Dynamic Systems and Applications 22 (2013) 557-590

STOCHASTIC HAMILTONIAN EQUATION WITH
UNIFORM MOTION AREA
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ABSTRACT. We consider a type of stochastic relativistic Hamiltonian system, and study the
behavior of its solution when the coeflicient of the potential diverges to co. In particular, we prove
that under certain conditions, the solution converges to a stochastic process with jump given as a
combination of a diffusion process and a uniform motion process. The precise description of the

limit process is also given.
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1. Introduction

We consider the motion of a particle with its position @} and relative velocity

Ao B given by the following stochastic differential equation:

SRV T e

dQ} = —L—dt
VIHIP? R
(1.1) dP} = o(Q})dB, — yﬁdt — A\VU(Q})dt,

(@5 1) = (q0, po)-
Here P} stands for the momentum of the particle, Q}, V* and P take values in R?,
v > 0 is a constant, and A\ > 1 is a parameter. We assume that o € C®(R? R%¥?) is
bounded and ‘oo is uniformly elliptic, where ¢ means the tranpose of a matrix. Our
system (1.1) can be considered as a decayed and randomized system with Hamiltonian
H(q,p) = /T+p*>+ \U(q).

We assume that U € C5°(R%; R) is a spherical symmetric function satisfying the
following conditions. There exist constants ro > 11 > 0 such that U(x) = 0if |z| > 7o,
U(x) > 0if |z| < ry, and U(z) < 0 if || € (r1,72). Let h be the real-valued function
such that U(x) = h(|x|). Also, assume that there exists a constant €5 > 0 and a
function k € C°(R%R) such that ||kl < 1 and |[P/(|z])| = W (|z|)k(z) if z € A,
where A := {x € Rd‘Hx\ — 1| <ggor|x| > 1y —ego}. Without loss of generality, we
assume that eg < r1/2 A (rg —71)/2. Also, we assume that U(gy) = 0.

We are interested in the behavior of the particle described by (1.1) when A —

00. As in the relation between [2] and [3], this problem is also closely related to
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the problem of “mechanical models of Brownian motions” with absorbing resulting-

interactions, which we will discuss in a forthcoming paper.

2] considered a similar question for the non-relative model, in the case where
U gives a reflecting force, precisely, in the case where there exist constants r,e > 0
such that U(q) = 0 when |¢| > r and U(q) > 0 when |¢| € (r — €,7), and got a limit
process given as a diffusion process reflecting at |@Q;| = r. In contrast, in our model,
U gives an absorbing force as soon as the particle enters |Q;| < r2, which means that
when A — 0o, P; becomes infinity in an instant. (This constitutes the main difficulty

in the treatment of our model.)

Now let us come back to our question: what is the limit behavior of the particle
evolving according to (1.1) when A — 0o? First notice that although P, instead of V;,
is the one that seems to be more natural to be considered, it is hopeless to have P to
converge as A — oo or to track the behavior of it directly: when A — oo, P actually
diverges to oo in the domain U(Q:) # 0, while keeping finite when U(Q;) = 0.
However, although P} might diverge to oo as A — oo, we have that V> is always

v .
—t—. Also, it
VI-IVAR

is V; instead of P; that gives the velocity of the particle. Therefore, we use (Q;, V;)

bounded by 1, and whenever |P}\| < oo, we always have that P} =

to describe the behavior of a particle.

As it will be proven in Lemma 6.1, the distribution of {(Q}, V*)}; converges as
A — oo. But how to describe the limit process? Notice that in the limit, when the
particle crosses |Q;| = 79, since the value of |P;| jumps between co and a finite value
as we just mentioned, we have that |V;| also jumps between 1 and a number that is
strictly less than 1. So V; is not continuous either, hence it is not so easy to describe
the limit process directly. In particular, we have to find some way to determine the

value of V; when the particle enters the domain |Q;| > ro from |Q4] < ro.

We solve this problem by defining two new stochastic processes H} and R} for
any A > 1. First, let us prepare some notations. For any a,b € R? with a # 0, let
7.b and w1b denote the components of b that are parallel to a and perpendicular to
a, respectively, i.e.,

b-a
la]?
Also, we use the natural extension |a|m,b = |a|m ;b = 0 if a = 0. Our new quantities

H)} and R} are defined as follows:

1
H) = \/1+ P2+ \UQ}) = W‘F)\U(Qi\)a

R} = Wég'?PtA.

a, eb=10b— b'—aa.

b= P

Notice that when A\ — oo, although P} might diverge to oo, R} keeps finite (see
Lemma 4.2 (1)). Indeed, P diverges to oo only because VU(Q}) is not 0 (hence
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AVU(Q?}) becomes infinity) in a certain domain, however, this force is parallel to @7,
so it is natural to expect that the perpendicular component R} keeps finite. In this
paper, we prove that the distribution of {(Q7}, V), H}, R});t € [0,00)} converges as
A — 00, and gives the characterization of the limit process. In particular, the limits of
H} and R} as A\ — oo are continuous with respect to ¢. The introduction of (H;, R;)
is one of the main ideas of this paper. See the paragraphs after Remark 1.2 for more

explanations.

Now let us formulate our results. Let W< := C([0,00); RY) x D(]0, 00); R%) x
C([0,0); R) x C([0, 00); RY), with metric function dist(-,-) given by

dist(wy, wp) = 22 ( [tfeﬂ[gXIql( —Q2(t)|+(/On|v1(t)—v2(t)|">l/n

+ max |hi(t) — ho(t)] + max |ry(t) —7“2(15)|D

te[0,n] te[0,n]

for any w;(+) = (¢:(+), vi(+), hi(+), mi(+)) € W i=1,2. Here D([0,00); R?) denotes the
set of R%-valued functions defined on [0, c0) that are right-continuous with left limit
which exists at every point. The Skorohod metric on it is also considered (see Section 2
for more details). Let uy denote the distribution of {(Q}, V), H}, R});t € [0,00)}.
We also use the notation B(r) := {y € R||y| < r} for any r > 0.

In order to present our limit process, let us first prepare some notations. For any
q,v € R? let

Alg.v) = "vo(g),

d
1 1
Ah(g,0) = Ao+ SVI=TP Y k(@) = 5V =P

i,7=1

t

o(qo|

Y

M@m==d®—ﬁﬁw@,

Ailaonr) =~/ — TP - ),
Allg,v) = W(U(Q)—UUU((])>,
d

Aylg) = 1P 50— ) (D @)

i,j=1

3t = Pltelr] o= 0 pPiefotore
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let K1(q,v) be the (3d 4+ 1) x d-matrix and let K5(q,v,r) be the (3d 4+ 1) x 1-matrix
given by the following, respectively:

0 v
Hiol>rap A1 (0 Loty A3 (0
Ki(q,v) = {|q|>;} i(g,v) ’ Kalg,v,7) = {\q\>;} 5(q,v)
Ai(g,v) A3 (q,v)
Ailev) A5(q,0,7)
Finally, let L be the generator
Tas,
Li(gvhr) =3 2. (Kl(q’v)tKl(q’v)> ViV f(q, v, hyr)+ K (q,v,7)-V (g, v, hy 7).
i,j=d+1 v
Here x;; stands for the (4, j)-element of the matrix x, V =(Vy, -+, V34:1), and
Vs i=1,---.d,
VZ-: vvi*d’ Z:d+1772d7
Vi, i=2d+1,

Viiog, 1=2d+2,---,3d+ 1.
Our main result is the following.

Theorem 1.1. 1. There exists a unique probability measure p on W that satisfies

the following:
(:ul) N(QOIQO,VEJ: Lo H(]:\/l—l—‘pOP’RO:ﬁj(-)pO) =1.

V/1+Ipol?

(12) p(lQH)] =, V(1) < 1, € [0,00)) = L.
(u3) For any f € C5°(R3) with suppf C {(B(r2)\B(7’1)) U(B(rg))c} x R4 x

R x RY, we have that {f(Qt, Vi, Hy, B) — [P LF(Qa Vi, Hy, Ro)dsit > 0} is

a continuous martingale under ji.

(ud) We have p-almost surely the following: For any t € [0,00), |Q¢| € (r1,72)
implies that V; = ﬂ:% and that V, = Vi_, also, |Q;] = 1 implies that
V=@

(ub) We have p-almost surely that fort € [0,00) with |Q:| = o,

(1) if Q¢ - Vi <0, then V, = —%;
(2) if Qi Vie >0 and H, < \/1+ [RJ?, theth:—%;
(3) if Q¢+ Vie >0 and H, > \/1+ |[R|?, then V; = \/ﬁ—IRIﬁ{\th/\QtHRt'

2. In addition, we assume that h'(ry) < 0 and lim,—,, g }}‘:((5)) = —o00. Then when

A — 00, ) — i as probability measures on (/V[7d, dist).

Notice that under pu, we have that @);, H; and R; are continuous, and V; is right-

continuous with left limit at each ¢.

