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STOCHASTIC HAMILTONIAN EQUATION WITH

UNIFORM MOTION AREA

SONG LIANG

Division of Mathematics, University of Tsukuba, Japan

ABSTRACT. We consider a type of stochastic relativistic Hamiltonian system, and study the

behavior of its solution when the coefficient of the potential diverges to ∞. In particular, we prove

that under certain conditions, the solution converges to a stochastic process with jump given as a

combination of a diffusion process and a uniform motion process. The precise description of the

limit process is also given.
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1. Introduction

We consider the motion of a particle with its position Qλ
t and relative velocity

V λ
t =

P λ
t√

1+|P λ
t |2

given by the following stochastic differential equation:

(1.1)





dQλ
t =

P λ
t√

1+|P λ
t |2

dt

dP λ
t = σ(Qλ

t )dBt − γ
P λ

t√
1+|P λ

t |2
dt − λ∇U(Qλ

t )dt,

(Qλ
0 , P

λ
0 ) = (q0, p0).

Here P λ
t stands for the momentum of the particle, Qλ

t , V λ
t and P λ

t take values in R
d,

γ > 0 is a constant, and λ ≥ 1 is a parameter. We assume that σ ∈ C∞(Rd, Rd×d) is

bounded and tσσ is uniformly elliptic, where t means the tranpose of a matrix. Our

system (1.1) can be considered as a decayed and randomized system with Hamiltonian

H(q, p) =
√

1 + p2 + λU(q).

We assume that U ∈ C∞
0 (Rd; R) is a spherical symmetric function satisfying the

following conditions. There exist constants r2 > r1 > 0 such that U(x) = 0 if |x| ≥ r2,

U(x) > 0 if |x| < r1, and U(x) < 0 if |x| ∈ (r1, r2). Let h be the real-valued function

such that U(x) = h(|x|). Also, assume that there exists a constant ε0 > 0 and a

function k ∈ C∞
0 (Rd; R) such that ‖k‖∞ ≤ 1 and |h′(|x|)| = h′(|x|)k(x) if x ∈ A,

where A := {x ∈ R
d
∣∣∣||x| − r1| ≤ ε0 or |x| ≥ r2 − ε0}. Without loss of generality, we

assume that ε0 < r1/2 ∧ (r2 − r1)/2. Also, we assume that U(q0) = 0.

We are interested in the behavior of the particle described by (1.1) when λ →
∞. As in the relation between [2] and [3], this problem is also closely related to
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the problem of “mechanical models of Brownian motions” with absorbing resulting-

interactions, which we will discuss in a forthcoming paper.

[2] considered a similar question for the non-relative model, in the case where

U gives a reflecting force, precisely, in the case where there exist constants r, ε > 0

such that U(q) = 0 when |q| > r and U(q) > 0 when |q| ∈ (r − ε, r), and got a limit

process given as a diffusion process reflecting at |Qt| = r. In contrast, in our model,

U gives an absorbing force as soon as the particle enters |Qt| < r2, which means that

when λ → ∞, Pt becomes infinity in an instant. (This constitutes the main difficulty

in the treatment of our model.)

Now let us come back to our question: what is the limit behavior of the particle

evolving according to (1.1) when λ → ∞? First notice that although Pt, instead of Vt,

is the one that seems to be more natural to be considered, it is hopeless to have P λ
t to

converge as λ → ∞ or to track the behavior of it directly: when λ → ∞, P λ
t actually

diverges to ∞ in the domain U(Qt) 6= 0, while keeping finite when U(Qt) = 0.

However, although P λ
t might diverge to ∞ as λ → ∞, we have that V λ

t is always

bounded by 1, and whenever |P λ
t | < ∞, we always have that P λ

t =
V λ

t√
1−|V λ

t |2
. Also, it

is Vt instead of Pt that gives the velocity of the particle. Therefore, we use (Qt, Vt)

to describe the behavior of a particle.

As it will be proven in Lemma 6.1, the distribution of {(Qλ
t , V

λ
t )}t converges as

λ → ∞. But how to describe the limit process? Notice that in the limit, when the

particle crosses |Qt| = r2, since the value of |Pt| jumps between ∞ and a finite value

as we just mentioned, we have that |Vt| also jumps between 1 and a number that is

strictly less than 1. So Vt is not continuous either, hence it is not so easy to describe

the limit process directly. In particular, we have to find some way to determine the

value of Vt when the particle enters the domain |Qt| > r2 from |Qt| < r2.

We solve this problem by defining two new stochastic processes Hλ
t and Rλ

t for

any λ ≥ 1. First, let us prepare some notations. For any a, b ∈ R
d with a 6= 0, let

πab and π⊥
a b denote the components of b that are parallel to a and perpendicular to

a, respectively, i.e.,

πab =
b · a
|a|2 a, π⊥

a b = b − b · a
|a|2 a.

Also, we use the natural extension |a|πab = |a|π⊥
a b = 0 if a = 0. Our new quantities

Hλ
t and Rλ

t are defined as follows:

Hλ
t :=

√
1 + |P λ

t |2 + λU(Qλ
t ) =

1√
1 − |V λ

t |2
+ λU(Qλ

t ),

Rλ
t := π⊥

Qλ
t
P λ

t .

Notice that when λ → ∞, although P λ
t might diverge to ∞, Rλ

t keeps finite (see

Lemma 4.2 (1)). Indeed, P λ
t diverges to ∞ only because ∇U(Qλ

t ) is not 0 (hence
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λ∇U(Qλ
t ) becomes infinity) in a certain domain, however, this force is parallel to Qλ

t ,

so it is natural to expect that the perpendicular component Rλ
t keeps finite. In this

paper, we prove that the distribution of {(Qλ
t , V

λ
t , Hλ

t , Rλ
t ); t ∈ [0,∞)} converges as

λ → ∞, and gives the characterization of the limit process. In particular, the limits of

Hλ
t and Rλ

t as λ → ∞ are continuous with respect to t. The introduction of (Ht, Rt)

is one of the main ideas of this paper. See the paragraphs after Remark 1.2 for more

explanations.

Now let us formulate our results. Let W̃ d := C([0,∞); Rd) × D([0,∞); Rd) ×
C([0,∞); R) × C([0,∞); Rd), with metric function dist(·, ·) given by

dist(w1, w2) :=

∞∑

n=1

2−n
(
1 ∧

[
max
t∈[0,n]

|q1(t) − q2(t)| +
( ∫ n

0

|v1(t) − v2(t)|n
)1/n

+ max
t∈[0,n]

|h1(t) − h2(t)| + max
t∈[0,n]

|r1(t) − r2(t)|
])

for any wi(·) = (qi(·), vi(·), hi(·), ri(·)) ∈ W̃ d, i = 1, 2. Here D([0,∞); Rd) denotes the

set of R
d-valued functions defined on [0,∞) that are right-continuous with left limit

which exists at every point. The Skorohod metric on it is also considered (see Section 2

for more details). Let µλ denote the distribution of {(Qλ
t , V

λ
t , Hλ

t , Rλ
t ); t ∈ [0,∞)}.

We also use the notation B(r) := {y ∈ R
d
∣∣∣|y| < r} for any r > 0.

In order to present our limit process, let us first prepare some notations. For any

q, v ∈ R
d, let

Ah
1(q, v) = tvσ(q),

Ah
2(q, v) = −γ|v|2 +

1

2

√
1 − |v|2

d∑

i,j=1

σ2
ij(q) −

1

2

√
1 − |v|2

∣∣∣tσ(q)v
∣∣∣
2

,

Ar
1(q, v) = σ(q) − 1

|q|2qtqσ(q),

Ar
2(q, v, r) = −γ

√
1 − |v|2r −

√
1 − |v|2|r|2 q

|q|2 − (q, v)

|q|2 r,

Av
1(q, v) =

√
1 − |v|2

(
σ(q) − vtvσ(q)

)
,

Av
2(q, v) = −γ(1 − |v|2)3/2v − 1

2
(1 − |v|2)

( d∑

i,j=1

σ2
ij(q)

)
v

+
3

2
(1 − |v|2)

∣∣∣tσ(q)v
∣∣∣
2

v − (1 − |v|2)σ(q)tσ(q)v,
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let K1(q, v) be the (3d + 1) × d-matrix and let K2(q, v, r) be the (3d + 1) × 1-matrix

given by the following, respectively:

K1(q, v) =




0

1{|q|>r2}A
v
1(q, v)

Ah
1(q, v)

Ar
1(q, v)




, K2(q, v, r) =




v

1{|q|>r2}A
v
2(q, v)

Ah
2(q, v)

Ar
2(q, v, r)




.

Finally, let L be the generator

Lf(q, v, h, r) =
1

2

3d+1∑

i,j=d+1

(
K1(q, v)tK1(q, v)

)
ij
∇i∇jf(q, v, h, r)+K2(q, v, r)·∇f(q, v, h, r).

Here ∗ij stands for the (i, j)-element of the matrix ∗, ∇ = t(∇1, · · · ,∇3d+1), and

∇i =





∇qi
, i = 1, · · · , d,

∇vi−d
, i = d + 1, · · · , 2d,

∇h, i = 2d + 1,

∇ri−2d−1
, i = 2d + 2, · · · , 3d + 1.

