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1. INTRODUCTION

Deterministic fuzzy differential equations have been developed due to investiga-

tions of dynamic systems where an information on parameters of such systems is

incomplete or vague. Investigations in this area were developed using different ap-

proaches for formulations of differential problems in a fuzzy setting (see e.g. [1], [2],

[13], [14], [19], [18], [22], [23], [24], [30], [31], [32], [44], [48] and references therein).

However, there are discussions that this diversity of approaches can be an advantage

(see e.g. [10], [24]) and one can choose the most appropriate one to the considered

situation. One of the earliest approach for fuzzy differential equations was to gener-

alize the Hukuhara derivative of a set-valued function. This was made by Puri and

Ralescu in [46] and used next by Kaleva in [22] and [23] (see also [49], [50]).

A further developments in this direction have been made among others in [8],

[9], where the concept of strongly generalized differentiability was introduced. On the

other hand in [18] a fuzzy differential equation was interpreted as a family of differ-

ential inclusions associated with level sets of a fuzzy right hand side of an equation.
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Such an approach has been also used next among others in [1], [2], [10] [14], [15], [19],

[30], [31], [32] and [48]. A further step it was a research concerning stochastic fuzzy

differential (or integral) equations which generalize both classical stochastic differen-

tial equations and deterministic fuzzy differential equations. Such equations can be

applied in modeling of phenomenons where two kinds of uncertainties, i.e., random-

ness and fuzziness, are incorporated. In this case, the main problem was a concept of

a fuzzy stochastic integral which should cover the notion of the classical stochastic

Itô integral. Studies on such integral with respect to the Wiener process and fuzzy

stochastic equations driven by such a noise, were initiated in [33] and [34]. Recently,

in [36] and next in [35] similar studies were extended to semimartingale integrators.

The work presented in [35] extends the approach proposed in the deterministic case

in [22]. The novelty of this peper is that we propose a different meaning of the notion

of a fuzzy stochastic differential equation than it was considered in [33], [34] and [35].

We develop here the idea to treat a stochastic fuzzy differential equation as a system

of stochastic integral inclusions. In the deterministic case our approach corresponds

with ideas and comments presented in [1], [18] and [10]. This idea was used first time

in stochastic case in [36] for stochastic fuzzy differential equations driven by a Wiener

process. In this paper we continue our earlier studies but here we will focus on sto-

chastic fuzzy differential equation driven by semimartingales. Moreover, we consider

here strong solutions to the system of stochastic inclusions driven by such integrators.

The idea used in the paper is to solve those inclusions and then apply the theorem of

Negoita and Ralescu. So our studies connect the well established theory of stochas-

tic differential (or integral) inclusions (see e.g. [4], [5], [6], [26], [27], [28], [29], [37],

[38], [39], [40], [41], [42] and references therein) with a new theory of fuzzy stochastic

differential equations.

The paper is organized as follows. In Section 2 we recall some notions and facts

from set-valued, fuzzy-valued and stochastic analysis needed in the sequel. Next we

recall the notion of fuzzy stochastic integral as well as its main properties. In the last

Section 3 we establish the formulation of the fuzzy stochastic differential equation

and the existence of its solution via stochastic inclusions approach.

2. PRELIMINARIES

In this section, we start with some facts from stochastic analysis needed in the

sequel. We recall the notion of a fuzzy stochastic integral with respect to semimartin-

gale integrators developed recently in [36] and next used in [35]. We present their

main properties needed in the sequel. Let T > 0 and let I = [0, T ] or R+. Let

(Ω,F, {Ft}t∈I , P ) be a complete filtered probability space satisfying the usual hy-

pothesis, i.e., {Ft}t∈I is an increasing and right continuous family of sub-σ-fields of

F and F0 contains all P -null sets. Let P denote the smallest σ-field on I × Ω with



FUZZY STOCHASTIC DIFFERENTIAL EQUATIONS 505

respect to which every left-continuous and {Ft}t∈I -adapted process is measurable. An

Rd-valued stochastic process x is said to be predictable if x is P-measurable. One

has P ⊂ β ⊗ F, where β denotes the Borel σ-field on I. Let Sp, (p  1) denote the

space of all {Ft}t∈I -adapted and cádlág (i.e., right continuous and with finite left-hand

limits) processes (xt)t∈I such that the norm ‖x‖Sp := ‖ supt∈I |xt| ‖Lp is finite with