Remark 1.2. The elements 1{jq, >3 A7 (Qr, V2) (i = 1,2) of K1(Qy, V;) and Ky (Qy, V4,

R;) are not 0 only if |Q;| > re, and in this domain, we get by a simple calculation



STOCHASTIC EQUATION WITH UNIFORM MOTION 561

that under pu, the following holds: (1) |V;| < 1, (2) the distribution of (Qy, W)

is a solution of the martingale problem corresponding to d@, = V;dt, d( \/—) =

[Vi|2
o(Q;)dB; —~V,dt, equivalently, (Qy, m

) satisfies (1.1) with A =0, (3) (Hy, Ry) is
. _ 1 L
actually completely determined by @Q; and V;: H;, = \/W and R, = \/mthVt.

Also, when |Q;| € (r1,73), we have by (u4) that |V;| = 1, hence A%(Q;,V;) = —7 and

AL(Qy, Vi, Ry) = ‘%"/2% R;. Moreover, in this domain, ); and V; are deterministic.

The opposite is also true: if a probability satisfies all of the conditions stated

here, it also satisfies (ul) ~ (ub). Therefore, we can “divide” our limit process as
follows.

Let

82
Lof(q,p) = Zw_ﬂ‘”’ ZZ% 7)oik(q 8 8p]f(q,p)

2]1k1

o, f(q,p),

-3

and
d

0 0 d o)
Luf(q,U,h,’f’) = Zvlﬁ_qlf — V%f(q,v,hﬂ”) _ Z (Q7 ) _T

i=1 i=1

)0‘2Vif(q, v, h,r) + % i [(a(q) _ tqu(Q)>2] 0? g0 hor)

lq|? i,j Or;Or;

2

#3235 oo~ o S am0)) S

7,k=1
Then our limit process can also be described by Ly and L, in the following way. Our
limit process consists of two phases, a diffusion phase and a uniform motion phase.
Precisely, it satisfies the following:

1. the particle keeps in the area |Q;| > 71;

2. when |Q:] > ra, (Q4, W) evolves according to the diffusion with generator

Lo, and (Hy, R;) are given by H; = \/1—1|—Vt\ and R; = m 75, Vs

3. the particle takes uniform motion in the area |Q;| € (ry,r2) with V; = V,_ =

ﬂ:|8t‘ and it reflects at |Q;| = r1 (hence (@, V;), the “visible” motion of the

particle, is completely deterministic in this domain), and (Qy, Vi, Hy, Ry) is a

diffusion with generator L,,
4. finally, its behavior at the boundary |Q;| = ry of these two phases is determined
as follows: when the particle arrives |Q;| = o from the diffusion phase, it simply

enters the uniform motion phase by taking V; = when the particle arrives

IQ E
at |Q;] = ry from the uniform motion phase, it either keeps in the uniform
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motion phase by reflecting or re-enters the diffusion phase, depending on the

value of H; and R; at that moment, according to (u5).

Before going further, let us give some heuristical explanation. Our convergence
in the area |@Q;] > 7o is trivial: in this domain, we have U(Q;) = 0, so the particle
evolves according to the diffusion process without the term —AVU(Q;)dt, so after
taking A — oo, we still have the same diffusion. This is our “diffusion phase”. When
|Q¢| € (r1,72), the term —AVU(Q,)dt gives us a very strong “absorbing” force when
A — 00, which is parallel to @, hence P, becomes very large (and parallel to @) in a
very short time, therefore, heuristically V; should be £-25 in the area |Qy| € (11, 75).

[Q:]
‘uniform motion phase”.

¢

This is our second phase: the

Since (); is continuous with respect to t, there is no problem with respect to
the initial condition of the uniform motion phase when the particle enters it from
the diffusion phase. The opposite is not so easy: when it re-reaches the boundary
|Q¢| = 7o from the uniform motion side, we have to determine whether it stays in

:

the uniform motion side by taking V; = —‘g—

¢l
in the latter case, what is the new initial velocity V; of the particle? In other words,

or re-enters the diffusion phase; and

what is the value of V; (or P,) at this moment? Notice that as just mentioned, when
A — 00, | P;| becomes oo in the domain |Q:| € (r1,72), so it is hopeless to track P; (or
V) directly.

We solve this problem with the help of H; and R; in the following way: Notice that
for any A > 1, whenever U(Q}) = 0, we always have H} = /1 + [P}, so |7TQ?PN2 =
|H}M? =1 — |R}M?, e, oy P} is determined by (Q7, HY, R}) up to £1. Especially,
when the particle re-enters the diffusion domain |Q}| > ry from the uniform motion
domain |Q}| € (r1,72), we have that T P2 has the same direction as Q}, so P} and
V;* are uniquely determined by (Q7, H}, R}'). This fact keeps true when A — oo.
Moreover, as we show in Sections 3 and 4, H; and R; are continuous and trackable
even after A — oo. This enables us to determine V; for |Q;| = ry after taking limit

A — 00.

The rest of this paper is organized as follows: In Section 2, we prepare several
basic results with respect to the proof of tightness. In Sections 3 ~ 6, we prove that
the distributions of {H; }iejo,00) { B Freo,00) and {V Hiejo.00) with A > 1 are tight, by
checking that the corresponding coefficients satisfy the conditions in the lemmas of
Section 2. In Section 7, we give the proof of Theorem 1.1 (1), the uniqueness of the
probability that satisfies (1) ~ (u5). Finally, we prove Theorem 1.1 (2) by showing
that any cluster point of uy, A — oo, (the existence is ensured by Sections 3 ~ 6),

satisfies (u1) ~ (u5). The proof of this fact is given in Section 8.
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2. Basic lemmas for the proof of tightness

In this section, we prepare several general results with respect to the tightness
of measures of stochastic processes. These will be used in Sections 3 ~ 6. All of the

results of this section are already used in [2] and [3].
Let {F;}; denote the filtration generated by {B;},. It is trivial that (Q}, P,) is

Fi-measurable for any ¢ > 0.

We first notice that although Theorem 1.1 (2) is a convergence with ¢t € [0, 00),
it suffices to prove the corresponding weak convergence of the process with t € [0, T]
for any T > 0. Choose any T > 0 and fix it from now on. It is trivial by definition
that |Q}| < |qo| + T for any t € [0,T] and A > 1.

Let us recall some basic facts about the Skorohod spaces (D([0,T]; R?), d"), and
the tightness of the probability measures on it. (See Billingsley [1] for more details).

For any T' > 0, let D([0, T]; R?) be the Skorohod space:

D([0,T;RY) = {w:[O,T]—>Rd; w(t) = w(t+) = limw(s),t € [0,T),

slt

and w(t—) := liglw(s) exists, t € (0, T]},

with the metric d° = d9 given by
d(w, @) = inf {||>\||° V|w— @ o >\||OO}
AEA

for any w, w € D([0,T]; R?), where A = {A :[0,7] — [0,T]; continuous, non-decreasing,

A0) = 0, N(T) = T}, [[w]c = suppeper [w(®], and [A° = supye, e [log 242
for any A € A.

It is well-known that (D([0, T]; RY),d°) is a complete metric space. Also,
C([0,T]; RY) = {w : [0,T] — R% continuous} is closed in (D([0,T];RY),d"), and the
Skorohod topology relativized to C([0,T];R?) coincides with the uniform topology
there (See, e.g., [1]).

Our base for the proof of tightness in p(D([0,T];R%)) is the following. Here
o(D(]0,T]; R%)) means the space of all probabilities on D([0, T]; RY).

Theorem 2.1 ([3]). Let (2, Fn, @n), n € N, be probability spaces, and let X,, : ,, —
D([0,T);R%), n € N, be measurable. Let ux, = Q, o X, 1. Suppose that there exist
constants €, 3,v,C > 0 such that

L EPIX ()5 <€)

2. B [|Xn(r) — X, (8)]°| X () —Xn(t)|5] < COlt—r|**e forany 0 <r <s<t<l,
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3. B 1X0(s) = Xa(t)F] < Clt = s for any0< s <t <1,

for any n € N. Then {uxn}:;l is tight in p(D([0,T]; RY)).
The following is an easy consequence of Theorem 2.1.

Lemma 2.2 ([3]). Let X} be any d-dimensional stochastic process given by
dX} = oA (t)dB, + b (t)dt.
If X3 and o (t) are bounded fort € [0,T] and A > 1, and

(2.1) sup sup E[|bx’)‘(t)|2] < 00,
A>1 te[0,T]

then we have that
1. sup,s,; E[SUPte[O,T} |X{\|2} < o9,
2. {the distribution of {Xt)\}te[O,T]; A > 1} is tight in p(C([0,T],R%)).
Notice that (2.1) of Lemma 2.2 is satisfied if 6**(¢) is bounded.