Our main result is the following.

Theorem 1.1. 1. There exists a unique probability measure µ on W̃ d that satisfies

the following:

(µ1) µ
(
Q0 = q0, V0 = p0√

1+|p0|2
, H0 =

√
1 + |p0|2, R0 = π⊥

q0
p0

)
= 1.

(µ2) µ(|Q(t)| ≥ r1, |V (t)| ≤ 1, t ∈ [0,∞)) = 1.

(µ3) For any f ∈ C∞
0 (R3d+1) with suppf ⊂

{(
B(r2)\B(r1)

)
∪ (B(r2))

C
}
×R

d ×

R × R
d, we have that

{
f(Qt, Vt, Ht, Rt) −

∫ t

0
Lf(Qs, Vs, Hs, Rs)ds; t ≥ 0

}
is

a continuous martingale under µ.

(µ4) We have µ-almost surely the following: For any t ∈ [0,∞), |Qt| ∈ (r1, r2)

implies that Vt = ± Qt

|Qt|
and that Vt = Vt−, also, |Qt| = r1 implies that

Vt = Qt

|Qt|
.

(µ5) We have µ-almost surely that for t ∈ [0,∞) with |Qt| = r2,

(1) if Qt · Vt− < 0, then Vt = − Qt

|Qt|
;

(2) if Qt · Vt− > 0 and Ht <
√

1 + |Rt|2, then Vt = − Qt

|Qt|
;

(3) if Qt · Vt− > 0 and Ht >
√

1 + |Rt|2, then Vt =

√
H2

t −1−|Rt|2Qt/|Qt|+Rt

Ht
.

2. In addition, we assume that h′(r1) < 0 and lima→r2−0
h′(a)
h(a)

= −∞. Then when

λ → ∞, µλ → µ as probability measures on (W̃ d, dist).

Notice that under µ, we have that Qt, Ht and Rt are continuous, and Vt is right-

continuous with left limit at each t.

Remark 1.2. The elements 1{|Qt|>r2}A
v
i (Qt, Vt) (i = 1, 2) of K1(Qt, Vt) and K2(Qt, Vt,

Rt) are not 0 only if |Qt| > r2, and in this domain, we get by a simple calculation
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that under µ, the following holds: (1) |Vt| < 1, (2) the distribution of (Qt,
Vt√

1−|Vt|2
)

is a solution of the martingale problem corresponding to dQt = Vtdt, d( Vt√
1−|Vt|2

) =

σ(Qt)dBt−γVtdt, equivalently, (Qt,
Vt√

1−|Vt|2
) satisfies (1.1) with λ = 0, (3) (Ht, Rt) is

actually completely determined by Qt and Vt: Ht = 1√
1−|Vt|2

and Rt = 1√
1−|Vt|2

π⊥
Qt

Vt.

Also, when |Qt| ∈ (r1, r2), we have by (µ4) that |Vt| = 1, hence Ah
2(Qt, Vt) = −γ and

Ar
2(Qt, Vt, Rt) = − (Qt,Vt)

|Qt|2
Rt. Moreover, in this domain, Qt and Vt are deterministic.

The opposite is also true: if a probability satisfies all of the conditions stated

here, it also satisfies (µ1) ∼ (µ5). Therefore, we can “divide” our limit process as

follows.

Let

L0f(q, p) =
d∑

i=1

pi

√
1 + |p|2

∂

∂qi

f(q, p) +
1

2

d∑

i,j=1

(
d∑

k=1

σik(q)σjk(q))
∂2

∂pi∂pj

f(q, p)

−γ

d∑

i=1

pi

√
1 + |p|2

∂

∂pi
f(q, p),

and

Luf(q, v, h, r) =

d∑

i=1

vi
∂

∂qi
f − γ

∂

∂h
f(q, v, h, r)−

d∑

i=1

(q, v)

|q|2 ri
∂

∂ri
f(q, v, h, r)

+
1

2

∣∣∣tσ(q)v
∣∣∣
2

∇2
hf(q, v, h, r) +

1

2

d∑

i,j=1

[(
σ(q) −

tqqσ(q)

|q|2
)2]

i,j

∂2

∂ri∂rj

f(q, v, h, r)

+

d∑

i=1

( d∑

j,k=1

vjσjk(q)
(
σik(q) −

1

|q|2qi

d∑

l=1

qlσlk(q)
)) ∂2

∂h∂ri
f(q, v, h, r).

Then our limit process can also be described by L0 and Lu in the following way. Our

limit process consists of two phases, a diffusion phase and a uniform motion phase.

Precisely, it satisfies the following:

1. the particle keeps in the area |Qt| ≥ r1;

2. when |Qt| > r2, (Qt,
Vt√

1−|Vt|2
) evolves according to the diffusion with generator

L0, and (Ht, Rt) are given by Ht = 1√
1−|Vt|2

and Rt = 1√
1−|Vt|2

π⊥
Qt

Vt;

3. the particle takes uniform motion in the area |Qt| ∈ (r1, r2) with Vt = Vt− =

± Qt

|Qt|
and it reflects at |Qt| = r1 (hence (Qt, Vt), the “visible” motion of the

particle, is completely deterministic in this domain), and (Qt, Vt, Ht, Rt) is a

diffusion with generator Lu,

4. finally, its behavior at the boundary |Qt| = r2 of these two phases is determined

as follows: when the particle arrives |Qt| = r2 from the diffusion phase, it simply

enters the uniform motion phase by taking Vt = − Qt

|Qt|
; when the particle arrives

at |Qt| = r2 from the uniform motion phase, it either keeps in the uniform
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motion phase by reflecting or re-enters the diffusion phase, depending on the

value of Ht and Rt at that moment, according to (µ5).

Before going further, let us give some heuristical explanation. Our convergence

in the area |Qt| > r2 is trivial: in this domain, we have U(Qt) = 0, so the particle

evolves according to the diffusion process without the term −λ∇U(Qt)dt, so after

taking λ → ∞, we still have the same diffusion. This is our “diffusion phase”. When

|Qt| ∈ (r1, r2), the term −λ∇U(Qt)dt gives us a very strong “absorbing” force when

λ → ∞, which is parallel to Qt, hence Pt becomes very large (and parallel to Qt) in a

very short time, therefore, heuristically Vt should be ± Qt

|Qt|
in the area |Qt| ∈ (r1, r2).

This is our second phase: the “uniform motion phase”.

Since Qt is continuous with respect to t, there is no problem with respect to

the initial condition of the uniform motion phase when the particle enters it from

the diffusion phase. The opposite is not so easy: when it re-reaches the boundary

|Qt| = r2 from the uniform motion side, we have to determine whether it stays in

the uniform motion side by taking Vt = − Qt

|Qt|
or re-enters the diffusion phase; and

in the latter case, what is the new initial velocity Vt of the particle? In other words,

what is the value of Vt (or Pt) at this moment? Notice that as just mentioned, when

λ → ∞, |Pt| becomes ∞ in the domain |Qt| ∈ (r1, r2), so it is hopeless to track Pt (or

Vt) directly.

We solve this problem with the help of Ht and Rt in the following way: Notice that

for any λ ≥ 1, whenever U(Qλ
t ) = 0, we always have Hλ

t =
√

1 + |P λ
t |2, so |πQλ

t
P λ

t |2 =

|Hλ
t |2 − 1 − |Rλ

t |2, i.e., πQλ
t
P λ

t is determined by (Qλ
t , H

λ
t , Rλ

t ) up to ±1. Especially,

when the particle re-enters the diffusion domain |Qλ
t | > r2 from the uniform motion

domain |Qλ
t | ∈ (r1, r2), we have that πQλ

t
P λ

t has the same direction as Qλ
t , so P λ

t and

V λ
t are uniquely determined by (Qλ

t , H
λ
t , Rλ

t ). This fact keeps true when λ → ∞.

Moreover, as we show in Sections 3 and 4, Ht and Rt are continuous and trackable

even after λ → ∞. This enables us to determine Vt for |Qt| = r2 after taking limit

λ → ∞.

The rest of this paper is organized as follows: In Section 2, we prepare several

basic results with respect to the proof of tightness. In Sections 3 ∼ 6, we prove that

the distributions of {Hλ
t }t∈[0,∞), {Rλ

t }t∈[0,∞) and {V λ
t }t∈[0,∞) with λ ≥ 1 are tight, by

checking that the corresponding coefficients satisfy the conditions in the lemmas of

Section 2. In Section 7, we give the proof of Theorem 1.1 (1), the uniqueness of the

probability that satisfies (µ1) ∼ (µ5). Finally, we prove Theorem 1.1 (2) by showing

that any cluster point of µλ, λ → ∞, (the existence is ensured by Sections 3 ∼ 6),

satisfies (µ1) ∼ (µ5). The proof of this fact is given in Section 8.
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2. Basic lemmas for the proof of tightness

In this section, we prepare several general results with respect to the tightness

of measures of stochastic processes. These will be used in Sections 3 ∼ 6. All of the

results of this section are already used in [2] and [3].