Lp := Lp(Ω, R1). It is well known that (Sp, ‖ ‖Sp) is a Banach space. We shall use

the notation xt− := limsրt xt P -a.s. Let Z be an {Ft}t∈I -adapted and cádlág process

with values in R1. It is said to be a semimartingale if Z = M + A where M is an

{Ft}t∈I -adapted local martingale and A is an {Ft}t∈I -adapted, cádlág process with

finite variation on compact intervals in I (see e.g. [45] for details). We shall assume

that Z0− = Z0 = 0. We shall consider the class of H
2-semimartingales, i.e., the space

of {Ft}t∈I -adapted semimartingales with a finite H
2-norm:

‖Z‖H2 := ‖[M,M]
1/2
sup I‖L2 + ‖

(

∫ sup I

0
|dAt|

)

‖L2 <∞,

where [M,M ] denotes the quadratic variation process for a local martingaleM , while

|A|· :=
∫ ·
0 |dAs| represents the total variation of the random measure induced by the

paths of the process A. By Theorem 5, p. 127 in [45] one has the following inequality

(2.1) E

(

sup
t∈I
|Zt|

)2

¬ 8‖Z‖2H2.

Proceeding similarly as in [36] we shall introduce some measure µZ on the predictable

σ-field P associated with a semimartingale Z. Since Z ∈ H2, we have E[M,M ]t <∞

for all t ∈ I, and thenM is a square integrable martingale such that EM2t = E[M,M ]t

for all t ∈ I. By the same reason the process A has a square integrable total variation

on I. By µM denote the Doléans-Dade measure for the martingale M , i.e., µM is an

unique measure on a predictable σ-fieldP such that

µM ((s, t]×A) = E
(

IA(Mt −Ms)
2
)

,

µM ({0} × A0) = 0

for all A ∈ Fs, 0 ¬ s < t and A0 ∈ F0 (see e.g. [11]). Then for all f ∈ L
2(I × Ω,P,

µM ;R
d) the stochastic integral

∫

fsdMs exists and one has

E

(

‖
∫ t

0
fsdMs‖

2
Rd

)

=
∫

[0,t]×Ω
‖f‖2RddµM(2.2)

= E
(
∫ t

0
‖fs‖

2
Rdd[M,M ]s

)

,

for t ∈ I. Let us define now a random measure on I

γ(ω, dt) := |A(ω)|sup I |dAt(ω)|
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and a measure associated with the process A by the formula:

νA(C) :=
∫

Ω

∫ sup I

0
IC(ω, t)γ(ω, dt)P (dω)

for every C ∈ P. Then we have

νA(I × Ω) = E

(

∫ sup I

0
|dAs|

)2

.

Hence νA is a finite measure on P. Finally, we define a finite measure µZ associated

with Z ∈H2 by µZ := µM +νA. Let us denote L
2
P(µZ) := L

2
(

I × Ω,P, µZ ;R
d
)

. Then

by Proposition 1 in [36] for every f ∈ L2P(µZ) and t ∈ I there exists a stochastic

integral
∫ t
0 fsdZs and

(2.3) E

(

‖
∫ t

0
fsdZs‖

2
Rd

)

¬ 16‖fI[0,t]‖
2
L2
P
(µZ )
.

Note that since we have assumed Z0− = Z0 = 0 it follows that
∫ t
0 fsdZs =

∫ t
0+ fsdZs

where
∫ t
0+ :=

∫

(0,t].

2.1. Set-valued trajectory stochastic integral. Let X be a Banach space. By a

Kb(X) we denote the family of all nonempty closed and bounded subsets of X while

by Kbc(X) we mean those of elements from K
b(X) that are also convex subsets of X.

The Hausdorff metric HX in K
b(X) is defined by:

HX(A,B) := max{sup
a∈A
distX(a,B), sup

b∈B
distX(b, A)}

where distX(a,B) := inf
b∈B
‖a − b‖X and ‖ · ‖X is a norm in X. Moreover (Kb(X), HX)

is a complete metric space and Kbc(X) is its closed subspace. Let us assume that

A,B,C,D ∈ Kbc(X). Then it holds (see [17]):