Proof. Let C':= 3sup,., {||X3||gov X2V supye o E[\bw(t)\?] } which is finite
by assumption. Then by Doob’s inequality, we have that

t 2 T 2
E[ sup \Xﬁﬂ < C+3E[ sup )/ oA (s)dB, ]+3E[(/ \bX’A(s)\ds) }
t€[0,T te[0,7T 0 0
T 2
< O+ 12EH/ XA (5)dB, } +or?
0
(2.2) < CH+4CT +CT? < <.
So our first assertion holds.
Similarly, for any 0 < t; < ty < t3 < T, we have that
BIIX) - X0, P| 7]
t3 t3 2
= B|( / X (3)dB, + / b¥(s)ds) | 7|
to to
t3 2 t3 2
< XA ‘ XA ‘
< 2E[</t XNs)dB, ) |F | + QEK/t bY(s)ds ) |7

< 2C%(t3 — ty) + 203 (t3 — t5)?
<2C%(1+T)(t3 — o),

hence
(2.3) E[|X) — XA < CV2T +1)(ts — t2)'/2,
and

E|X7, = Xp[*1X5 - X3P
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< 20%(1+ T)(ts — t2) B[| X3, — X3 ]
< 2C*(1+T)(ts — tg) x 20%(1 + T)(ty — t1)
(2.4) <ACH1+T)*(ts — )2
By Theorem 2.1 (with e =1, 3 = 2 and v = 3), (2.3), (2.2) and (2.4) imply our

second assertion. O

We will also need the following to prove the tightness in p(LP([0,T],R%)) for any

p > 1. This is an easy consequence of [2, Corollary §].

Lemma 2.3 ([3]). Let b : [0,T] — R® (A > 1) be a family of functions satisfying

rili}cl)E[()\ /OT |b)‘(s)\ds)2} < 00.

Then we have that {the distribution of { f(f b (s)ds} PA > 1} is tight in p(LP([0, T7,

tel0,T])’
R%)) for any p > 1, with all of its cluster point(s) in p(D([0, T],R%)).

3. Tightness of H}

The tightness of {the distribution of {Q?}te[o A 2 1} in p(C([0,T],R%) is
trivial by Lemma 2.2, since \%\ <1 for any A\ > 1.

We prove the tightness of {the distribution of {H}'} A > 1} in p(C([0,T],R%))

te[0,T]’
in this section. The tightnesses for R} and V} are given in Sections 4 ~ 6.

Lemma 3.1. 1. There exists a constant C; > 0 such that
AL QY VI + 1 AS(QN VI < Oy, for any t € [0,T],A > 1,
and we have that
(3.1) AH) = ANQ), VB, + AL(Q), V).
2. There exists a constant Cy > 0 such that

E[ sup |Ht)‘|} < Oy for any A > 1.
te[0,7

3, {the distribution of {H)},_ A > 1} is tight in p(C([0,T], R%)).

tel0,17’

Proof. The fact that A"(Q}, V) and A%(Q7, V) are bounded is trivial by definition,
since o is bounded and |V,}| < 1. Also, (3.1) is gotten by a simple calculation with
the help of Ito’s formula.

The assertions (2) and (3) are now trivial by Lemma 2.2. O
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For any € € (0,71), let D, := {x € R¥|z| > r; — e} and 7. := inf{t > 0,Q(t) €
DE} AT. Also, write D := D., and
T:=T, =nf{t >0,|Q(t)| <r1 —eo} ANT.
As a corollary of Lemma 3.1, we have that limy_ . px(7. <T') = 0 for any € > 0.

Corollary 3.2. For any € > 0, we have that
lim P( inf } QY <1 — 5) = 0.

A— 00 te[0,T

Proof. For any € > 0, let 0 = infj;<,,_. U(z). Then § > 0 by assumption. So by
Lemma 3.1 (2), we have that

P( inf Q)] < r1 - e)

te[0,T

gP( sup U(Q)) 25) gP( sup H} > m)

te[0,T] te[0,T]

< A‘lé‘lE[ sup |H3|] <A10y,

te[0,T

which converges to 0 as A — oo. O

4. Tightness of R}

We prove the tightness for R} in this section. The main result of this section is

the following two lemmas.

Lemma 4.1. There exists a constant Cs > 0 such that

E[ sup |R;\|2} < Cj

te[0,TAT]

for any A > 1.

Lemma 4.2. 1. We have that A}(Q},V;}) is bounded for t € [0,T] and X\ > 1,

2
(4.1) supE[ sup | AL(QY, VN RY) } < 00,
A>1 te[0,TAT)
and the following holds:
(4.2) dRy = AY(Q7, V)dB, + Ay(Q7, Vi, RY)dt.

2. {the distribution of {Rf‘}te[o Thr); A> 1} is tight in p(C([0,T],R%)).

Before proving these two lemmas, let us first notice that for any a, b # 0, we have

|7Lb| = |b|y/1 — —‘((;TQTI))TZ, so by a simple calculation, we have that
Lp)2
b a-b
Tira = L — b,

DERTE
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Therefore, for any a,b € R?, we have that
(4.3) lal | 0] = 18]y al,
and
(4.4) |b]*mi-a = |7-b2a — (a - b)Tb.
These facts will be used later.
Proof of Lemma 4.1. Let
fA(t) = ‘Qi\|2pt>\ - (Q? ) Pt/\)Qt |Q |2R)\
Then by Ito’s formula and a simple calculation, we have
P)\ 2
@5) P = ((Q - QIR — (@) dPQ)) — ek
VI[P
hence
16) 0 =P+ [ (@-vir-@-arn@) - [ L guas
. = . — . _ P i —
o s s s s s s 0 1+ |PS)\|2 P)M<Ys

By (4.3), we have that

|Ps>\|2 ’ﬂ_J_ Q)\ — |Ps)\| |Q>\
_ Lt A A
this combined with (4.6) implies that
t t 1
POl IPo)+] [ (@ @har - @-ared) |+ [ Flres

for any t > 0. So for any r € [0,7] we have that

E| sup |f’\(t/\7')\2} < 3[/A0)

te[0,r]

tAT 2
wag[sw | [ (@@ - @.are)|]
telo,r] ' Jo
3T "
4.7 +7/E su Mu A T)|? | ds.
(4.7) o ), Lemﬂ}'“ )|

Since VU (z) is parallel to z for any z € R?, we have by (1.1) that
(Q2 - Qu)dP} — (Q - dPQY = Q2P0 (Q)dB, — ('Qs0(Q)dB.)Q;
P)\ P)\ )

o A2 s

Notice that

an | [ 25t

tE[O )

| <] \/ Q@)
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(4.9) < AT((qo + 7)o

Similarly,

a0 E[sw | [ cQo@a)Qf] < 4wl + 1Yol
t€[0,T]

Also, since

’|QA|2P78A_ Q&L QA

= QX < IQX < (ol + TP

()

we have that
(4.11)

A2 PsA A_L A 212
w | [0 <@5 W)QWSHS(TV('%HT”'

Let Cy = 24T (lqo| +T)*||o |12, + 3(Tv(|go| +T)?)?. Then (4.8), (4.9), (4.10) and (4.11)
imply that

Plam | [ (@ aver - @-are)]

/]

+3E Sup ‘/ (tQ o (QY)dB,) QN

te[0,T] ]

pA
+3E sup ‘/ Q)‘z L
t€[0,T] | V14 |PM? ~

<3B| sup\/ Qo (@)

tel0,T

b @)

(4.12) <Oy

Let g*(r) = E [ suprefo, LA (EAT) ] Then since [£(0)] = |laof*m 0| < laol?lpol,
we get by (4.7) and (4.12) that

3T "
g)‘(T‘) < 3|Q0|4‘p0‘2 +3Cy + m/; g’\(s)ds.

By Gronwall’s Lemma, this implies that
3T
() < Blaol*pol? + 3Cs)eT—2",  forall r € [0,T].

Since |Qt| > ry —eg for any t < 7 and A\ > 1, we now get our assertion with
R
Cs = 5252340l * |po[* + 3Cu)eTi=e07 .

(Tl 80

Proof of Lemma 4.2. The fact that A7(Q7,V;}) is bounded is easy since o is bounded.
For (4.1), notice that for any ¢ < 7, we have that |R}| = |m P)‘| < |P} <
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V 1+‘Pt>\|2 = \/1_1‘T|2 and ‘QN > Tt — &0, SO ‘AS(Q?,%A,R?)‘ < fy_'_ TlEEO‘RZ\‘-
£

Therefore,

8
Bl sup |AQN VA R)E <274 ———B| sw R

t€[0,TAT] (r1 — €0)? t€[0,TAT]

Finally, by (4.4), we have that
2
Q= (@) - Pmgu P

This combined with Ito’s formula implies (4.2), and completes the proof of our first

A2 L A L pA
|7 WptAQt = ‘WQ?Pt

assertion.

The second assertion is a direct consequence of the first one and Lemma 2.2. [

5. Tightness of WQ?‘/;)‘

We prove the tightness of V* by proving that its components that are parallel to
Q7 and perpendicular to Q7, respectively, are both tight. The tightness of the parallel
part moa V* is proved in this section, and the tightness of Wég‘? V) will be proved in

the next section.