Let {Ft}t denote the filtration generated by {Bt}t. It is trivial that (Qλ
t , P

λ
t ) is

Ft-measurable for any t > 0.

We first notice that although Theorem 1.1 (2) is a convergence with t ∈ [0,∞),

it suffices to prove the corresponding weak convergence of the process with t ∈ [0, T ]

for any T > 0. Choose any T > 0 and fix it from now on. It is trivial by definition

that |Qλ
t | ≤ |q0| + T for any t ∈ [0, T ] and λ ≥ 1.

Let us recall some basic facts about the Skorohod spaces (D([0, T ]; Rd), d0), and

the tightness of the probability measures on it. (See Billingsley [1] for more details).

For any T > 0, let D([0, T ]; Rd) be the Skorohod space:

D([0, T ]; Rd) =
{

w : [0, T ] → R
d; w(t) = w(t+) := lim

s↓t
w(s), t ∈ [0, T ),

and w(t−) := lim
s↑t

w(s) exists, t ∈ (0, T ]
}
,

with the metric d0 = d0
T given by

d0(w, w̃) = inf
λ∈Λ

{
‖λ‖0 ∨ ‖w − w̃ ◦ λ‖∞

}

for any w, w̃ ∈ D([0, T ]; Rd), where Λ =
{
λ : [0, T ] → [0, T ]; continuous, non-decreasing,

λ(0) = 0, λ(T ) = T
}
, ‖w‖∞ = sup0≤t≤T |w(t)|, and ‖λ‖0 = sup0≤s<t≤T

∣∣∣ log λ(t)−λ(s)
t−s

∣∣∣
for any λ ∈ Λ.

It is well-known that (D([0, T ]; Rd), d0) is a complete metric space. Also,

C([0, T ]; Rd) = {w : [0, T ] → R
d; continuous} is closed in (D([0, T ]; Rd), d0), and the

Skorohod topology relativized to C([0, T ]; Rd) coincides with the uniform topology

there (See, e.g., [1]).

Our base for the proof of tightness in ℘(D([0, T ]; Rd)) is the following. Here

℘(D([0, T ]; Rd)) means the space of all probabilities on D([0, T ]; Rd).

Theorem 2.1 ([3]). Let (Ωn,Fn, Qn), n ∈ N, be probability spaces, and let Xn : Ωn →
D([0, T ]; Rd), n ∈ N, be measurable. Let µXn

= Qn ◦ X−1
n . Suppose that there exist

constants ε, β, γ, C > 0 such that

1. EPn
[
‖Xn(·)‖ε

∞

]
≤ C,

2. EPn

[
|Xn(r)−Xn(s)|β|Xn(s)−Xn(t)|β

]
≤ C|t−r|1+ε for any 0 ≤ r ≤ s ≤ t ≤ 1,
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3. EPn

[
|Xn(s) − Xn(t)|ε

]
≤ C|t − s|γ for any 0 ≤ s ≤ t ≤ 1,

for any n ∈ N. Then
{
µXn

}∞
n=1

is tight in ℘(D([0, T ]; Rd)).

The following is an easy consequence of Theorem 2.1.

Lemma 2.2 ([3]). Let Xλ
t be any d-dimensional stochastic process given by

dXλ
t = σX,λ(t)dBt + bX,λ(t)dt.

If Xλ
0 and σX,λ(t) are bounded for t ∈ [0, T ] and λ ≥ 1, and

(2.1) sup
λ≥1

sup
t∈[0,T ]

E
[
|bX,λ(t)|2

]
< ∞,

then we have that

1. supλ≥1 E
[
supt∈[0,T ] |Xλ

t |2
]

< ∞,

2.
{
the distribution of

{
Xλ

t

}
t∈[0,T ]

; λ ≥ 1
}

is tight in ℘(C([0, T ], Rd)).

Notice that (2.1) of Lemma 2.2 is satisfied if bX,λ(t) is bounded.

Proof. Let C := 3 supλ≥1

{
‖Xλ

0 ‖2
∞∨‖σX,λ‖2

∞∨supt∈[0,T ] E
[
|bX,λ(t)|2

]}
, which is finite

by assumption. Then by Doob’s inequality, we have that

E
[

sup
t∈[0,T ]

|Xλ
t |2
]

≤ C + 3E
[

sup
t∈[0,T ]

∣∣∣
∫ t

0

σX,λ(s)dBs

∣∣∣
2]

+ 3E
[( ∫ T

0

|bX,λ(s)|ds
)2]

≤ C + 12E
[∣∣∣
∫ T

0

σX,λ(s)dBs

∣∣∣
2]

+ CT 2

≤ C + 4CT + CT 2 < ∞.(2.2)

So our first assertion holds.

Similarly, for any 0 ≤ t1 < t2 < t3 ≤ T , we have that

E[|Xλ
t3 − Xλ

t2 |
2
∣∣∣Ft2 ]

= E
[( ∫ t3

t2

σX,λ(s)dBs +

∫ t3

t2

bX,λ(s)ds
)2∣∣∣Ft2

]

≤ 2E
[( ∫ t3

t2

σX,λ(s)dBs

)2∣∣∣Ft2

]
+ 2E

[( ∫ t3

t2

bX,λ(s)ds
)2∣∣∣Ft2

]

≤ 2C2(t3 − t2) + 2C2(t3 − t2)
2

≤ 2C2(1 + T )(t3 − t2),

hence

(2.3) E[|Xλ
t3 − Xλ

t2 |] ≤ C
√

2(T + 1)(t3 − t2)
1/2,

and

E[|Xλ
t3 − Xλ

t2 |2|Xλ
t2 − Xλ

t1 |2]



STOCHASTIC EQUATION WITH UNIFORM MOTION 565

≤ 2C2(1 + T )(t3 − t2)E[|Xλ
t2 − Xλ

t1 |2]
≤ 2C2(1 + T )(t3 − t2) × 2C2(1 + T )(t2 − t1)

≤ 4C4(1 + T )2(t3 − t1)
2.(2.4)

By Theorem 2.1 (with ε = 1, β = 2 and γ = 1
2
), (2.3), (2.2) and (2.4) imply our

second assertion.

We will also need the following to prove the tightness in ℘(Lp([0, T ], Rd)) for any

p > 1. This is an easy consequence of [2, Corollary 8].

Lemma 2.3 ([3]). Let bλ : [0, T ] → R
d (λ ≥ 1) be a family of functions satisfying

sup
λ≥1

E
[(

λ

∫ T

0

|bλ(s)|ds
)2]

< ∞.

Then we have that
{
the distribution of

{ ∫ t

0
bλ(s)ds

}
t∈[0,T ]

; λ ≥ 1
}

is tight in ℘(Lp([0, T ],

R
d)) for any p > 1, with all of its cluster point(s) in ℘(D([0, T ], Rd)).

3. Tightness of Hλ
t

The tightness of
{

the distribution of
{
Qλ

t

}
t∈[0,T ]

; λ ≥ 1
}

in ℘(C([0, T ], Rd)) is

trivial by Lemma 2.2, since |dQλ
t

dt
| ≤ 1 for any λ ≥ 1.

We prove the tightness of
{

the distribution of
{
Hλ

t

}
t∈[0,T ]

; λ ≥ 1
}

in ℘(C([0, T ], Rd))

in this section. The tightnesses for Rλ
t and V λ

t are given in Sections 4 ∼ 6.

Lemma 3.1. 1. There exists a constant C1 > 0 such that

|Ah
1(Q

λ
t , V

λ
t )| + |Ah

2(Q
λ
t , V

λ
t )| ≤ C1, for any t ∈ [0, T ], λ ≥ 1,

and we have that

(3.1) dHλ
t = Ah

1(Q
λ
t , V

λ
t )dBt + Ah

2(Q
λ
t , V

λ
t )dt.

2. There exists a constant C2 > 0 such that

E
[

sup
t∈[0,T ]

|Hλ
t |
]

< C2 for any λ ≥ 1.

3.
{
the distribution of

{
Hλ

t

}
t∈[0,T ]

; λ ≥ 1
}

is tight in ℘(C([0, T ], Rd)).

Proof. The fact that Ah
1(Q

λ
t , V

λ
t ) and Ah

2(Q
λ
t , V

λ
t ) are bounded is trivial by definition,

since σ is bounded and |V λ
t | ≤ 1. Also, (3.1) is gotten by a simple calculation with

the help of Ito’s formula.

The assertions (2) and (3) are now trivial by Lemma 2.2.
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For any ε ∈ (0, r1), let Dε := {x ∈ R
d
∣∣∣|x| ≥ r1 − ε} and τε := inf{t ≥ 0, Q(t) ∈

DC
ε } ∧ T . Also, write D := Dε0 and

τ := τε0 = inf{t ≥ 0, |Q(t)| < r1 − ε0} ∧ T.

As a corollary of Lemma 3.1, we have that limλ→∞ µλ(τε < T ) = 0 for any ε > 0.