HX(A+B,C +D) ¬ HX(A,C) +HX(B,D)

and

HX(A +B,C +B) = HX(A,C)

where A+B denotes the Minkowski sum of A and B. For A ∈ Kb(X) we set |||A||| :=

HX (A, {0}) = supa∈A ‖a‖X. Let (U,A, µ) be a σ-finite measure space. LetM be a set

of A-measurable functions f : U → X. The set M is said to be A-decomposable if

for every f1, f2 ∈ M and A ∈ A one has IAf1 + IAcf2 ∈ M. Let F = (F (t))t∈I be a

set-valued stochastic process with values in Kb(Rd), i.e., a family of F-measurable set-

valued mappings F (t) : Ω→ Kb(Rd), each t ∈ I. We call F measurable if it is β ⊗ F

measurable in the sense of set-valued functions, i.e., {(t, ω) : F (t, ω)∩U 6= ∅} ∈ β⊗F

for every open set U ⊂ Rd. Similarly, F is {Ft}t∈I -adapted if F (t) is Ft-measurable

for each t ∈ I. We call F predictable if F is P-measurable. Let us define the set

S2P(F, µZ) := {f ∈ L
2
P(µZ) : f ∈ F µZ a.e.}.
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We say that F is L2P(µZ)-integrally bounded if |||F ||| ∈ L
2(I × Ω,P, µZ ;R+). In this

case, by Kuratowski and Ryll-Nardzewski Selection Theorem (see e.g. [25]) it follows

that S2P(F, µZ) 6= ∅. Hence for every t ∈ I, we define the set
∫ t

0
FsdZs :=

{
∫ t

0
fsdZs : f ∈ S

2
P(F, µZ)

}

which is called the set-valued trajectory stochastic integral of F with respect to semi-

martingale Z. For any 0 ¬ s < t we set
∫ t

s+
FsdZs :=

∫ t

0
I(s,t](u)FudZu =

{
∫ t

s+
fudZu : f ∈ S

2
P(F, µZ)

}

.

If a semimartingale Z has continuous paths then
∫ t
s+ fudZu =

∫ t
s fudZu for f ∈

S2P(F, µZ) and consequently
∫ t
s+ FsdZs =

∫ t
s FsdZs for any 0 ¬ s < t and s, t ∈ I.

Below we collect the main properties of the sets S2P(F, µZ) and
∫ t
0 FsdZs.

Proposition 1 ([36]). Let F : I×Ω→ Kbc(R
d) be a predictable and L2P(µZ)-integrally

bounded set-valued mapping. Then

a) S2P(F, µZ) is a closed, convex, bounded, weakly compact and decomposable subset

of L2P(µZ),

b)
∫ t
0 FsdZs is a bounded closed, weakly compact and convex subset of L

2(Ω,Ft, P, R
d)

for every t ∈ I.

Theorem 2.1 ([36]). Let Z be an H2-semimartingale and let F,G : I ×Ω→ Kb(Rd)

be predictable multivalued mappings such that F and G are L2P(µZ)-integrally bounded.

Then for every 0 ¬ s < t and s, t ∈ I one has

H2L2

(
∫ t

s+
FudZu,

∫ t

s+
GudZu

)

¬ 2
∫

(s,t]×Ω
H2Rd (F,G) dµZ

where HL2 denotes the Hausdorff distance in L
2(Ω,F, P, Rd).

Theorem 2.2 ([36]). For each n  1, let F (n) : I × Ω → Kb(Rd) be a predictable

multivalued mapping such that F (1) is L2P(µZ)-integrally bounded and

F (1) ⊃ F (2) ⊃ · · · ⊃ F µZ-a.e.

and let F :=
⋂

n1 F
(n) µZ-a.e. Then for every t ∈ I

∫ t

0
FsdZs =

⋂

n1

∫ t

0
F (n)s dZs.

2.2. Fuzzy random variables and fuzzy stochastic integral. By a fuzzy set u

of a Banach space X we mean a mapping u : X→ [0, 1]. The space of all fuzzy sets of

X will be denoted by the symbol F(X). For α ∈ (0, 1] let [u]α := {x ∈ X : u(x)  α}

and [u]0 := clX{x ∈ X : u(x) > 0} where clX denotes the closure in (X, ‖ · ‖X). In the

sequel we deal with the following fuzzy sets

F b(X) = {u ∈ F(X) : [u]α ∈ Kb(X) for every α ∈ [0, 1]},
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F bc (X) = {u ∈ F(X) : [u]
α ∈ Kbc(X) for every α ∈ [0, 1]}.

We shall use a metric DX in F
b
c (X) described as follows

DX(u, v) := sup
α∈[0,1]
HX([u]

α, [v]α) for u, v ∈ F bc (X).

It is known (c.f. [47]) that
(

F bc (X), DX

)

is a complete metric space. We will use the

following version of the theorem of Negoita and Ralescu.