Let us first prepare the following result with respect to the differential of V.

Lemma 5.1. We have that AY(Q}, V) and AY(Q}, V) are bounded for t € [0,T]
and A > 1, and the following holds:
(5.1)

AV = AV(QY VB A+ A3 Q) V)t =21 = VA2 (VU(@Q)) - (VT U(Q))1; )t

Proof. The fact that AY(Q}, V) and A3(Q7, V) are bounded is trivial since o is

bounded and |V;}| < 1. Also, (5.1) is a direct consequence of Ito’s formula. O

Our main result of this section is the following.

Lemma 5.2. We have that {the distribution Of{(ﬂ'Qg\V?‘)}te[QT/\ﬂ; A > 1} is tight as
probabilities on LP for any p > 1, with all of its cluster point(s) in p(D([0,T];R?)).

Let
A”v)‘

Jump

(t) = (1= VP2 (1 + [ R)P)VU(Q}).

Then Lemma 5.2 is a direct consequence of Lemmas 5.3 and 5.4 given below.

Lemma 5.3. 1. There exist stochastic processes AQ’)‘(t) and Ag’)‘(t) such that they
are bounded fort € [0,T A71| and A > 1, and

(5.2) (Vi) = AV (8)dB, + AL (t)dt — AAJ)

Jjump

(t)dt.
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2. {the distribution Of{(ﬂ'Q)\V)\ +)\f0 Agu);np (8)ds}iciorar; A > 1} is tight as prob-
abilities on D([0,T]; RY).

Lemma 5.4. 1. sup»lE[()\ fTAT AllA (s)|ds)2} < 00.

jump
2. {the distribution of {\ fo AllA (s)ds}iciorar; A > 1} is tight as probabilities on

Jump

LP for any p > 1, with all of its cluster point(s) in p(D([0,T]; R?)).

We prove these two lemmas in the rest of this section.

Proof of Lemma 5.3. Since thAVf = <V;A . Q?)
calculation with the help of Lemma 5.1, with

Q (‘@A@Y VYY),

‘QIA‘QQZ\, we get (5.2) by a direct

|Qt|2

2(Q; - V) Q- Vo
Vi
\QtP Q7 |4 QM

The fact that Ag”\(t) and Ag’ (t) are bounded for t € [0,7°'A 7] and A > 1 is trivial.

(@ A5@0 V) + VP @ - Q! +

The second assertion is an easy consequence of the first one and Lemma 2.2. [

Proof of Lemma 5.4. The second assertion is an easy consequence of the first asser-
tion and Lemma 2.3. We prove the first assertion in the following.

Recall that A = {y € RdH|y| - 7“1‘ < egpor |yl > 1y —ep}. So by assumption, for
any x € A, we have that

VU@ = 8] = Kbl = ki (e S 2
= VU(x)k(:c)%

Let g be a function in C}(R?Y) such that g(z) = k(:)s)ﬁ for any © € A. Then by the

definition of Agump( ), we have that
1

Ay @ PVUQN] = A6 - 9(Q))

Jump

Al (0] = |

as long as Q} € A.
By the formula of integration by parts and (5.2), we have that

A ALt

= [Lot@- ([ Al )i
= o@)- ([ 2l ) = [ [ 3l nar) - vo@iias

t t
9@ [~ 7V 4 o+ [ AP)aB+ [ AP o))
0 0
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t s s
~ [ -+ mn+ [ P05+ [ ARG vo@vAas
0 0

0
We have that |[V;}] < 1 for any t and A > 1. Let C5 = (||glloc + [|9]lecT)(2 +
T supys, 1AL | ) and Cg = ||g]lco + [|[VglloT. Then we get that

[ Ao

t
<ol 2+ TIAP I+ | [ 4l

!

HIVglT[2+ T AR + sup | / AP ryas,||

s€[0,T

< (5 + Cg sup ‘/ A!”\(r)dBr.

s€[0,7T
T
< 4EH/ Al )

< AT AV

Since

/]

sup ‘/ A”)‘ )dB,
sEOT

the calculation above implies that

EH)\/ A2 ).g(Qg)dsﬂ <202 + 202 4T || AW 2.

Jump

We next estimate the difference between A [} | Agu);np( )|ds and A [ Ayu’\mp (s) -
g(Q)ds. Since AN D = {z € R?
that there exists a constant €; > 0 such that |VU(z)| < &; as long as z € A° N D.
Since ||g]lc < 1 by assumption, and |A]ump( s)| — Agump( ) - 9(Qs) = 0 as long as
Q. € A, this implies that

AL (8)] = Al () - g(@))

1+ &0 < |x| < 19— €0}, we have by assumption

A
< 204559 Ligreacy

Jump

2

< —= _ _|VUOM1
< 1+|P§|2‘ (Q9)|Lgreacy

281
14+ [P?

1{@36140}, s<T.
So
TAT I TAT I 2
Bl [ 1Rl = [ Al 0 s@)as] ]

T
251 2
(= —p—_y
> ) i |Ps>‘|2 {Q2eACND}

<arst [ Ele(o=s) @t e a0 pas

So our assertion is a consequence of Lemma 5.5 below. O
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Lemma 5.5. For any € > 0, we have that
1

| p——
i LB

|Q§| €(ri+e,rg— 5)] < 00.
s€[0,T],A>1

Proof. Fix any € > 0. By assumption, we have that there exists a constant e, > 0 such
that U(x) < —ey whenenver |Q2| € (r1 +¢,r2—¢). Therefore, if |Q2| € (r1+¢,r2—¢)
and H} > —1eo), then \/1+ [PM? = H} — AU(Q2) > H) + Aes > 2e2). So

(Q e A°N DN {H > —552”] < (Lf _ (3)2,

V|
%52)\ €9

L+ [P
Also, by Lemma 3.1 (1), we have that
H > Hy + / AMQY, VNAB, — Cs.
0
Therefore, if A is big enough such that —Hy + Cis < —Hg + C/T < iﬁg)\, then

A2E[ L

1
A A
_ < _Z
1_'_‘P8)\|2’{|Qs| € (T1+€7T2 5)}m{HS ~ 252)\}]

< AQP(HQ < —%m)
s 1
< )\2P</ ANQ) VB, < —5ea) — Ho + Cls>
0
2 ° h A A 1
<\ P(/ AMQN, VNAB, < _—ng)
4
S)\2 52)\ ’/ Ah 2>Vu>\
< (= .
- (4) TG

This completes the proof of our assertion. O

/]

6. Tightness of WJQ‘;\V?‘

We complete the proof of the tigthness of V;* in this section. Our main result of

this section is the following.

Lemma 6.1. We have that {the distribution of{ mT} [ }; A> 1} 18 tight as prob-
te[0,T
abilities on LP([0,T]|,R%) for any p > 1, with its cluster point(s) in p(D([0,T]; R%)).

By Lemma 5.2, it suffices to prove the following.

Lemma 6.2. We have that {the distribution Of{(ﬂ'éjx‘/?)}te[o,T/\ﬂ;)\ > 1} s tight
as probabilities on LP([0,T],RY) for any p > 1, with all of its cluster point(s) in
p(D([0, T]; RY)).

We prove Lemma 6.2 in the rest of this section. Let us first make some prepara-
tion.
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Lemma 6.3.

tAT dP)\ 2
suE[su </ 73)]<oo.
i Leon Vo TP

P>‘
Proof. Let us first calculate d(W)' Let
R = s (1B Po(@) — PXPo(@))),
(1+[P?)?
d
FA1) (  Xi=105(@) 4tQAU(Q?)tU(Q?)EA)PA _ 20(Q)'e (@) P
’ (1+[P?)? (1+[P?)3 t (14PN

Then F(t) and F3\(t) are bounded for ¢ € [0,7] and A > 1, and by Ito’s formula and

a simple calculation, we have that

5 p; 24P} A A
1+ P2 — FMt)dB, + Fy(t)dt
<1+\Pﬁ|2> T+ PR T arpee T 1 (H)dB; + Fy (1)
2 A2 A A AVy pA
e (BPYU@N — (B VU@N) R dr
Therefore,
tNT dPs)\
/0 L+ P2
Do Pf; i /MT d PSA /mr R .
N B +2 | At F)(s)dB, + F}(s)d
L+ po|> 1+ |P),|? o (I |PM2)2 T, ( 1(s) 5(s) s)

AT 9 A A\ A A A
‘/o meg PVU(Q) — (P} VU(QY)P)ds.

So in order to get our assertion, it suffices to prove the following three estimates.

(6 1) 5 _ tAT dP)\ 2
. sup sup (/ 7s> } < 00,
a1 Loy Voo (14 [PA?)?
_ tAT 2

(6.2) sup E'| sup (/ (F:l)\(s)dBS+F2>\(S)d$)) } < 00,

a>1 Leejor) NJo

E _ </t/\7 )\
sup sup —_—
a1 Ligory Voo (L+[PY?)?