Corollary 3.2. For any ε > 0, we have that

lim
λ→∞

P
(

inf
t∈[0,T ]

|Qλ
t | ≤ r1 − ε

)
= 0.

Proof. For any ε > 0, let δ = inf |x|≤r1−ε U(x). Then δ > 0 by assumption. So by

Lemma 3.1 (2), we have that

P
(

inf
t∈[0,T ]

|Qλ
t | ≤ r1 − ε

)

≤ P
(

sup
t∈[0,T ]

U(Qλ
t ) ≥ δ

)
≤ P

(
sup

t∈[0,T ]

Hλ
t ≥ λδ

)

≤ λ−1δ−1E
[

sup
t∈[0,T ]

|Hλ
t |
]
≤ λ−1C2,

which converges to 0 as λ → ∞.

4. Tightness of Rλ
t

We prove the tightness for Rλ
t in this section. The main result of this section is

the following two lemmas.

Lemma 4.1. There exists a constant C3 > 0 such that

E
[

sup
t∈[0,T∧τ ]

|Rλ
t |2
]
≤ C3

for any λ ≥ 1.

Lemma 4.2. 1. We have that Ar
1(Q

λ
t , V

λ
t ) is bounded for t ∈ [0, T ] and λ ≥ 1,

(4.1) sup
λ≥1

E
[

sup
t∈[0,T∧τ ]

∣∣∣Ar
2(Q

λ
t , V

λ
t , Rλ

t )
∣∣∣
2]

< ∞,

and the following holds:

(4.2) dRλ
t = Ar

1(Q
λ
t , V

λ
t )dBt + Ar

2(Q
λ
t , V

λ
t , Rλ

t )dt.

2.
{
the distribution of

{
Rλ

t

}
t∈[0,T∧τ)

; λ ≥ 1
}

is tight in ℘(C([0, T ], Rd)).

Before proving these two lemmas, let us first notice that for any a, b 6= 0, we have

|π⊥
a b| = |b|

√
1 − (a·b)2

|a|2|b|2
, so by a simple calculation, we have that

π⊥
b a =

|π⊥
a b|2
|b|2 a − a · b

|b|2 π⊥
a b.
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Therefore, for any a, b ∈ R
d, we have that

(4.3) |a||π⊥
a b| = |b||π⊥

b a|,

and

(4.4) |b|2π⊥
b a = |π⊥

a b|2a − (a · b)π⊥
a b.

These facts will be used later.

Proof of Lemma 4.1. Let

fλ(t) = |Qλ
t |2P λ

t − (Qλ
t · P λ

t )Qλ
t = |Qλ

t |2Rλ
t .

Then by Ito’s formula and a simple calculation, we have

(4.5) dfλ(t) =
(
(Qλ

t · Qλ
t )dP λ

t − (Qλ
t · dP λ

t )Qλ
t

)
− |P λ

t |2√
1 + |P λ

t |2
π⊥

P λ
t
Qλ

t dt,

hence

(4.6) fλ(t) = fλ(0)+

∫ t

0

(
(Qλ

s ·Qλ
s )dP λ

s − (Qλ
s ·dP λ

s )Qλ
s

)
−
∫ t

0

|P λ
s |2√

1 + |P λ
s |2

π⊥
P λ

s
Qλ

sds.

By (4.3), we have that

|P λ
s |2√

1 + |P λ
s |2
∣∣∣π⊥

P λ
s
Qλ

s

∣∣∣ =
|P λ

s |√
1 + |P λ

s |2
|Qλ

s |
∣∣∣π⊥

Qλ
s
P λ

s

∣∣∣

=
|P λ

s |√
1 + |P λ

s |2
· 1

|Qλ
s |
|fλ(s)| ≤ 1

|Qλ
s |
|fλ(s)|,

this combined with (4.6) implies that

|fλ(t)| ≤ |fλ(0)| +
∣∣∣
∫ t

0

(
(Qλ

s · Qλ
s )dP λ

s − (Qλ
s · dP λ

s )Qλ
s

)∣∣∣+
∫ t

0

1

|Qλ
s |
|fλ(s)|ds

for any t ≥ 0. So for any r ∈ [0, T ] we have that

E
[

sup
t∈[0,r]

|fλ(t ∧ τ)|2
]
≤ 3|fλ(0)|2

+ 3E
[

sup
t∈[0,r]

∣∣∣
∫ t∧τ

0

(
(Qλ

s , Q
λ
s )dP λ

s − (Qλ
s , dP λ

s )Qλ
s

)∣∣∣
2]

+
3T

(r1 − ε0)2

∫ r

0

E
[

sup
u∈[0,s]

|fλ(u ∧ τ)|2
]
ds.(4.7)

Since ∇U(x) is parallel to x for any x ∈ R
d, we have by (1.1) that

(Qλ
s · Qλ

s )dP λ
s − (Qλ

s · dP λ
s )Qλ

s = |Qλ
s |2σ(Qλ

s )dBs − (tQsσ(Qλ
s )dBs)Q

λ
s

− γ
(
|Qλ

s |2
P λ

s√
1 + |P λ

s |2
− (Qλ

s · P λ
s√

1 + |P λ
s |2

)Qλ
s

)
ds.(4.8)

Notice that

E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

|Qλ
s |2σ(Qλ

s )dBs

∣∣∣
2]

≤ 4E
[∣∣∣
∫ T∧τ

0

|Qλ
s |2σ(Qλ

s )dBs

∣∣∣
2]
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≤ 4T (|q0| + T )4‖σ‖2
∞.(4.9)

Similarly,

(4.10) E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

(tQλ
sσ(Qλ

s )dBs)Q
λ
s

∣∣∣
2]

≤ 4T (|q0| + T )4‖σ‖2
∞.

Also, since

∣∣∣|Qλ
s |2

P λ
s√

1 + |P λ
s |2

−
(

Qλ
s ·

P λ
s√

1 + |P λ
s |2

)
Qλ

s

∣∣∣

= |Qλ
s |2
∣∣∣π⊥

Qλ
s

( P λ
s√

1 + |P λ
s |2
)∣∣∣ ≤ |Qλ

s |2 ≤ (|q0| + T )2,

we have that

(4.11)

E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

γ
(
|Qλ

s |2
P λ

s√
1 + |P λ

s |2
−
(

Qλ
s ·

P λ
s√

1 + |P λ
s |2

)
Qλ

s

)
ds
∣∣∣
2]

≤ (Tγ(|q0|+T )2)2.

Let C4 = 24T (|q0|+T )4‖σ‖2
∞+3(Tγ(|q0|+T )2)2. Then (4.8), (4.9), (4.10) and (4.11)

imply that

E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

(
(Qλ

s · Qλ
s )dP λ

s − (Qλ
s · dP λ

s )Qλ
s

)∣∣∣
2]

≤ 3E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

|Qλ
s |2σ(Qλ

s )dBs

∣∣∣
2]

+3E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

(tQλ
sσ(Qλ

s )dBs)Q
λ
s

∣∣∣
2]

+3E
[

sup
t∈[0,T ]

∣∣∣
∫ t∧τ

0

γ
(
|Qλ

s |2
P λ

s√
1 + |P λ

s |2
− (Qλ

s ·
P λ

s√
1 + |P λ

s |2
)Qλ

s

)
ds
∣∣∣
2]

≤ C4.(4.12)

Let gλ(r) = E
[
supt∈[0,r] |fλ(t∧τ)|2

]
. Then since |fλ(0)| =

∣∣∣|q0|2π⊥
q0

p0

∣∣∣ ≤ |q0|2|p0|,
we get by (4.7) and (4.12) that

gλ(r) ≤ 3|q0|4|p0|2 + 3C4 +
3T

(r1 − ε0)2

∫ r

0

gλ(s)ds.

By Gronwall’s Lemma, this implies that

gλ(r) ≤ (3|q0|4|p0|2 + 3C4)e
3T

(r1−ε0)2
T
, for all r ∈ [0, T ].

Since |Qλ
t | ≥ r1 − ε0 for any t ≤ τ and λ ≥ 1, we now get our assertion with

C3 = 1
(r1−ε0)2

(3|q0|4|p0|2 + 3C4)e
3T

(r1−ε0)2
T
.

Proof of Lemma 4.2. The fact that Ar
1(Q

λ
t , V

λ
t ) is bounded is easy since σ is bounded.

For (4.1), notice that for any t ≤ τ , we have that |Rλ
t | = |π⊥

Qλ
t

P λ
t | ≤ |P λ

t | ≤
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√
1 + |P λ

t |2 = 1√
1−|V λ

t |2
and |Qλ

t | ≥ r1 − ε0, so |Ar
2(Q

λ
t , V

λ
t , Rλ

t )| ≤ γ + 2
r1−ε0

|Rλ
t |.

Therefore,

E
[

sup
t∈[0,T∧τ ]

|Ar
2(Q

λ
t , V

λ
t , Rλ

t )|2
]
≤ 2γ2 +

8

(r1 − ε0)2
E
[

sup
t∈[0,T∧τ ]

|Rλ
t |2
]

≤ 2γ2 +
8

(r1 − ε0)2
C3.