Theorem 2.3 ([43]). Let Y be a set and let {Yα, α ∈ [0, 1]} be a family of subsets of

Y such that:

a) Y0 = Y ,

b) α1 ¬ α2 ⇒ Yα1 ⊃ Yα2,

c) αn ր α⇒ Yα =
⋂∞
n=1 Yαn.

Then the function φ : Y → [0, 1] defined by φ(x) = sup{α ∈ [0, 1] : x ∈ Yα} has the

property that

{x ∈ Y : φ(x)  α} = Yα

for any α ∈ [0, 1].

As before let (Ω,F, {Ft}t∈I , P ) be a given filtered probability space and let Z

be a given H2-semimartingale. By a fuzzy random variable (in the sense of Puri and

Ralescu) we mean a function u : Ω → F bc (X) such that [u(·)]
a : Ω → Kbc(X) is an

F-measurable set-valued mapping for every α ∈ [0, 1]. Let f : I × Ω → F bc
(

Rd
)

be a predictable fuzzy stochastic process, i.e., fuzzy-valued mapping such that the

set-valued function [f ]α : I × Ω → Kbc
(

Rd
)

, [f ]α (t, ω) := [f(t, ω)]α is a predictable

set-valued stochastic process. We call f to be L2P(µZ)-integrally bounded if |||[f ]
0||| ∈

L2(I × Ω,P, µZ , R+). Taking such a predictable fuzzy stochastic process f let us

consider the trajectory set-valued stochastic integral Yα(t) :=
∫ t
0 [f ]

α
dZ for any t ∈ I

and every α ∈ [0, 1]. Then by Proposition 1, Theorem 2.2 and Theorem 2.3, for

every fixed t ∈ I there exists a fuzzy set X(f, Z)t ∈ F
b
c

(

L2(Ω,Ft, P, R
d)
)

such that

[X(f, Z)t]
α =

∫ t
0 [f ]

α
dZ for every t ∈ I and every α ∈ [0, 1]. Having the family of just

described fuzzy sets {X(f, Z)t, t ∈ I}, one can define [36]:

Definition 2.4. By a fuzzy trajectory stochastic integral of the predictable and

L2P(µZ)-integrally bounded fuzzy stochastic process f with respect to the semimartin-

gale Z we mean the family of fuzzy sets {X(f, Z)t, t ∈ I} described above. We denote

it by X(f, Z)t := (F)
∫ t
0 f(s)dZs for t ∈ I.

By Theorem 2.1 one can formulate the following result.
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Corollary 2.5. Let f1, f2 : I × Ω → F
b
c (R

d) be predictable and L2P(µZ)-integrally

bounded fuzzy stochastic processes. Then for all τ, t ∈ I, τ 6 t it holds

D2L2((F)
∫ t

τ+
f1(s)dZs, (F)

∫ t

τ+
f2(s)dZs) 6 2

∫

(τ,t]×Ω
D2Rd(f1, f2)dµZ .

3. STOCHASTIC INCLUSIONS AND FUZZY STOCHASTIC

DIFFERENTIAL EQUATIONS DRIVEN BY A

SEMIMARTINGALE

In this part we apply the results of the preceding sections to the theory of stochas-

tic inclusions and fuzzy stochastic equations. Now we assume that I = [0, T ] for T > 0.

Let Z be a given H2-semimartingale on a filtered probability space (Ω,F, {Ft}t∈I , P ).

Let L20 := L
2(Ω,F0, P ;R

d). By 〈·〉 : L20 → F
b
c (L
2
0) we denote an embeding of L

2
0

into F bc (L
2
0), i.e., for a ∈ L

2
0 we we have 〈a〉 (z) = I{a} (z) for z ∈ L

2
0. We consider a

fuzzy-valued function f : I × Ω × Rd → F bc (R
d) and ξ ∈ L20. By a fuzzy stochastic

differential equation we mean the formal relation

dXt = f(t, Xt−)dZt, t ∈ I(3.1)

X0 = 〈ξ〉

which is interpreted as a family of stochastic integral inclusions

xt − xs ∈
[

(F)
∫ t

s
f(τ, xτ−)dZτ

]α

, 0 ¬ s < t ¬ T,

x0 = ξ

or equivalently (by Definition 2.4) as

xt − xs ∈
∫ t

s
[f(τ, xτ−)]

α
dZτ , 0 ¬ s < t ¬ T,(3.2)

x0 = ξ

for α ∈ [0, 1]. We will show that under appropriate assumptions the solution sets of

(3.2) generate a fuzzy set in a Banach space S2. In [36] a similar idea was used for

a stochastic fuzzy differential equation driven by the Wiener process. The approach

used in [36] was based on weak (or martingale) solutions to stochastic inclusions.