(63) (1PPYU@) ~ (P U@ ds) ] < oo

(6.2) is trivial by Lemma 2.2 (1) since F(t) and F3\(t) are bounded. We prove (6.1)
and (6.3) in the following.
For (6.1), we have that

/t/\T dPS)\ _/t/\T U(Q?)st B /t/\T ‘/;)\ds _)\/t/\T VU(Q;\)CZS
o AHIPEE Jo @R )y T IPPR o (L[>
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The estimates for the first two terms on the right hand side above are trivial. Also,

since |~U(Q) |AH)‘ (s)|, we get

(1+[P?)? jump
tAT VU(Q)‘)CZS 2
supE[sup ()\/ 75>]<oo,
1 Liepr N Jo (L [PM?)?

as an easy consequence of Lemma 5.4 (1).

Finally, for (6.3), we have by (4.3) that
IPXEVU(QY) ~ (P VU@)P)

VU@l
el

= IPXPQ2 — (P2 Q)P

= |P||lmgy PAIVU(QY))
A
< PN+ [mg: PXP)IVUQ))] = [P (1 + | P2, (5)].
So (6.3) is also a direct consequence of Lemma 5.4 (1). This completes the proof of
our assertion. O

The following is an easy corollary of Lemma 6.3.

Corollary 6.4. ITAVU(QY) |, \2
supE[ - (/0 7Sds) } < 00.

A>1 Liefo,1] 1+ [P}
We next use Corollary 6.4 to prove the following.

Lemma 6.5.

[ ([ AT )] < o

Proof. The idea is similar to that of the proof of Lemma 5.4.

Let g be the same one as in the proof of Lemma 5.4. Since

/t M@ VU@
o L+ [PP

- /Otg@i) - d(/os %dr)ds
=0@)- [ Typaer [ v ([ Fikar)as

we have that

E[(/O T Ag(?s_?_.uZAU‘V;QS)dS)z]

< (2ol +2rivai) e s ([ T

which is bounded for A > 1 by Corollary 6.4.



STOCHASTIC EQUATION WITH UNIFORM MOTION 575
Also, as in the proof of Lemma 5.4, there exists a constant £; > 0 such that

IVU(Q)] — g(Q) - VU(Q2)| < 2|VU(Q?)|1{Q§€AC} < 2e1ligreacy, ST,

SO

e( ) o %ds - /T (@) .| Zﬁz@b W]

2 T 281 2
S A E|:< ; Wl{QQEACﬂD}dS) :|

T
1
2 2
S 4€1T)\ £7/1|:/0v ml{QQEACQD}dS}

T 1
2272 A c
= 47T /0 E[(1+|px|2)2’Qs €A ﬂD}dS,
which is bounded by Lemma 5.5. O

Now we are ready to prove the tightness of ﬁcly V2, the component of V,* that is
t
perpendicular to Q7. As in Section 5.2, we prove Lemma 6.2 by proving the following

two lemmas.

Lemma 6.6. 1. There exist stochastic processes A7 (t) and Ay () such that they
are bounded fort € [0,T A71| and A > 1, and
(6.4)  dlmg V) = AT (B + Ay (Ddt + AV - VU (@)L — [VP) R

2. {the distribution of {(x5,V;*) =\ [§(V2- VU(Q)(1 = V) RYs}hieoman; A >
1} is tight as probabilities on C ([0, T]; RY).

0
2. {the distribution of {\ [ (V) - VU(QY))(1 — [V)?)R)ds}icporar; A > 1} is tight
as probabilities on LP for any p > 1, with its cluster point(s) in p(D([0, T]; RY)).

Lemma 6.7. 1. supy-, E[A fTAT (VA -VU@Q))(1 — |[VM?)R2ds| < oo.

Proof of Lemma 6.6. The first assertion is trivial by Lemmas 5.1 and 5.3, with
AN =A@V AY),
AN = AQNVY) - A7),

The second assertion is trivial by the first assertion and Lemma 2.2. O

Proof of Lemma 6.7. We have that

B[ [0 vo @ - v e

<o[( [TV ()]

L+ [P s€[0,77]

TAT A
<s[(0 [T ] < el e ]
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This combined with Lemma 6.5 and Lemma 4.1 gives us our first assertion. The

second assertion is easy by the first assertion and Lemma 2.3. O

7. Proof of the uniqueness

In this section, we prove the uniqueness of the probability that satisfies (ul) ~
(u5). The idea is as follows. We first prove that the particle only “passes through”
and never “stays on” the boundary |Q;| = r of the two phases. This is a combination
of [2, Corollary 5] and Lemma 7.1 in the following. Indeed, [2, Corollary 5] ensures
that the particle never “stays on” the set |Q;| = ro when it arrives from the diffusion
phase, and Lemma 7.1 ensures that the same holds when it arrives from the uniform
motion phase. Next, given any solution of the martingale problem, there exists a
Brownian motion such that our solution can be represented as the distribution of the
solution of the corresponding system of SDEs with jump (see Claim 1 in the proof of
Theorem 1.1 (1)). As mentioned in Remark 1.2, we can convert the gotten SDE with
respect to (Qy, Vi, Hy, Ry) to SDEs with respect to (Qy, P;) and (Hy, R;) in diffusion
phase and uniform motion phase, respectively. Therefore, since the coefficients of the
new SDEs are all Lipschitz continuous, we can prove the pathwise uniqueness of the
solution (see Claim 2 in the proof of Theorem 1.1 (1)). Finally, in the same way as in
Yamada-Watanabe [5], we prove that the pathwise uniqueness implies the uniqueness

in the sense of the probability law, and this completes our proof of the uniqueness.

Notice that if a probability measure satisfies (u4), then we have that the particle
is in uniform motion in |Q¢| € (ry,72), i.e., when considering the behavior of the
particle in this phase, we can assume that V; and (); are two non-random processes

with both of them keeping in a common (or opposite) direction.

Lemma 7.1. Let V; and Q; be two non-random processes with V; || Qq || Qo for any t,
and that |Q¢] > ry. Also, let v € p(C([0,0);R) x C([0, 00); RY)) be a solution of the
martingale problem L, with initial condition Ry 1. Qy. Then for any initial condition
Hy, Ry and any t > 0, we have that v(H? =1+ |R|*) = 0.

Proof. Choose and fix any Hy € R and R, € R

Since v is a solution of the martingale problem L,, and {(H;, R;)}+ is continuous,
we have by [4] that there exists a Brownian motion {B;}; under v such that (H¢, R;)
satisfies the following SDE.

dHt = t‘/tO'(Qt)dBt — ’}/dt

AR, = (o(Q) - 228 ) B, — L2 Ryt

By solving this SDE directly, we get that

t
Ht = HO +/ t‘/so-(Qs)st - fyta
0
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- Qs )
Rt—exp(— SRTONE ds)RO
t t
Qs QSU(QS) Qu "V
+/ 0(Qs) — ———— | exp du |dB;.
(@ =g e (= | g )
Choose ey, . . ., eq_1 as an orthonormal basis of Q, the ortho-complement space of Q.

Since Qy, u € [0, t], keep in the same direction, it is trivial that R; is orthogonal to Qg
for any ¢ > 0, so we can write R, = Rie;+---+ R{'eq ;. Hence |R|> = |RI>+-- -+
|RI~!2. Choose an arbitrary t > 0 and fix it from now on. Then the calculation above
implies that ¢ (H, — Ho, R} —exp ( Jias Vsds>Rg, . R _exp ( I Qs s ) R

Qs Qs
is a d-dimensional Gaussran random variable. Write it as X ~ N(M,¥?). So in

order to prove our lemma, it suffices to prove that Y2 is non-degenerate. Suppose

not, then there exist a,b,...,bs_; € R such that (a,by,...,b4-1) # 0 € R? and
(a,by,...,bg_1)X = 0, hence (a,by, - ,bg_1)X ~ N((a,'b)M,0). Write b = bie; +
«+bg_1e4-1. Then we get that

el [ ri@ams [ (o100 2G5 oo (- [ fgra)on)] o

The left hand side above is equal to
t t
t t - Qs QSU(QS) Qu “Vu 2
| latvi@) +(o(@u - L55E e (— [ S fas

= /Ot (atVs + exp ( - : ?zg;r;udu)tb)ff(@s) 2ds

Here in the last equality, we used the fact that b L Q. So

(at{/:g + exp ( — / C|2£2 rgudu)tb)a(Qs) =0

for almost every s € [0,t]. Since ‘oo is strictly positive-definite and b is perpendic-
ular to Vj, we get that @ = 0 and b = 0, which contradicts the assumption that
(a,bl,...,bd_l) #O O

Proof of Theorem 1.1 (1). We complete the proof of Theorem 1.1 (1) in the rest of

this section. First we have the following.
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Claim 1. Let u be a probability that satisfies (ul) ~ (u5), and let X = {X;}i>0 =
{(Q¢, Vi, Ht, Ry) }+>0 denote the canonical process. Then there exists a Brownian mo-
tion {B:}+>0 such that X satisfies the following system of SDEs with jump.