Finally, by (4.4), we have that

|P λ
t |2π⊥

P λ
t
Qλ

t =
∣∣∣π⊥

Qλ
t
P λ

t

∣∣∣
2

Qλ
t − (Qλ

t · P λ
t )π⊥

Qλ
t
P λ

t .

This combined with Ito’s formula implies (4.2), and completes the proof of our first

assertion.

The second assertion is a direct consequence of the first one and Lemma 2.2.

5. Tightness of πQλ
t
V λ

t

We prove the tightness of V λ
t by proving that its components that are parallel to

Qλ
t and perpendicular to Qλ

t , respectively, are both tight. The tightness of the parallel

part πQλ
t
V λ

t is proved in this section, and the tightness of π⊥
Qλ

t

V λ
t will be proved in

the next section.

Let us first prepare the following result with respect to the differential of V λ
t .

Lemma 5.1. We have that Av
1(Q

λ
t , V

λ
t ) and Av

2(Q
λ
t , V

λ
t ) are bounded for t ∈ [0, T ]

and λ ≥ 1, and the following holds:

(5.1)

dV λ
t = Av

1(Q
λ
t , V

λ
t )dBt+Av

2(Q
λ
t , V

λ
t )dt−λ

√
1 − |V λ

t |2
(
∇U(Qλ

t )−(V λ
t ·∇U(Qλ

t ))V
λ
t

)
dt.

Proof. The fact that Av
1(Q

λ
t , V

λ
t ) and Av

2(Q
λ
t , V

λ
t ) are bounded is trivial since σ is

bounded and |V λ
t | ≤ 1. Also, (5.1) is a direct consequence of Ito’s formula.

Our main result of this section is the following.

Lemma 5.2. We have that {the distribution of {(πQλ
t
V λ

t )}t∈[0,T∧τ ]; λ ≥ 1} is tight as

probabilities on Lp for any p > 1, with all of its cluster point(s) in ℘(D([0, T ]; Rd)).

Let

A
‖,λ
jump(t) = (1 − |V λ

t |2)3/2(1 + |Rλ
t |2)∇U(Qλ

t ).

Then Lemma 5.2 is a direct consequence of Lemmas 5.3 and 5.4 given below.

Lemma 5.3. 1. There exist stochastic processes A
‖,λ
1 (t) and A

‖,λ
2 (t) such that they

are bounded for t ∈ [0, T ∧ τ ] and λ ≥ 1, and

(5.2) d(πQλ
t
V λ

t ) = A
‖,λ
1 (t)dBt + A

‖,λ
2 (t)dt − λA

‖,λ
jump(t)dt.
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2. {the distribution of {(πQλ
t
V λ

t )+λ
∫ t

0
A

‖,λ
jump(s)ds}t∈[0,T∧τ ]; λ ≥ 1} is tight as prob-

abilities on D([0, T ]; Rd).

Lemma 5.4. 1. supλ≥1 E
[(

λ
∫ T∧τ

0
|A‖,λ

jump(s)|ds
)2]

< ∞.

2. {the distribution of {λ
∫ t

0
A

‖,λ
jump(s)ds}t∈[0,T∧τ ]; λ ≥ 1} is tight as probabilities on

Lp for any p > 1, with all of its cluster point(s) in ℘(D([0, T ]; Rd)).

We prove these two lemmas in the rest of this section.

Proof of Lemma 5.3. Since πQλ
t
V λ

t =
(
V λ

t · Qλ
t

)
1

|Qλ
t |

2 Q
λ
t , we get (5.2) by a direct

calculation with the help of Lemma 5.1, with

A
‖,λ
1 (t) =

1

|Qλ
t |2

Qλ
t (

tQλ
t )A

v
1(Q

λ
t , V

λ
t ),

A
‖,λ
2 (t) =

1

|Qλ
t |2
(
Qλ

t · Av
2(Q

λ
t , V

λ
t ) + |V λ

t |2
)
Qλ

t −
2(Qλ

t · V λ
t )2

|Qλ
t |4

Qλ
t +

Qλ
t · V λ

t

|Qλ
t |2

V λ
t .

The fact that A
‖,λ
1 (t) and A

‖,λ
2 (t) are bounded for t ∈ [0, T ∧ τ ] and λ ≥ 1 is trivial.

The second assertion is an easy consequence of the first one and Lemma 2.2.

Proof of Lemma 5.4. The second assertion is an easy consequence of the first asser-

tion and Lemma 2.3. We prove the first assertion in the following.

Recall that A = {y ∈ R
d
∣∣∣
∣∣∣|y| − r1

∣∣∣ ≤ ε0 or |y| ≥ r2 − ε0}. So by assumption, for

any x ∈ A, we have that

|∇U(x)| = |h′(|x|)| = h′(|x|)k(x) = k(x)h′(|x|) x

|x| ·
x

|x|
= ∇U(x) · k(x)

x

|x| .

Let g be a function in C1
b (Rd) such that g(x) = k(x) x

|x|
for any x ∈ A. Then by the

definition of A
‖,λ
jump(t), we have that

|A‖,λ
jump(t)| =

∣∣∣ 1

(1 + |P λ
t |2)3/2

(1 + |π⊥
Qλ

t
P λ

t |2)∇U(Qλ
t )
∣∣∣ = A

‖,λ
jump(t) · g(Qλ

t )

as long as Qλ
t ∈ A.

By the formula of integration by parts and (5.2), we have that

λ

∫ t

0

A
‖,λ
jump(s) · g(Qλ

s )ds

=

∫ t

0

g(Qλ
s ) ·

d

ds

(∫ s

0

λA
‖,λ
jump(r)dr

)
ds

= g(Qλ
t ) ·
(∫ t

0

λA
‖,λ
jump(r)dr

)
−
∫ t

0

(∫ s

0

λA
‖,λ
jump(r)dr

)
· ∇g(Qλ

s )V
λ
s ds

= g(Qλ
t ) ·
[
− πQλ

t
V λ

t + πq0v0 +

∫ t

0

A
‖,λ
1 (s)dBs +

∫ t

0

A
‖,λ
2 (s)ds

]



STOCHASTIC EQUATION WITH UNIFORM MOTION 571

−
∫ t

0

[
− πQλ

s
V λ

s + πq0v0 +

∫ s

0

A
‖,λ
1 (r)dBr +

∫ s

0

A
‖,λ
2 (r)dr

]
· ∇g(Qλ

s )V
λ
s ds.

We have that |V λ
t | ≤ 1 for any t and λ ≥ 1. Let C5 = (‖g‖∞ + ‖g′‖∞T )(2 +

T supλ≥1 ‖A
‖,λ
2 ‖∞) and C6 = ‖g‖∞ + ‖∇g‖∞T . Then we get that

∣∣∣λ
∫ t

0

A
‖,λ
jump(s) · g(Qλ

s )ds
∣∣∣

≤ ‖g‖∞
[
2 + T‖A‖,λ

2 ‖∞ +
∣∣∣
∫ t

0

A
‖,λ
1 (s)dBs

∣∣∣
]

+‖∇g‖∞T
[
2 + T‖A‖,λ

2 ‖∞ + sup
s∈[0,T ]

∣∣∣
∫ s

0

A
‖,λ
1 (r)dBr

∣∣∣
]

≤ C5 + C6 sup
s∈[0,T ]

∣∣∣
∫ s

0

A
‖,λ
1 (r)dBr

∣∣∣.

Since

E
[

sup
s∈[0,T ]

∣∣∣
∫ s

0

A
‖,λ
1 (r)dBr

∣∣∣
2]

≤ 4E
[∣∣∣
∫ T

0

A
‖,λ
1 (r)dBr

∣∣∣
2]

≤ 4T‖A‖,λ
1 ‖2

∞,

the calculation above implies that

E
[∣∣∣λ
∫ t

0

A
‖,λ
jump(s) · g(Qλ

s )ds
∣∣∣
2]

≤ 2C2
5 + 2C2

6 · 4T‖A‖,λ
1 ‖2

∞.

We next estimate the difference between λ
∫ t

0
|A‖,λ

jump(s)|ds and λ
∫ t

0
A

‖,λ
jump(s) ·

g(Qλ
s )ds. Since AC ∩ D = {x ∈ R

d
∣∣∣r1 + ε0 < |x| < r2 − ε0}, we have by assumption

that there exists a constant ε1 > 0 such that |∇U(x)| ≤ ε1 as long as x ∈ AC ∩ D.

Since ‖g‖∞ ≤ 1 by assumption, and |A‖,λ
jump(s)| − A

‖,λ
jump(s) · g(Qs) = 0 as long as

Qs ∈ A, this implies that
∣∣∣|A‖,λ

jump(s)| − A
‖,λ
jump(s) · g(Qλ

s )
∣∣∣ ≤ 2|A‖,λ

jump(s)|1{Qλ
s∈AC}

≤ 2√
1 + |P λ

s |2
|∇U(Qλ

s )|1{Qλ
s∈AC}

≤ 2ε1√
1 + |P λ

s |2
1{Qλ

s∈AC}, s ≤ τ.