We shall proceed in a similar way for the stochastic fuzzy differential equation (3.1)

driven by a semimartingale, but here we will focus on strong solutions to the system

of stochastic inclusions. Therefore, for a fixed α ∈ [0, 1] we define first the notion of a

solution to (3.2). Namely, by a strong solution to stochastic inclusion (3.2) we mean

a cádlág and an {Ft}t∈I-adapted stochastic process x = (xt)t∈I , x ∈ S
2 such that

xt = ξ +
∫ t

0
asdZs for a ∈ S

2
P([f ◦ x−]

α
, µZ) and t ∈ I
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where [f ◦ x−]
α (t, ω) = [f(t, ω, xt−(ω)]

α. Let Γ(f, ξ, α) denote the set of all strong

solutions to (3.2). Then Γ(f, ξ, α) ⊂ S2. Suppose Γ(f, ξ, α) 6= ∅. Thus we have the

following definition of the fuzzy solution to the equation (3.1).

Definition 3.1. By the fuzzy solution to the fuzzy stochastic differential equation

(3.1) we mean a fuzzy set X(f, ξ) ∈ F b(S2) such that [X(f, ξ)]α = Γ(f, ξ, α) for

α ∈ [0, 1].

To proceed further we assume the following conditions:

(h1) Z is a given {Ft}t∈I -adapted, H
2-semimartingale with a decomposition Z =

M + A where A is an {Ft}t∈I -adapted increasing predictable process such that

the measure µZ is absolutely continuous with respect to the product measure

λ⊗ P on the σ-field P.

(h2) The function f : I × Ω × Rd → F bc (R
d) is P ⊗ β(Rd)-measurable and L2P(µZ)-

integrally bounded, i.e., there exists a function m ∈ L2(I × Ω,P, µZ ;R) such

that
∣

∣

∣

∣

∣

∣

∣

∣

∣[f(·, ·, x)]0
∣

∣

∣

∣

∣

∣

∣

∣

∣

Rd
¬ m µZ-a.e., for every x ∈ R

d.

(h3) There exists a constant K > 0 such that DRd (f(t, ω, x), f(t, ω, y)) ¬ K‖x−y‖Rd

for every x, y ∈ Rd and every (t, ω) ∈ I × Ω.

(h4) There exists a constant C > 0 such that D2Rd(f(t, ω, x), θ̂) 6 C(1 + ‖x‖2Rd) for

every x ∈ Rd and every (t, ω) ∈ I × Ω.

Then we have the following result.

Theorem 3.2. If the conditions (h1)–(h4) hold then there exists a fuzzy solution in

the sense of Definition 3.1 to the fuzzy stochastic differential equation (3.1).

Proof. Let α ∈ [0, 1] be arbitrary and fixed and let us consider the inclusion (3.2) with

the initial value ξ. As earlier by Γ(f, ξ, α) we denote the set of all strong solutions to

(3.2). First, we show that Γ(f, ξ, α) 6= ∅. Indeed, by the assumptions (h2), (h3) and

(h4) the set-valued function [f ]α : I × Ω × Rd → Kbc(R
d) defined by [f ]α (t, ω, x) :=

[f (t, ω, x)]α is P ⊗ β(Rd)-measurable and satisfies Lipschitz and growth conditions

with respect to the Hausdorff distance HRd with constants K and C, respectively.

Hence using similar methods as in the proof of Th. 9.5.3 in [7] one can show that

there exists an P⊗β(Rd)-measurable function (depending on α) p : I×Ω×Rd → Rd

such that p(t, ω, x) ∈ [f(t, ω, x)]α for (t, ω, x) ∈ I×Ω×Rd and such that the mapping

p(t, ω, ·) is Lipschitzean. Moreover, by the assumption (h4) the function p satisfies a

growth condition: ‖p(t, ω, x)‖2Rd 6 C(1 + ‖x‖2Rd) for every x ∈ R
d and every (t, ω) ∈

I × Ω. Now by Th. 1 in [20] there exists a unique strong solution x = (xt)t∈I to the

stochastic equation:

xt = ξ +
∫ t

0
p(s, xs−)dZs, t ∈ I.
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Clearly, we also have that p ◦ x− ∈ S
2
P([f ◦ x−]