(dQ, = V;dt
dVE = 1{Qi|>ra} (A’f(Qu Vi)dB; + A5 (Qy, V%)dt)

) t
AV, = 1(qi=r) g + 1{|Qt\:rQOt~th<°}< @ Vt‘>

(7.1) -1 2
’ {IQ¢|=r2,Q¢- Ve >0,H </ 1+|R¢|2} Q¢

VHZ—1-|Ri2Q1/|Q:|+Re Q¢
H; o

Q¢

+1{\Qt|=r2,Qt»Vt7>0,Ht>\/1+|Rt\2} (
dHt = A?(Qtv ‘/t)dBt + A}QL(QIH W)dt
| AR, = AT(Qy, V;)dB, + A5(Qy, Vi, Ry)dt.

Here V¢ and AV, stand for the continuous part and the jump part of V;, respectively.

Proof of Claim 1. Let 79 = 0 and for any k € N, let 7, = inf{t > 7,_1;|Q¢| =
ry or ro}. Then by [2, Corollary 5] and Lemma 7.1, we have that 7 is strictly in-
creasing with respect to k. Also, for any k € N, it is easy to be seen that the process
{Xi;t € [Tk, Tero]} at least includes a piece of uniform motion, either from |Q;| = ry
to |Q¢| = re, or from |Q;| = 79 to |Q¢| = 71, with the norm of velocity equal to 1, so

Tpao — Tk = 7o — r1. This is true for any k € N, so we get that limy_,., 7 = 0.

Let us prepare the notation Uy’ = Uy, —U, for any t > 0, any stopping time 7 and
any stochastic process U. Then we have that for any k£ > 0, {X/*;t € [0, )1 — 7%]}
is a continuous solution of the martingale problem L. Therefore, by Revuz-Yor [4],

there exists a Brownian motion {Bt(k)}t such that
dX[* = Ki(Qu. VB + Ks(Qu Vi Re)dt, 1 € (0,7sr — 7).

By enlarging the probability space if necessary, we may assume that {Bt(k)}t, k>0,
are independent. For any ¢t > 0, define B; by B; = Bt(ﬁ)ﬂc + ngjif et Bﬁ?) if
t € [Tk, Tkt1). Then {B;}i>0 is a Brownian motion, and it is trivial that (Qy, V3, H¢, R;)
satisfies all of the equations in (7.1) except the one with respect to AV;. The fact that

AV, satisfies the third equation in (7.1) is a simple consequence of (u4) and (p5). O
Claim 2. Pathwise uniqueness of the solution of (7.1) holds.

Proof of Claim 2. Let {Y; = (QY, V¥, HY ,RY)} and {Z, = (Q?,ViZ, H?, R?)} be
two strong solutions of (7.1). We prove that P(Y; = Z;,t > 0) = 1.

Let 79 = 0 and for any k € N, let 75, = inf{t > 7,_1;|Q)| = ro or |Q7| = ra}.
(Notice that the definition of 7, is different from before.) By [2, Corollary 5] and

Lemma 7.1, we have that 7, is strictly increasing with respect to t. Also, we use a; as
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a flag to clarify in which phase the particle evolves right after 7, precisely, we define

[ n Qv >0,
"7l o ifQ, -V, <o0.

So a; = 1 if the particle is in the diffusion phase right after 7, and ap = 0 if the

particle is in the uniform motion phase right after 7. By (u5), ax is given by

]_, if QTk : VTk— > 0 and Ht > 4/ 1+ |Rt|2,
a=12 0; if (1) Q, -V, <0,

or (2) Qr, - Vr— >0 and Hy < /14 |Ry|%

In order to prove Claim 2, it suffices to prove that P(Y; = Z;,t < 1) for any
k € N. We prove this by induction.

First, for £k = 1, we have that until 7, both Y and Z keep in the diffusion
phase, hence both |V}Y| < 1 and |V;?| < 1 almost surely by definition. So as
claimed in Remark 1.2, if we define P} = — Y and P? = —Y2_ then both

{(QF,PY);t <} and {(QF, P?);t < 7} satisfy the following system of SDEs

dQ, = ——L—dt
(7.2) @ V14| P2
dP;, = 0(Q,)dB; — yv—E—dt,

1+| P2

and (HY,RY) and (H7,R?) are given by H' = /1+|PV]?2 and RV = Wé‘?f)tU,
U € {Y, Z}. Since all of the coefficients of (7.2) are Lipschitz continuous, the pathwise

uniqueness of the solution of (7.2) holds. Therefore,
P(Yi=Z,t<m)=1

Next, for any k € N, if P(Y; = Z;,t < 7,) = 1, we prove in the following that
P(Y; = Z;,t < 711) = 1. Indeed, since for U € {Y, Z}, we have that (QY, HY, RV)
is continuous in ¢ and AV,Y is determined by QV, HY, RV and VU, our assumption
P(Y, = Z;,t < 1) = 1 implies that

P(Y, =2,)=1.

In particular, since by the definition of 74, at least one of ka and ka has norm 7y,
we get that P(|Q) | = |QZ| = r2) = 1. Depending on whether a; = 1 or a = 0.
We now have that the particle stays in either the diffusion phase or the uniform
motion phase, i.e., |Q)|,|Q7| € (re,00),t € (Tg, Thr1) or |QF|,|QF] € [r1,72),t €
(Tk, Tk+1), respectively. In particular, notice that in the latter case, we have that
Tra1 = Tk + 2(rg — 11).

As in the proof of Claim 1, we use the notation Uy’ = Uy, — U, for any t > 0,
any stopping time n and any stochastic process U. Then by Remark 1.2, we have
that either of the following two cases holds, depending on ax = 1 or ax = 0: (1) let
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Py = %Yvy and P = \/% then both {(Q)™, PY™):t < 7441 — 7} and
{(QF™, P7™);t < Tpyr — 71} satisfy the SDE (7.2) and (HY, RY) and (H?, R?) are
given by HY = /1 + |PP|? and RV = Wég‘?PtU, Uel{Y,Z}, t € (Tk, Ter1); (2) both
(@, V)") and (Q7,V/?), t € (7, Ty+1) are given by

Q 9
dQ, = V,dt, V,= —1{te(Tk,m+T2—7‘1)}@ + 1{t€[Tk+T2—T1,Tk+1)}@7

and both (H,"™, R)"™) and (H?™, R}"™) satisfy the SDE

dH; = "V,0(Qy)dB, — vdt,
73) { o (Qr) vdt

th = (U(Qt) - ﬁ@t{tQt}O’(Qt))dBt — %tht

Since all of the coefficients in (7.2) and (7.3) are Lipschitz continuous, the pathwise
uniqueness of the solution of (7.2) and (7.3) holds. Therefore,

P(Y, = Zy,t < Tip1) = 1.

This completes the proof of Claim 2 by induction. O

Now, we are ready to complete the proof of Theorem 1.1 (1). By Claims 1 and
2, it suffices to prove that the pathwise uniqueness of the solution of (7.1) implies
that the uniqueness in the sense of the probability law holds for the solution of the
same equation. We prove this in the following. The idea is similar to that of [5].
Let (Y;, By) and (Y}, B}) be two weak solutions of (7.1), and let P(dw;dws) and
P’(dwydwsy) be the probability laws of them on (/V(7 x W, B(W x W)). Here W is as
before, and W = C([0, 00); R?). Let P,,(dw,) be the regular conditional distribution
of P(dwidwsy) given wy, and define P, (dw;) in the same way. Finally, define a
probability measure Q(dw;dwydws) on (/V[7 x W x W, B(W x W x W), by

Q(dwldwgdwg) = Pw3 (dwl)P[US (d’LUQ)R(dwg),

where R is the probability law of Brownian motion {B;} on (W, B(W)).
Define B,(W) = o{w(s), s < t}, and define Bt(W), Bt(W x W) and Bt(W x W x

W) in the same way. As in [5, Lemma 1|, for any B € By(W), we have that P, (B)
and P! (B) are B,(W)-measurable. So for any ¢ > s > 0, any B,(W)-measurable
functions Fy, Fy and Bs(W)-measurable function F3, we have that fW Fi(wy) Py (dwy)

and [ Fy(wsz) Pl (dw,) are By(W)-measurable, hence
[ ud0) — a6 () P Fy ) Q)
WXW xW

:/W[wé(t) _wé(s)]<[WFl(wl>Pw(dw1)>(/WF2(w2)P;(dw2))F3(w)R(dw)
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Similarly,

/w b))l () — whs)) = bt = )
Fy(wy) Fy(ws) F3(ws) Q(dw, dwedws) = 0.

Therefore, {ws(t)}; is a {Bt(W x W x W)}-BM under Q.