So

E
[∣∣∣λ
∫ T∧τ

0

|A‖,λ
jump(s)|ds − λ

∫ T∧τ

0

A
‖,λ
jump(s) · g(Qλ

s )ds
∣∣∣
2]

≤ λ2E
[( ∫ T

0

2ε1√
1 + |P λ

s |2
1{Qλ

s∈AC∩D}ds
)2]

≤ 4Tε2
1

∫ T

0

E
[
λ2
( 1√

1 + |P λ
s |2
)2

, Qλ
s ∈ AC ∩ D

]
ds.

So our assertion is a consequence of Lemma 5.5 below.
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Lemma 5.5. For any ε > 0, we have that

sup
s∈[0,T ],λ≥1

λ2E
[ 1

1 + |P λ
s |2

, |Qλ
s | ∈ (r1 + ε, r2 − ε)

]
< ∞.

Proof. Fix any ε > 0. By assumption, we have that there exists a constant ε2 > 0 such

that U(x) ≤ −ε2 whenenver |Qλ
s | ∈ (r1 +ε, r2−ε). Therefore, if |Qλ

s | ∈ (r1 +ε, r2−ε)

and Hλ
s > −1

2
ε2λ, then

√
1 + |P λ

s |2 = Hλ
s − λU(Qλ

s ) ≥ Hλ
s + λε2 ≥ 1

2
ε2λ. So

λ2E
[ 1

1 + |P λ
s |2

, {Qλ
s ∈ AC ∩ Dε} ∩ {Hλ

s > −1

2
ε2λ}

]
≤
( λ

1
2
ε2λ

)2

=
( 2

ε2

)2

.

Also, by Lemma 3.1 (1), we have that

Hλ
s ≥ H0 +

∫ s

0

Ah
1(Q

λ
u, V

λ
u )dBu − C1s.

Therefore, if λ is big enough such that −H0 + C1s ≤ −H0 + C1T ≤ 1
4
ε2λ, then

λ2E
[ 1

1 + |P λ
s |2

, {|Qλ
s | ∈ (r1 + ε, r2 − ε)} ∩ {Hλ

s ≤ −1

2
ε2λ}

]

≤ λ2P
(
Hλ

s ≤ −1

2
ε2λ
)

≤ λ2P
(∫ s

0

Ah
1(Q

λ
u, V

λ
u )dBu ≤ −1

2
ε2λ − H0 + C1s

)

≤ λ2P
(∫ s

0

Ah
1(Q

λ
u, V

λ
u )dBu ≤ −1

4
ε2λ
)

≤ λ2
(1

4
ε2λ
)−2

E
[∣∣∣
∫ s

0

Ah
1(Q

λ
u, V

λ
u )dBu

∣∣∣
2]

≤
(ε2

4

)−2

TC2
1 .

This completes the proof of our assertion.

6. Tightness of π⊥
Qλ

t

V λ
t

We complete the proof of the tigthness of V λ
t in this section. Our main result of

this section is the following.

Lemma 6.1. We have that
{
the distribution of

{
V λ

t∧τ

}
t∈[0,T ]

; λ ≥ 1
}

is tight as prob-

abilities on Lp([0, T ], Rd) for any p > 1, with its cluster point(s) in ℘(D([0, T ]; Rd)).

By Lemma 5.2, it suffices to prove the following.

Lemma 6.2. We have that {the distribution of {(π⊥
Qλ

t

V λ
t )}t∈[0,T∧τ ]; λ ≥ 1} is tight

as probabilities on Lp([0, T ], Rd) for any p > 1, with all of its cluster point(s) in

℘(D([0, T ]; Rd)).

We prove Lemma 6.2 in the rest of this section. Let us first make some prepara-

tion.
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Lemma 6.3.

sup
λ≥1

E
[

sup
t∈[0,T ]

(∫ t∧τ

0

dP λ
s

1 + |P λ
s |2
)2]

< ∞.

Proof. Let us first calculate d
(

P λ
t

1+|P λ
t |2

)
. Let

F λ
1 (t) :=

2

(1 + |P λ
t |2)2

(
|P λ

t |2σ(Qλ
t ) − P λ

t
tP λ

t σ(Qλ
t )
)
,

F λ
2 (t) :=

(
−
∑d

i,j=1 σ2
ij(Q

λ
t )

(1 + |P λ
t |2)2

+
4tP λ

t σ(Qλ
t )

tσ(Qλ
t )P

λ
t

(1 + |P λ
t |2)3

)
P λ

t − 2σ(Qλ
t )

tσ(Qλ
t )P

λ
t

(1 + |P λ
t |2)2

.

Then F λ
1 (t) and F λ

2 (t) are bounded for t ∈ [0, T ] and λ ≥ 1, and by Ito’s formula and

a simple calculation, we have that

d
( P λ

t

1 + |P λ
t |2
)

= − dP λ
t

1 + |P λ
t |2

+
2dP λ

t

(1 + |P λ
t |2)2

+ F λ
1 (t)dBt + F λ

2 (t)dt

− 2

(1 + |P λ
t |2)2

λ
(
|P λ

t |2∇U(Qλ
t ) − (P λ

t · ∇U(Qλ
t ))P

λ
t

)
dt.

Therefore,

∫ t∧τ

0

dP λ
s

1 + |P λ
s |2

=
p0

1 + |p0|2
− P λ

t∧τ

1 + |P λ
t∧τ |2

+ 2

∫ t∧τ

0

dP λ
s

(1 + |P λ
s |2)2

+

∫ t∧τ

0

(
F λ

1 (s)dBs + F λ
2 (s)ds

)

−
∫ t∧τ

0

2

(1 + |P λ
s |2)2

λ
(
|P λ

s |2∇U(Qλ
s ) − (P λ

s · ∇U(Qλ
s ))P

λ
s

)
ds.

So in order to get our assertion, it suffices to prove the following three estimates.

sup
λ≥1

E
[

sup
t∈[0,T ]

(∫ t∧τ

0

dP λ
s

(1 + |P λ
s |2)2

)2]
< ∞,(6.1)

sup
λ≥1

E
[

sup
t∈[0,T ]

(∫ t∧τ

0

(F λ
1 (s)dBs + F λ

2 (s)ds)
)2]

< ∞,(6.2)

sup
λ≥1

E
[

sup
t∈[0,T ]

(∫ t∧τ

0

λ

(1 + |P λ
s |2)2

·

·
(
|P λ

s |2∇U(Qλ
s ) − (P λ

s · ∇U(Qλ
s ))P

λ
s

)
ds
)2]

< ∞.(6.3)

(6.2) is trivial by Lemma 2.2 (1) since F λ
1 (t) and F λ

2 (t) are bounded. We prove (6.1)

and (6.3) in the following.

For (6.1), we have that

∫ t∧τ

0

dP λ
s

(1 + |P λ
s |2)2

=

∫ t∧τ

0

σ(Qλ
s )dBs

(1 + |P λ
s |2)2

− γ

∫ t∧τ

0

V λ
s ds

(1 + |P λ
s |2)2

− λ

∫ t∧τ

0

∇U(Qλ
s )ds

(1 + |P λ
s |2)2

.
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The estimates for the first two terms on the right hand side above are trivial. Also,

since
∣∣∣ ∇U(Qλ

s )
(1+|P λ

s |2)2

∣∣∣ ≤ |A‖,λ
jump(s)|, we get

sup
λ≥1

E
[

sup
t∈[0,T ]

(
λ

∫ t∧τ

0

∇U(Qλ
s )ds

(1 + |P λ
s |2)2

)2]
< ∞,

as an easy consequence of Lemma 5.4 (1).

Finally, for (6.3), we have by (4.3) that
∣∣∣|P λ

s |2∇U(Qλ
s ) − (P λ

s · ∇U(Qλ
s ))P

λ
s

∣∣∣

=
∣∣∣|P λ

s |2Qλ
s − (P λ

s · Qλ
s )P

λ
s

∣∣∣ · |∇U(Qλ
s )|

|Qλ
s |

= |P λ
s ||π⊥

Qλ
s
P λ

s ||∇U(Qλ
s )|

≤ |P λ
s |(1 + |π⊥

Qλ
s
P λ

s |2)|∇U(Qλ
s )| = |P λ

s |(1 + |P λ
s |2)3/2|A‖,λ

jump(s)|.

So (6.3) is also a direct consequence of Lemma 5.4 (1). This completes the proof of

our assertion.

The following is an easy corollary of Lemma 6.3.

Corollary 6.4.

sup
λ≥1

E
[

sup
t∈[0,T ]

(∫ t∧τ

0

λ∇U(Qλ
s )

1 + |P λ
s |2

ds
)2]

< ∞.

We next use Corollary 6.4 to prove the following.

Lemma 6.5.

sup
λ≥1

E
[( ∫ T∧τ

0

λ|∇U(Qλ
s )|

1 + |P λ
s |2

ds
)2]

< ∞.

Proof. The idea is similar to that of the proof of Lemma 5.4.