α
, µZ). Let us note that the process

{

∫ t
0 p(s, xs−)dZs, t ∈ I

}

isH2-semimartingale. Indeed, by the definition of the measure

µZ we have the following estimation:

∥

∥

∥

∥

∫ ·

0
p(s, xs−)dZs

∥

∥

∥

∥

2

H2
¬ 2

∥

∥

∥

∥

∥

∥

(

∫ T

0
‖p(s, xs−)‖

2
Rdd[M,M ]s

)1/2
∥

∥

∥

∥

∥

∥

2

L2(Ω,F,P )

+2

∥

∥

∥

∥

∥

∫ T

0
‖p(s, xs−)‖Rd|dAs|

∥

∥

∥

∥

∥

2

L2(Ω,F,P )

¬ 2
∫

I×Ω
‖p ◦ x−)‖

2
RddµZ .

Since (by assumption (h2)) |||[f(t, ω, y)]α|||Rd ¬ m (t, ω) µZ-a.e., for every y ∈ R
d and

m ∈ L2(I × Ω,P, µZ ;R) it follows that ‖p ◦ x−)‖Rd ¬ m µZ-a.e. and hence we have

∥

∥

∥

∥

∫ ·

0
p(s, xs−)dZs

∥

∥

∥

∥

2

H2
¬ 2

∫

I×Ω
m2dµZ <∞.

Then by inequality (2.1) and equality (2.2) in Preliminaries we have

‖x‖2S2 ¬ 2E(‖ξ‖
2
Rd) + 2E

(

sup
t∈I
‖
∫ t

0
p(s, xs−)dZs‖

2
Rd

)

¬ 2E(‖ξ‖2Rd)

+16

∥

∥

∥

∥

∫ ·

0
p(s, xs−)dZs

∥

∥

∥

∥

2

H2
¬ 2E(‖ξ‖2Rd) + 32

∫

I×Ω
m2αdµZ <∞.

Thus x ∈ S2 and clearly the process x is also the solution to the stochastic inclusion

(7α). Thus Γ(f, ξ, α) 6= ∅. In a similar way, by assumption (h2) one can show that

Γ(f, ξ, α) is a bounded subset of S2.

Next, we show that it is a closed subset of S2. For this aim let us take a sequence
(

x(n)
)

n1
⊂ Γ(f, ξ, α) such that x(n) → x in S2 as n → ∞. Then we also have

x
(n)
− → x− in S

2 as n→∞. Consequently, x0 = ξ P -a.e. Since
(

x(n)
)

n1
⊂ Γ(f, ξ, α)

it follows that for every n  1 there exists a(n) ∈ S2P(
[

f ◦ x(n)−
]α
, µZ) such that

x
(n)
t = ξ +

∫ t
0 a
(n)
s dZs for t ∈ I. Since

∫

I×Ω
‖a(n)‖2RddµZ ¬

∫

I×Ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

f ◦ x(n)−
]α∣
∣

∣

∣

∣

∣

∣

∣

∣

2

Rd
dµZ <∞,

it follows that there exists a subsequence
(

a(nk)
)

k
of the sequence

(

a(n)
)

n
and a ∈

L2P(µZ) such that a
(nk) ⇀ a (weakly) in L2P(µZ) as k → ∞. Let us fix t ∈ I and

consider a linear and (by 2.3) Lipshitz continuous mapping

Jt : L
2
P(µZ)→ L

2(Ω,F, P ;Rd), given by Jt(g) := ξ +
∫ t

0
gsdZs.
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Then by Prop. 3.4.12 in [12], it is equivalently continuous with respect to weak topolo-

gies in the spaces L2P(µZ) and L
2(Ω,F, P ;Rd). Hence for every fixed t ∈ I we get

x
(nk)
t = ξ +

∫ t

0
a(nk)s dZs ⇀ ξ +

∫ t

0
asdZs (weakly) in L

2(Ω,F, P ;Rd) as k →∞.

On the other hand, since x(n) → x in S2, it follows that x
(n)
t ⇀ xt weakly in

L2(Ω,F, P ;Rd) for every t ∈ I. Thus xt = ξ +
∫ t
0 asdZs for every t ∈ I. To con-

clude that x ∈ Γ(f, ξ, α) it suffices to show that a ∈ S2P([f ◦ x−]
α
, µZ). Let us first

note that since xnk− → x− in S
2, we ensure that xnk− → x− λ ⊗ P -a.e. on the σ-field

P and by the assumption (h1) we also have that xnk− → x− µZ-a.e. on the σ-field P.