Since (Y}, B;) and (wy,ws) are the equivalent processes and so are (Y/, B;) and
(w9, w3), we have two solutions (wy, w3) and (ws, w3) on the same filtered space (/V[\? X
W x W, B(W x W x W), Q; Bt(w x W x W)). Since the initial conditions are the same,
we get from the pathwise uniqueness of the solution that wi(t) = ws(t), Q-almost
surely. This implies that P(dw;dwsy) = P'(dwidws), and completes our proof of the

uniqueness. ]

8. The convergence

In this section, we prove that any cluster point of uy as A\ — oo satisfies (1)
~ (u5). This combined with Theorem 1.1 (1) completes the proof of Theorem 1.1
(2). First, it suffices to prove the assertion with ¢ € [0, 7] for any 7" > 0. Also, since
limy o, px(7 < T') = 0 by Corollary 3.2, it suffices to consider the processes with ¢t AT

instead of ¢.

Let pio be any such cluster point, i.e., there exists a sequence A\, — 0o (n — 00)

such that p), — pe weakly as n — oo.

The fact that p satisfies (p1) is trivial, and the fact that p., satisfies (u2) is a

direct consequence of Corollary 3.2.

Also, if we can prove that it satisfies (u4), then dV; = 0 in the domain |Qy| €
(r1,72); while when |Q;| > 72, we have that VU (Q);) = 0, so by a simple calculation, we
get that in the domain |Qy| > rq, dV;* = AY(Q}, VN dB; + AY(Q7, VM) dt. Combining
this with Lemmas 3.1 and 4.2, we get that .. satisfies (u3).

Therefore, in order to get our assertion, it suffices to prove that p., satisfies (u4)
and (ub).
We first prepare the following.

Lemma 8.1. fT/\T Q:)g(Vy)dt is continuous in (Q.,V.) € D([0,T]) x LP([0,T7]) for
any p > 1 and any f, g € CH(R%R).

Proof. For any (Q', V') and (Q? V?), we have that

[rmon- [
g\/o F@D(9(F) = (V) dtM/ F@Da ) )t
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T T
<ol | =+ Nl [ 1QF =GRl

Soif {@Q} — Q% t € [0,T]} — 0in D([0,T]), hence in LP([0,T]), and if {V;} — V2t €

[0, 7]} — 0 in L([0,71), then [, f(QNg(VHdt — [T F(Q2)g(V2)dt — 0. O

Vi -V

Notice that since V; = /1 — |V;|2R; + 7, V4, and R, is almost surely finite, we

have that {V; # :I:%} C {|Vi] < 1}. Therefore, the fact that p satisfies (u4) is a

consequence of the following two lemmas.

Lemma 8.2. For any g € C*(R? x R?) with supp(g) € <B(0,r2) \ B(O,rl)) x R,

we have that g(Qy, V;) is continuous under fio.

Proof. Choose any such g. Then there exist constants 1,5 > 0 such that g(Qy, V;) #
0= |Q| € (r1 +&1,m2 — 1), hence U(Q;) < —es.

By Lemma 5.1 and Ito’s formula, we have that

dg(Q}, V)
= Q) V) V4 a(@ V) - (A3(Q) VB, + A3(Q) V)

Q1 V) A((1= [V P)2VU(QY) = (V- U@ (1 — V)PP dt
1
+§922(Q?7 ‘/tA>A11)(Q?7 ‘/tA>2dt
By Lemma 5.5, we have that

(8.1) sup sup A?EM [(1 — V2 P) L@ etriterra—eny | < 00
A>1 s€[0,T]

The other coefficients are all bounded. Therefore, we get by Lemma 2.2 that

{the distribution of {g(Q7, V), t € [0,T]}; A > 1}is tight in D([0, T). Since g(Q7, V)
is continuous for any A > 1, and C([0,77) is closed in D([0,7]), we get our asser-
tion. 0

Lemma 8.3. We have py-almost surely that |V;| = 1 whenever |Q;| < 3.

Proof. We first prove the assertion for |Q;| € (r1,72), i.€., we prove that
uoo({|Qt| € (r1,re) and |V;| < 1 for some t € [O,T]}) =0.
It suffices to prove that
uoo({|Qt| €(ri+e,mp—e)and [V <1—0 for some t € [O,T]}) =0

for any €,6 > 0. Since by Lemma 8.2, we have p.-almost surely that V; is continuous

with respect to ¢ when |Qy| € (r1,72), it suffices, in turn, to prove that

T
(8.2) ,uoo({/o L{Qile(r +e,ra—e} L{vi <1—sydE > 0}) =0.
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Fix any £, > 0. Choose g1,92 € Cj(R?) such that Lyjgeimterm—-cy < 91(q) §
1{|q|e(r1+§,r2—§)} and 1gjy<1-sy < g2(v) < 1{‘ <1-3}- Then in order to prove (8.2), i

suffices to prove that

fhoo <{ /OTAT 91(Qe)g2(Ve)dt > 0}) =0.

By Lemma 8.1, we have that {fOT 91(Q¢)g2(Vy)dt > 0} is an open set. So
TAT
nel{ [ a@)aaviyie > o})
0

hm o, ( /TAT (Q¢)ga(Vy)dt > O})

TNt
< lim gy, {/ Hiauetrirs - Lgui<i-gydt >0})
J
< hm L, {|Qt\ € (m —i— %) and |Vi| <1— 3 for some ¢ € [O,T/\T]}).

On the other hand, by assumption, there exists a constant > 0 such that
gl € (ri+ 5,72 —5) = Ulq) < —n. Also, for any A > 1, we have that

) 1-2 1

VM <1-=o|P < 2 = [P} < ¢/=.
2 1—(1- 9y 0

2

So

5 €
|Q?|6(7’1+§>7’2—§)>|V?|<1—5

[ 1
= H)} =\/1+ P2+ \U(Q}) < L4 <= .

Therefore, for any A > 1 large enough such that /1 + % —An < —34A, we have by the
definition of uy and Lemma 3.1 (2) that

4]
,u,\({\Qt| € (r + - E) and |V;| <1— 3 for some t € [O,T/\T]})

2’ 2
A € 3 A 5
:P({|Qt| € (7“1+§,7“2—§) and |V < 1—5 for some t € [O,T/\T]})

1
SP({H{\< \/14—5—)\77 for some t € [O,T/\T]})

< P({ sup |H}| > A})

te[0,T]

< A‘1—E[ sup |H}|
n  tefo,1]

2
<\ 120, — 0, A — 00.
n

This completes the proof of our assertion for |Q;| € (r1,r2).
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Since |Qq| > r1 poo-almost surely by (u2), the only thing left to be proven is that
under fio, |Vi| = 1 when |Q;| = 7. It suffices to prove that there exists an ¢ > 0
small enough such that fT/\T 1 — [ViI*)1{0ieri—emi+e)pdt = 0, pioo-almost surely.

By assumption, there exists a function g € CL(R?) and constants d, > 0 such
that 01{gje(m-cm+ey < 9(q) < |VU(g)] for any ¢ € R?. By Lemma 8.1, we have that
{fTAT 1 — |V4?)g(Q;)dt > a} is an open set in D([0,T]) x LP([0,T]) for any a > 0.
So for any a > 0, we have that

TNAT
uoo(/ (L= Vi) Lg@ulet—em+epdt > a)
0
TNAT
<ne( [ (0= WiP)s(@0)at > 6a)
0

< m ([0 WiP@ar > oa)

n—oo

n—oo

TNAT
< (da)™t lim A tEMw [)\n/ (1— |Vt|2)|VU(Qt)|dt]
0

The expectation on the right hand side above is bounded for n € N by Lemma 6.5,

SO
TAT
/LOO(/ (1 — |Vt|2)1{\Qt|e(r1—s,r1+s)}dt > CL) =0, a > 0.
0

Therefore,

TAT
2
uoo</0 (1= VAP ) LgQuie(r —em ey dt = 0) =1

O

Finally, we check that p., satisfies (u5). This is a consequence of the following

three Lemmas.

Lemma 8.4. There exists a constant € > 0 such that

TNAT
2 —
/0 1{Ht<\/m}l{@t|€(’“2—fﬂ’2+€)}(1 — |Vi]7)dt =0, Hoo — almost surely.

Proof. Let € > 0 be a constant such that |VU(z)| > 0 as long as |z| € (ry — 2¢,75).
It suffices to prove that

TAT
2 _
Hoo(/o i< /iR 2oy HI@ a2t} (1 — [Vi[)dE > 53) =0

for any e1,e3 > 0.

Choose f; € C°(R) and f, € C°(RY) such that

Lizsoey < fi(®) < Ligseyy, Ljzle(ra—erate)} < f2(2) < Lfjajc(ra—2e,ra420)}-
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Since fTAT [ (V1 + |R|2—Hy) f2(Q4) (1—|V;|?)dt is continuous with respect to (Q, V, H, R),
we have that

TAT
2
Moo(/o 1{Ht<\/W_QEI}1{\Qt|6(r2—6,r2+6)}(1 — [Vi[P)dt > 63)
TAT
guoo(/ AGWT R — H)F(Q)(1 — |V )dt>53>
0

T/\'r
< lim MM(/ 1(V14+ |R|? — Hy) fo(Qr)(1 — |Vt| )dt > 53).
0

n—oo

Therefore, in order to get our assertion, it suffices to prove that

TAT
83 g P( [ AGE RN - EYR@N - VPP > =) =0
fim P( |

We prove this in the following.

