x, σ(t, x) =
∑m

l=1 σ
l(t)x the solution of

(5.22) is given by (5.23)

Acknowledgment. This research is supported by the Mathematical Science

Division, US Army Office Grant Number W911NF-12-1-0090.

REFERENCES

[1] Agarwal, R. P. and Lakshmikantham, V., “Uniqueness and Nonuniqueness Criteria for Ordi-

nary Differenetial Equations”, World Scientific publishers, Singapore, 1993.

[2] Bainov, D., Lakshmikantham, V. and Simeonov, P., “Theory of Impulsive Differential Equa-

tions”, World Scientific Publishers, Singapore, 1989.

[3] Deo, S. G. and Lakshmikantham, V., “Method of Variation of Parameteres for Nonlinear

Problems”, Gordon and Breach Scientific Publishers, 1997.

[4] G. Ladas, G. Ladde, and Lakshmikantham, V., “Annali di Matematica pura ed applicata”,

1973, XCV, 255.

[5] Gikham, I. I. and Skorokhod, A. V. Stochastic Differential Equations, Springer-verlag, New

york, 1972.

[6] Guo, D. and Lakshmikantham, V., “Nonlinear Problems in Abstract Cones”, Academic Press,

New York, 1988.

[7] Guo, D., Lakshmikantham,V., and Liu,X., “Nonlinear Integral Equations in Abstract Spaces”,

Kluwer Publishing, 1996.

[8] Kaymackcalan, B., Lakshmikantham, V., and Sivasundarm,S., “Dynamic Systems on Measure

Chains”, Kluwer Publishing, 1996.



458 T. ZERIHUN AND G. S. LADDE

[9] Ladas, G. and Lakshmikantham, V., “Diffrential Equations in Abstract Spaces”,Academic

Press, New York, 1972.

[10] Ladde, Anil G. and Ladde, G. S, “An Introdction to Differential Equations-I: Deterministic

Modeling, Methods and Analysis”, World scientific Publishing Campany, Singapore, 2012.

[11] Ladde, Anil G. and Ladde, G. S, “An Introdction to Differential Equations-II: Stochastic

Modeling, Methods and Analysis”, World scientific Publishing Campany, Singapore, 2012.

[12] Ladde, G. S. and Lakshmikantham, V., “Random Differential Inequalities”, Academic Press,

New York, 1980.

[13] Ladde, G. S., “Variational Comparison Thorem and Perturbation of Nonlinear Systems of

Differential Equations”, Proc. of Amer. Math. Soc, vol 52, pp.181–187, 1975.

[14] Ladde, G. S, and M. Sambandham, “Stochastic Versus Deterministic Differential Dquations”,

Marcel derker inc., New York 2004.

[15] Lakshmikantham, V. and Leela, S. “Differential and Integral Inequalities: Theorey and Appli-

cations. Vol. II: Functional, Partial, Abstract, and Complex Ordinary Differential Equations,

Vol.55-II, Mathematics in Science and Engineering, Academic, New York, 1969b.

[16] Lakshmikantham, V. and Leel, S., “Differential and Integral Inequlities-Theory and Applica-

tions”, Vol.I, Academic Press, New York, 1969.

[17] Lakshmikantham, V. and Leel, S., “Differential and Integral Inequlities-Theory and Applica-

tions”, Vol.II, Academic Press, New York, 1969.

[18] Lakshikantham, V and Leela, S., “An Introduction to Nonlinear Diffrential Equations in Ab-

stract Spaces”, Pergamon Press,New York, 1981.

[19] Lakshmikantham, V., Leela, S. and Martynyk ,A. A., “Stability Analysis of Nonlinear Prob-

lems”, Marcel Dekker, Inc., New York, 1989.

[20] Lakshmikantham, V., Leela, S. and Martynyk, A. A., “Practical Stability of Nonlinear sys-

tems”, world Scientific publishers, Singapor, 1990.

[21] Lakshmikantham, V. and Liu, X., “Stability Analysis in Terms of Two Measures”, World

Scientific Publishers, Singapor, 1993.

[22] Lakshmikantham, V. and Rao, M. R. M., “Theory of Integro-Differential Equations”, Gordon

and Breach Scientific Publishers, 1994.

[23] Lakshmikantham, V. and Trigiante, D., “Theory of Difference Equations: Numerical Analyses

and Applications”, Marcel Dekker, Inc., New York, 2002.

[24] Lakshmikantham, and Mohapatra, R., “Theory of Fuzzy Differential Equations and Inclu-

sions”, Taylor and Francis, England, 2003.

[25] Lakshmikantham, V and Trigiante, D., “Theory of Difference Equations and Numerical Anal-

yses”, Academic Press, New York, 1988.

[26] Lakshmikantham, V., Leela, S. and Martynyk, A.A., “Stability of motion: comparison

Method”, Nauka Dumka, Kiev, USSR, 1991 ( Russian).

[27] Lakshmikantham, V., Matrosov, V. M. and Sivasundaram, S., “Vector Lyapunov Functions

and Stability analysis of Nonlinear Systems ”, Kluwer Publishing, 1991.

[28] Royden, H.L. Real Ananysis, New york, Macmillan, 1968.

[29] Schwabik, S̆, “Generalized Ordinary Differential Equations”, vol.5, Series in Real Analysis,

World Scientific, New Jersey, 1992.

[30] T. Gnana Bhaskar, Lakshmikantham, V. and J. Vasundhara Devi, “Theory of set Differential

Equations in a Metric Space”, Cambridge Scientific Publishers, UK., 2005.