Thus by (h3), (h4) and the Lebesgue Dominated Convergence Theorem we conclude

that

(3.3)
∫

I]×Ω
H2Rd

([

f ◦ x
(nk)
−

]α
, [f ◦ x−]

α
)

dµZ → 0, k →∞.

Let consider now an orthogonal projection Π from the space L2P(µZ) on its closed and

convex subset S2P([f ◦ x−]
α
, µZ) i.e., for every g ∈ L

2
P(µZ), Π(g) is an unique element

of the set S2P([f ◦ x−]
α
, µZ) such that

‖g − Π(g)‖L2
P
(µZ ) = distL2P (µZ )

(

g, S2P([f ◦ x−]
α
, µZ)

)

.

Now, we define a sequence â(nk) := Π(a(nk)) for k  1. Hence, by Theorem 2.2 in [16]

get

‖â(nk) − a(nk)‖2L2
P
(µZ )

= dist2L2
P
(µZ )

(

a(nk), S2P([f ◦ x−]
α
, µZ)

)

=
∫

I×Ω
dist2Rd

(

a(nk), [f ◦ x−]
α
)

dµZ

¬
∫

I×Ω
H2Rd

([

f ◦ x
(nk)
−

]α
, [f ◦ x−]

α
)

dµZ .

By (3.3) we ensure that â(nk) − a(nk) ⇀ 0 in L2P(µZ) as k → ∞. But the sequence
(

a(nk)
)

k
converges weakly in L2P(µZ) to the process a, hence we also have that â

(nk) ⇀

a in L2P(µZ). By Proposition 1 the set S
2
P([f ◦ x−]

α
, µZ) is weakly compact in L

2
P(µZ)

and since â(nk) ∈ S2P([f ◦ x−]
α
, µZ), it follows that a ∈ S

2
P([f ◦ x−]

α
, µZ) as well. This

proves the closedness of the set Γ(f, ξ, α).

Finally, we show that there exists a fuzzy setX(f, ξ) ∈ F b(S2) such that [X(f, ξ)]α =

Γ(f, ξ, α) for α ∈ [0, 1]. It is sufficient to show that the family {Γ(f, ξ, α), α ∈

[0, 1]} fulfills the assumptions of Theorem 2.3. By the previous parts of the proof,

Γ(f, ξ, α) is a nonempty bounded and closed subset of S2. Since f : I × Ω × Rd →

F bc (R
d) is P ⊗ β(Rd)-measurable and L2P(µZ)-integrally bounded, it follows that

S2P([f ◦ x−]
α
, µZ) ⊃ S

2
P([f ◦ x−]

β
, µZ) for 0 ¬ α ¬ β ¬ 1 and any x ∈ S

2. Hence,

Γ(f, ξ, α) ⊃ Γ(f, ξ, β) for 0 ¬ α ¬ β ¬ 1. Let αn ∈ [0, 1] and αn ր α as n → ∞.

Then we have
⋂

n1 Γ(f, ξ, αn) ⊃ Γ(f, ξ, α). Conversely, let x ∈
⋂

n1 Γ(f, ξ, αn). Then
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x ∈ S2 and for every n  1 there exists a(n) ∈ S2P([f ◦ x−]
αn such that

xt = ξ +
∫ t

0
a(n)s dZτ for t ∈ I and for every n  1.

By Proposition 1 for every n  1 the set S2P([f ◦ x−]
αn , µZ) is weakly compact in

L2P(µZ). Since

[f ◦ x−]
α1 ⊃ [f ◦ x−]

α2 ⊃ · · · ⊃ [f ◦ x−]
α
, µZ − a.e.

and

[f ◦ x−]
α =

∞
⋂

n=1

[f ◦ x−]
αn , µZ − a.e.

we get

S2P([f ◦ x−]
α1 , µZ) ⊃ S

2
P([f ◦ x−]

α2 , µZ) ⊃ · · · ⊃ S
2
P([f ◦ x−]

α
, µZ)

and

S2P([f ◦ x−]
α
, µZ) =

∞
⋂

n=1

S2P([f ◦ x−]
αn , µZ).

Then there exists a sequence
(

a(nk)
)

⊂
(

a(n)
)

and a ∈ L2P(µZ) such that a
(nk) ⇀ a in

L2P(µZ). Hence, it follows that a ∈ S
2
P([f ◦ x−]

α
, µZ). Using a similar argumentation

as earlier, one can show that xt = ξ +
∫ t
0 a
(nk)
s dZτ ⇀ ξ +

∫ t
0 asdZτ as k →∞ for every

t ∈ I. Thus we get x ∈ Γ(f, ξ, α) what completes the proof of Theorem 3.2.