Notice that for any A > 1, we have that H} = /1 + |PA24AU(Q}) > /1 + | R} *+
NU(Q?), therefore, if H} < +/1+ |R}M? — &1, then U(Q}) < 0, which implies that
Q7 € (r1,m2), so if |Q}| € (ro—2e, 79+ 2¢) in addition, we get that |Q}| € (ry—2¢,19).
So for any 0 € (0,2¢) and A > 1, we have that

P( [ TR - B QN0 - VPP > <)
" TAT
<P Loy oo Ltct s sy (1= VPPN > 20/2)
TNAT
+p( /0 Lo Ty MMt (1 — V)t > 5/2).

Let us first deal with the second term on the right hand side above. Since
|Q} € (12 — 6,73), we have that H} + N\|U(QM)| = H} — \U(Q}) = /1 + |P}? =
(1= [VAPP) 72, s0

VU@Q) AU@)
U@ H+ U@

Let a(d) := infjzjc(ry—sro) “VUU(SE‘. Then by assumption, we have that a(d) — oo as

§ — 0. Moreover, since \|{U(Q})| = v/1+ |P}? — H} > \/1+ |R}? — H}, we have

that

AIVU(@N)I = [V =

AU@OY i

H} +NU@QM)] HY + AU Q)]

J20) _ VTR - H
CH TR — VIFHRE

v

SO

AMU(QY)] £1 .
> , if H) < /14 |R}?—e;.
H)Y + MU@QM)] ~— /1+|RM? ! R =
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Combining the above, we get that
AVU(@QNI(1 = VAP

> AVU(@QM)I(1 - |‘/t>\|2)1/21{H{\<\/W_el}lﬂQNE(rz—é,rz)}(l — V1)

> a(é)wlwk\/W—Q}IUQ?‘E(”‘&TZ)}(l — V).

Therefore,
TAT \
2
P(/O L e Aoy L@ ey (L = VD) > 23/2)

TNAT 1
< A 1M 2)3/2 Al2
< P( / s U@ = 1) VUt B2t > 23/2)
_ 2 TAT
< a(9) 1%]5[/0 NVUQM)|(1 - |V?|2)3/zmdt]

The expectation on the right hand side above is bounded for A > 1 by Lemma 5.4.

Therefore, we get that

TNAT
. A2 —
}Slms‘lpp</o b TPy L@ etrs-ary (L = V)t > 23/2) = 0.

—0 A>1

Therefore, in order to prove (8.3), it suffices to prove that

TAT
. 2 _
lim m(/o Ly TR —eny HIQulE(ra—22ma—a)y (1 — [VA]7)dE > 63/2) =0

A—00

for any 0 > 0. We prove it in the following. By Lemma 5.5, we have that Cs :=
SUP)>1 SUPs¢(0,7] )\QE[(l - ‘V?\P)1{|Q?|6(r2—2a,r2—6}}] < 00. Therefore,

TAT
A2
P(/O o T ey M0 etra2z ramiy (1 = V)t > 5/2)
TAT \
< (/2B [ et sy (d - VP
0
< (63/2)_1TC5)\_2,
which converges to 0 as A — oo for any ¢ > 0. O

Lemma 8.5. We have pi-almost surely that if |Qi] = 19, Q- Vi > 0 and H; >

2_1_ 2
1+ [R,?, then V, = W@/\Qm@

Proof. 1t suffices to prove the assertion with the condition H; > /1 + |R;|? substi-
tuted by H, > /14 |Ry|? + 2 for any € > 0. We prove the latter in the following.

Choose €1 > 0 such that U(x) < 0 whenever |x| > ro—e1(> r1). Let B be the set
of w’s that satisfy the following: there exist t1,t9,t3 € [0, T A7| such that t; <ty < t3,
Hy > /14 |Rs?+¢% and |Q,| > ro — &1 for any s € [t1,t3], |Qu|* — |Qn]* >

[ =2y and |Q,|? — |Qu)? < [ ——28—du. Then B is an open set.

1\ /1+|Ry|2+e2 12§ /14| Ry|2+e2
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We prove in the following that

(8.4) A (B) =0, for any A > 1.

Indeed, for any A > 1, if [Q}[* — |Q} |* > tl;ﬁj%§ﬁi§duaﬂd|QgP——Kxu2<

[ =21y, then there exists a t € [ty, 3] such that

2 \/14+[R) 2 +e?
28T1
):Q

d
8.5 _( A2
(8:5) dt @] 1+ |RM?+ 2
In particular, Q) - V> > 0. On the other hand, if H} > /1 + |R}? + €2 and |Q,] >
ro — &3 for any s € [tq,t3], then

t

1+ R}
L+ |P}?

B 1+ |R}|?
= (- @ awiony)@F

£ 2
( -7’1> , for any s € [t1,t3].

VIFIR] +2

Since V* and Q* are continuous, and (Q},V;}) > 0 with some ¢ € [t;, 3], this implies

QAR = JmgVRIQE = (1- )

£
QY -V>> T, for any s € [tq, t3].
L |RPve v s €t
Therefore,
d( e [° 2ery ) 2er
— (@3 2(Q, v >0, se€|t1,t3].
s\C | AT e ( TR ot

This contradicts (8.5). Therefore, py(B) = 0.
Since B is open, (8.4) implies that

(8.6) loo(B) = 0.

Now, under pio, if |Qi] = re, Q- Vi > 0 and Hy > /1 + |R;|? + €2, then we
have that there exists a § > 0 small enough such that H, > /14 |R]? + 2 and
|Qs| > 19 — ey for any s € [t —d,t+ 9], and V; = |gt‘ for any s € [t — 0,t). Without
loss of generality, we assume that § < 2(ro —ery). Then for any s € [t — 0, ], we have

that Qs = Q — (t — s)|Q = =(1- —)Qt, hence

QP -laf = (1-(1-0) )k
= 2(t—s)r2—(t—s) =2ry— (t—3))(t —s)

> 2eri(t —s)
t

28T1

s V1+|R, |2+»52
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This combined with (8.6) implies that under our condition, for any t3 € (¢,t + 9),
2 — Q.2 > [ —=22du, in particular, |Qy,| > 7, therefore, V,, =

t /14| Ru|?+¢2
\V H7:23_1_|Rt3 |2Qt3/‘Qt3 H‘Rtg

2 . Taking t3 — t + 0 in this equation, since H. and R. are
3

continuous and V. is right-continuous, we get our assertion. O

we have |Q,

Lemma 8.6. We have ji-almost surely that if |Q¢| = 2 and Q¢ - V,— < 0, then

_ Q¢
Vi = Qi

Proof. The proof is similar to that of Lemma 8.5. For any € > 0, let B. be the set of

w’s that satisfy the following: there exist ¢1,ts,t3 € [0,7 A 7] such that t; < ts < t3,
2 2 t2  2e(ri—eo)

Hs > /14 |R|? + €2 for any s € [t,t3], |Qu|” — |Qu]* < — [, \/ﬁdu and

Q|2 — |Qp |2 > — [P —22==9_qy. Then B. is an open set, and by exactly the

to /l+|R |2+€2

same method as in the proof of Lemma 8.5, we get that i (B:) = 0.

Choose any ¢ > 0 and suppose that |Q;| = ro and @, -V, < —e. Then since
@ is continuous, we have that there exists a 6 > 0 such that |Q4| € (rq,2rs) and
Qs Vs < —eforany s € [t—4,t). Similar as in the proof of Lemma 8.5, since |Qg| > 79
implies H, = \/1 + |Rs|? + ‘TQ““‘YS'Q , this implies that Hy > \/1 + |Rs]? + (55)? for
any s € [t —d,t). Since H and R are continuous, we get that there exists a 5’ >0
such that H, > \/1 + | R|? + ()2 for any s € [t — ', £+ ¢']. On the other hand, for

any s € [t — &', t), we have that

80)

/ V1 +|R| +(5)?

4rg

du.

|Qt|2 \QSP /2Qu V,du < — /25du<

Combining this with the fact that (B ) = 0, we get po-almost surely that for
72

du < 0, in particular,

“~(r1—¢0)
any t3 € (t,t+0'], we have |Q,|> — |Q|* < — [, \/1f|12% |21 =

|Qt,] < ro. By (p4), this implies that V,, = |g E
right-continuous, by taking t3 — t 4 0, we get that V; = —

Since Q is continuous and V is

m. U

We have now completed the proof of the fact that for any converging subsequence
{pr,;n € N} of {uxn; A > 1} with lim, o A\, = 00, its limit satisfies conditions (p1)
~ (u15). By uniqueness, this completes the proof of Theorem 1.1 (2).
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