Let g be the same one as in the proof of Lemma 5.4. Since
∫ t

0

λg(Qλ
s ) · ∇U(Qλ

s )

1 + |P λ
s |2

ds

=

∫ t

0

g(Qλ
s ) · d

(∫ s

0

λ∇U(Qλ
r )

1 + |P λ
r |2

dr
)
ds

= g(Qλ
t ) ·
∫ t

0

λ∇U(Qλ
r )

1 + |P λ
r |2

dr −
∫ t

0

∇g(Qλ
s )V

λ
s ·
(∫ s

0

λ∇U(Qλ
r )

1 + |P λ
r |2

dr
)
ds,

we have that

E
[( ∫ T∧τ

0

λg(Qλ
s ) · ∇U(Qλ

s )

1 + |P λ
s |2

ds
)2]

≤
(
2‖g‖2

∞ + 2T 2‖∇g‖2
∞

)
E
[

sup
t∈[0,T ]

(∫ t∧τ

0

λ∇U(Qλ
r )

1 + |P λ
r |2

dr
)2]

,

which is bounded for λ ≥ 1 by Corollary 6.4.
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Also, as in the proof of Lemma 5.4, there exists a constant ε1 > 0 such that
∣∣∣|∇U(Qλ

s )| − g(Qλ
s ) · ∇U(Qλ

s )
∣∣∣ ≤ 2|∇U(Qλ

s )|1{Qλ
s∈AC} ≤ 2ε11{Qλ

s∈AC}, s ≤ τ,

so

E
[( ∫ T∧τ

0

λ|∇U(Qλ
s )|

1 + |P λ
s |2

ds −
∫ T∧τ

0

λg(Qλ
s ) · ∇U(Qλ

s )

1 + |P λ
s |2

ds
)2]

≤ λ2E
[( ∫ T

0

2ε1

1 + |P λ
s |2

1{Qλ
s∈AC∩D}ds

)2]

≤ 4ε2
1Tλ2E

[ ∫ T

0

1

(1 + |P λ
s |2)2

1{Qλ
s∈AC∩D}ds

]

= 4ε2
1Tλ2

∫ T

0

E
[ 1

(1 + |P λ
s |2)2

, Qλ
s ∈ AC ∩ D

]
ds,

which is bounded by Lemma 5.5.

Now we are ready to prove the tightness of π⊥
Qλ

t

V λ
t , the component of V λ

t that is

perpendicular to Qλ
t . As in Section 5.2, we prove Lemma 6.2 by proving the following

two lemmas.

Lemma 6.6. 1. There exist stochastic processes A⊥,λ
1 (t) and A⊥,λ

2 (t) such that they

are bounded for t ∈ [0, T ∧ τ ] and λ ≥ 1, and

(6.4) d(π⊥
Qλ

t
V λ

t ) = A⊥,λ
1 (t)dBt + A⊥,λ

1 (t)dt + λ(V λ
t · ∇U(Qλ

t ))(1 − |V λ
t |2)Rλ

t dt.

2. {the distribution of {(π⊥
Qλ

t

V λ
t )−λ

∫ t

0
(V λ

s ·∇U(Qλ
s ))(1−|V λ

s |2)Rλ
sds}t∈[0,T∧τ ]; λ ≥

1} is tight as probabilities on C([0, T ]; Rd).

Lemma 6.7. 1. supλ≥1 E
[
λ
∫ T∧τ

0
|(V λ

s · ∇U(Qλ
s ))(1 − |V λ

s |2)Rλ
s |ds

]
< ∞.

2. {the distribution of {λ
∫ t

0
(V λ

s · ∇U(Qλ
s ))(1− |V λ

s |2)Rλ
s ds}t∈[0,T∧τ ]; λ ≥ 1} is tight

as probabilities on Lp for any p > 1, with its cluster point(s) in ℘(D([0, T ]; Rd)).

Proof of Lemma 6.6. The first assertion is trivial by Lemmas 5.1 and 5.3, with

A⊥,λ
1 (t) = Av

1(Q
λ
t , V

λ
t ) − A

‖,λ
1 (t),

A⊥,λ
2 (t) = Av

2(Q
λ
t , V

λ
t ) − A

‖,λ
2 (t).

The second assertion is trivial by the first assertion and Lemma 2.2.

Proof of Lemma 6.7. We have that

E
[
λ

∫ T∧τ

0

|(V λ
s ,∇U(Qλ

s ))(1 − |V λ
t |2)Rλ

s |ds
]

≤ E
[(

λ

∫ T∧τ

0

|∇U(Qλ
s )|

1 + |P λ
s |2

ds
)(

sup
s∈[0,T∧τ ]

|Rλ
s |
)]

≤ E
[(

λ

∫ T∧τ

0

|∇U(Qλ
s )|

1 + |P λ
s |2

ds
)2]1/2

× E
[

sup
s∈[0,T∧τ ]

|Rλ
s |2
]1/2

.
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This combined with Lemma 6.5 and Lemma 4.1 gives us our first assertion. The

second assertion is easy by the first assertion and Lemma 2.3.

7. Proof of the uniqueness

In this section, we prove the uniqueness of the probability that satisfies (µ1) ∼
(µ5). The idea is as follows. We first prove that the particle only “passes through”

and never “stays on” the boundary |Qt| = r2 of the two phases. This is a combination

of [2, Corollary 5] and Lemma 7.1 in the following. Indeed, [2, Corollary 5] ensures

that the particle never “stays on” the set |Qt| = r2 when it arrives from the diffusion

phase, and Lemma 7.1 ensures that the same holds when it arrives from the uniform

motion phase. Next, given any solution of the martingale problem, there exists a

Brownian motion such that our solution can be represented as the distribution of the

solution of the corresponding system of SDEs with jump (see Claim 1 in the proof of

Theorem 1.1 (1)). As mentioned in Remark 1.2, we can convert the gotten SDE with

respect to (Qt, Vt, Ht, Rt) to SDEs with respect to (Qt, Pt) and (Ht, Rt) in diffusion

phase and uniform motion phase, respectively. Therefore, since the coefficients of the

new SDEs are all Lipschitz continuous, we can prove the pathwise uniqueness of the

solution (see Claim 2 in the proof of Theorem 1.1 (1)). Finally, in the same way as in

Yamada-Watanabe [5], we prove that the pathwise uniqueness implies the uniqueness

in the sense of the probability law, and this completes our proof of the uniqueness.

Notice that if a probability measure satisfies (µ4), then we have that the particle

is in uniform motion in |Qt| ∈ (r1, r2), i.e., when considering the behavior of the

particle in this phase, we can assume that Vt and Qt are two non-random processes

with both of them keeping in a common (or opposite) direction.

Lemma 7.1. Let Vt and Qt be two non-random processes with Vt ‖ Qt ‖ Q0 for any t,

and that |Qt| ≥ r1. Also, let ν ∈ ℘(C([0,∞); R)× C([0,∞); Rd)) be a solution of the

martingale problem Lu with initial condition R0 ⊥ Q0. Then for any initial condition

H0, R0 and any t > 0, we have that ν(H2
t = 1 + |Rt|2) = 0.

Proof. Choose and fix any H0 ∈ R and R0 ∈ R
d.

Since ν is a solution of the martingale problem Lu, and {(Ht, Rt)}t is continuous,

we have by [4] that there exists a Brownian motion {Bt}t under ν such that (Ht, Rt)

satisfies the following SDE.

dHt = tVtσ(Qt)dBt − γdt

dRt =
(
σ(Qt) − Qt

tQtσ(Qt)
|Qt|2

)
dBt − Qt·Vt

|Qt|2
Rtdt.

By solving this SDE directly, we get that

Ht = H0 +

∫ t

0

tVsσ(Qs)dBs − γt,
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Rt = exp
(
−
∫ t

0

Qs · Vs

|Qs|2
ds
)
R0

+

∫ t

0

(
σ(Qs) −

Qs
tQsσ(Qs)

|Qs|2
)

exp
(
−
∫ t

s

Qu · Vu

|Qu|2
du
)
dBs.

Choose e1, . . . , ed−1 as an orthonormal basis of Q⊥
0 , the ortho-complement space of Q0.

Since Qu, u ∈ [0, t], keep in the same direction, it is trivial that Rt is orthogonal to Q0

for any t ≥ 0, so we can write Rt = R1
1e1 + · · ·+Rd−1

t ed−1. Hence |Rt|2 = |R1
t |2 + · · ·+

|Rd−1
t |2. Choose an arbitrary t > 0 and fix it from now on. Then the calculation above

implies that t(Ht−H0, R
1
t −exp

(
−
∫ t

0
Qs·Vs

|Qs|2
ds
)
R1

0, . . . , R
d−1
t −exp

(
−
∫ t

0
Qs·Vs

|Qs|2
ds
)
Rd−1

0 )

is a d-dimensional Gaussian random variable. Write it as X ∼ N(M, Σ2). So in

order to prove our lemma, it suffices to prove that Σ2 is non-degenerate. Suppose

not, then there exist a, b1, . . . , bd−1 ∈ R such that (a, b1, . . . , bd−1) 6= 0 ∈ R
d and

(a, b1, . . . , bd−1)Σ = 0, hence (a, b1, · · · , bd−1)X ∼ N((a, tb)M, 0). Write b = b1e1 +

· · · bd−1ed−1. Then we get that

E
[(

a

∫ t

0

tVsσ(Qs)dBs+
tb

∫ t

0

(
σ(Qs)−

Qs
tQsσ(Qs)

|Qs|2
)

exp
(
−
∫ t

s

Qu · Vu

|Qu|2
du
)
dBs

)2]
= 0.