Remark 3.3. Here we present some examples of semimartingales satisfying the as-

sumption (h1) of Theorem 3.2. If Z is the standard Wiener process on [0, T ], then

dµZ = dt× dP . More generally, let Z be the Lévy process on the interval [0, T ], with

the local Lévy-Khintchine characteristics (b, σ2, ν) having a finite second moment (see

[21] for details). Hence Zt = Mt + tEZ1, where M is a square integrable martingale.

Then

‖Z‖H2 ¬
(

σ2 +
∫

R
x2ν(dx) + (EZ1)

2T

)

T

and dµZ = dµM + (EZ1)
2T (dt × dP ). If dµM ≪ dt × dP then we have dµZ ≪

dt × dP . In a particular case, if Z is a homogenous Poisson process with intensity

a > 0 (a = EZ1), then Mt = Zt − at, At = at and dµZ = (a + a
2T ) (dt× dP ).

In a similar way as above one can also consider the following fuzzy stochastic

differential equation:

dXt = f(t, Xt−)dAt + g(t, Xt−)dMt, t ∈ [0, T ](3.4)

X0 = 〈ξ〉

where f, g : [0, T ] × Ω × Rd → F bc (R
d) and ξ ∈ L20. As in the case of equation (3.1)

we interprete the relation (3.4) as a system of stochastic integral inclusions:

xt − xs ∈
∫ t

s
[f(τ, xτ−)]

α
dAτ +

∫ t

s
[g(τ, xτ−)]

α
dMτ ,(3.5)
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x0 = ξ

for α ∈ [0, 1] and 0 ¬ s < t ¬ T .

Let Γ(f, g, ξ, α) denote the set of all strong solutions to stochastic inclusion (3.5)

for fixed α ∈ [0, 1], that is the set Γ(f, g, ξ, α) consits of all processes x ∈ S2 such

that xt = ξ +
∫ t
0 asdAs +

∫ t
0 bsdMs for 0 ¬ t ¬ T where a ∈ S

2
P([f ◦ x−]

α
, νA) and

b ∈ S2P([g ◦ x−]
α
, µM).

Then using a similar agrumentation as in the proof of Theorem 3.2 one can show

the following result.

Theorem 3.4. Let a semimartingale Z :=M +A satisfies (h1) and the fuzzy-valued

functions f and g satisfy (h2), with respect to the measures νA and µM , respec-

tively. Let also f and g fulfill the conditions (h3) and (h4). Then there exits a fuzzy

set X(f, g, ξ) ∈ F b(S2) (called a fuzzy solution to (3.4)), such that [X(f, g, ξ)]α =

Γ(f, g, ξ, α) for α ∈ [0, 1].

Remark 3.5. Let us note that taking in a special case ξ ∈ Rd and Zt = t in (3.1) or

At = t and Mt = 0 in (3.4) for t ∈ [0, T ] the condition (h1) is satisfied. Then both

equation (3.1) and (3.4) reduce in this case to the special form of deterministic fuzzy

differential equation studied in [1]:

(3.6) dx(t) = f(t, x(t))dt, x(0) = 〈ξ〉

interpreted as a family of deterministic integral inclusions:

x(t)− x(s) ∈
∫ t

s
[f(τ, x(τ))]α dτ, x(0) = ξ

for α ∈ [0, 1]. Here f : [0, T ] × Rd → F bc (R
d). Moreover, in this case the space S2

reduces to the space of continuous functions C(I, Rd) while the space L2P(µZ) reduces

to L2(I, β, λ;Rd). Then we have:

Γ(f, ξ, α) =
{

x ∈ C(I, Rd) : x(t)− x(s) ∈
∫ t

s
[f(τ, x(τ))]α dτ, 0 ¬ s ¬ t ¬ T, x(0) = ξ

}

.

Then under conditions similar to (h2), (h3) and (h4) there exists a fuzzy set X(f, ξ) ∈

F b(C([0, T ], Rd) being a fuzzy solution to the equation (3.6) and such that [X(f, ξ)]α =

Γ(f, ξ, α) for every α ∈ [0, 1]. In fact, in this case, the set Γ(f, ξ, α) is nonempty and

compact in C([0, T ], Rd) for every α ∈ [0, 1], that is the fuzzy solution X(f, ξ) has

compact levelsets (c.f. [1]).
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