The left hand side above is equal to

∫ t

0

∣∣∣atVsσ(Qs) + tb
(
σ(Qs) −

Qs
tQsσ(Qs)

|Qs|2
)

exp
(
−
∫ t

s

Qu · Vu

|Qu|2
du
)∣∣∣

2

ds

=

∫ t

0

∣∣∣
(
atVs + exp

(
−
∫ t

s

Qu · Vu

|Qu|2
du
)

tb
)
σ(Qs)

∣∣∣
2

ds.

Here in the last equality, we used the fact that b ⊥ Qs. So

(
atVs + exp

(
−
∫ t

s

Qu · Vu

|Qu|2
du
)

tb
)
σ(Qs) = 0

for almost every s ∈ [0, t]. Since tσσ is strictly positive-definite and b is perpendic-

ular to Vs, we get that a = 0 and b = 0, which contradicts the assumption that

(a, b1, . . . , bd−1) 6= 0.

Proof of Theorem 1.1 (1). We complete the proof of Theorem 1.1 (1) in the rest of

this section. First we have the following.
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Claim 1. Let µ be a probability that satisfies (µ1) ∼ (µ5), and let X = {Xt}t≥0 =

{(Qt, Vt, Ht, Rt)}t≥0 denote the canonical process. Then there exists a Brownian mo-

tion {Bt}t≥0 such that X satisfies the following system of SDEs with jump.

(7.1)





dQt = Vtdt

dV c
t = 1{|Qt|>r2}

(
Av

1(Qt, Vt)dBt + Av
2(Qt, Vt)dt

)

∆Vt = 1{|Qt|=r1}
2Qt

|Qt|
+ 1{|Qt|=r2,Qt·Vt−<0}

(
− Qt

|Qt|
− Vt−

)

−1
{|Qt|=r2,Qt·Vt−>0,Ht<

√
1+|Rt|2}

2Qt

|Qt|

+1
{|Qt|=r2,Qt·Vt−>0,Ht>

√
1+|Rt|2}

(√
H2

t −1−|Rt|2Qt/|Qt|+Rt

Ht
− Qt

|Qt|

)

dHt = Ah
1(Qt, Vt)dBt + Ah

2(Qt, Vt)dt

dRt = Ar
1(Qt, Vt)dBt + Ar

2(Qt, Vt, Rt)dt.

Here V c
t and ∆Vt stand for the continuous part and the jump part of Vt, respectively.

Proof of Claim 1. Let τ0 = 0 and for any k ∈ N, let τk = inf{t > τk−1; |Qt| =

r1 or r2}. Then by [2, Corollary 5] and Lemma 7.1, we have that τk is strictly in-

creasing with respect to k. Also, for any k ∈ N, it is easy to be seen that the process

{Xt; t ∈ [τk, τk+2]} at least includes a piece of uniform motion, either from |Qt| = r1

to |Qt| = r2, or from |Qt| = r2 to |Qt| = r1, with the norm of velocity equal to 1, so

τk+2 − τk ≥ r2 − r1. This is true for any k ∈ N, so we get that limk→∞ τk = ∞.

Let us prepare the notation Uη
t = Ut+η−Uη for any t > 0, any stopping time η and

any stochastic process U . Then we have that for any k ≥ 0, {Xτk

t ; t ∈ [0, τk+1 − τk]}
is a continuous solution of the martingale problem L. Therefore, by Revuz-Yor [4],

there exists a Brownian motion {B(k)
t }t such that

dXτk
t = K1(Qt, Vt)dB

(k)
t + K2(Qt, Vt, Rt)dt, t ∈ (0, τk+1 − τk).

By enlarging the probability space if necessary, we may assume that {B(k)
t }t, k ≥ 0,

are independent. For any t ≥ 0, define Bt by Bt = B
(k)
t−τk

+ B
(k−1)
τk−τk−1

+ · · · + B
(0)
τ1 if

t ∈ [τk, τk+1). Then {Bt}t≥0 is a Brownian motion, and it is trivial that (Qt, Vt, Ht, Rt)

satisfies all of the equations in (7.1) except the one with respect to ∆Vt. The fact that

∆Vt satisfies the third equation in (7.1) is a simple consequence of (µ4) and (µ5).

Claim 2. Pathwise uniqueness of the solution of (7.1) holds.

Proof of Claim 2. Let {Yt = (QY
t , V Y

t , HY
t , RY

t )} and {Zt = (QZ
t , V Z

t , HZ
t , RZ

t )} be

two strong solutions of (7.1). We prove that P (Yt = Zt, t ≥ 0) = 1.

Let τ0 = 0 and for any k ∈ N, let τk = inf{t > τk−1; |QY
t | = r2 or |QZ

t | = r2}.
(Notice that the definition of τk is different from before.) By [2, Corollary 5] and

Lemma 7.1, we have that τk is strictly increasing with respect to t. Also, we use ak as
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a flag to clarify in which phase the particle evolves right after τk, precisely, we define

ak =

{
1; if Qτk

· Vτk
> 0,

0; if Qτk
· Vτk

< 0.

So ak = 1 if the particle is in the diffusion phase right after τk, and ak = 0 if the

particle is in the uniform motion phase right after τk. By (µ5), ak is given by

ak =





1; if Qτk
· Vτk− > 0 and Ht >

√
1 + |Rt|2,

0; if (1) Qτk
· Vτk− < 0,

or (2) Qτk
· Vτk− > 0 and Ht <

√
1 + |Rt|2.

In order to prove Claim 2, it suffices to prove that P (Yt = Zt, t < τk) for any

k ∈ N. We prove this by induction.

First, for k = 1, we have that until τ1, both Y and Z keep in the diffusion

phase, hence both |V Y
t | < 1 and |V Z

t | < 1 almost surely by definition. So as

claimed in Remark 1.2, if we define P Y
t =

V Y
t√

1−|V Y
t |2

and P Z
t =

V Z
t√

1−|V Z
t |2

, then both

{(QY
t , P Y

t ); t < τ1} and {(QZ
t , P Z

t ); t < τ1} satisfy the following system of SDEs

(7.2)





dQt = Pt√
1+|Pt|2

dt

dPt = σ(Qt)dBt − γ Pt√
1+|Pt|2

dt,

and (HY
t , RY

t ) and (HZ
t , RZ

t ) are given by HU
t =

√
1 + |P U

t |2 and RU
t = π⊥

QU
t
P U

t ,

U ∈ {Y, Z}. Since all of the coefficients of (7.2) are Lipschitz continuous, the pathwise

uniqueness of the solution of (7.2) holds. Therefore,

P (Yt = Zt, t < τ1) = 1.

Next, for any k ∈ N, if P (Yt = Zt, t < τk) = 1, we prove in the following that

P (Yt = Zt, t < τk+1) = 1. Indeed, since for U ∈ {Y, Z}, we have that (QU
t , HU

t , RU
t )

is continuous in t and ∆V U
t is determined by QU

t , HU
t , RU

t and V U
t−, our assumption

P (Yt = Zt, t < τk) = 1 implies that

P (Yτk
= Zτk

) = 1.

In particular, since by the definition of τk, at least one of QY
τk

and QZ
τk

has norm r2,

we get that P (|QY
τk
| = |QZ

τk
| = r2) = 1. Depending on whether ak = 1 or ak = 0.

We now have that the particle stays in either the diffusion phase or the uniform

motion phase, i.e., |QY
t |, |QZ

t | ∈ (r2,∞), t ∈ (τk, τk+1) or |QY
t |, |QZ

t | ∈ [r1, r2), t ∈
(τk, τk+1), respectively. In particular, notice that in the latter case, we have that

τk+1 = τk + 2(r2 − r1).

As in the proof of Claim 1, we use the notation Uη
t = Ut+η − Uη for any t > 0,

any stopping time η and any stochastic process U . Then by Remark 1.2, we have

that either of the following two cases holds, depending on ak = 1 or ak = 0: (1) let
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P Y
t :=

V Y
t√

1−|V Y
t |2

and P Z
t :=

V Z
t√

1−|V Z
t |2

, then both {(QY,τk

t , P Y,τk

t ); t < τk+1 − τk} and

{(QZ,τk

t , P Z,τk

t ); t < τk+1 − τk} satisfy the SDE (7.2) and (HY
t , RY

t ) and (HZ
t , RZ

t ) are

given by HU
t =

√
1 + |P U

t |2 and RU
t = π⊥

QU
t
P U

t , U ∈ {Y, Z}, t ∈ (τk, τk+1); (2) both

(QY
t , V Y

t ) and (QZ
t , V Z

t ), t ∈ (τk, τk+1) are given by

dQt = Vtdt, Vt = −1{t∈(τk ,τk+r2−r1)}
Qt

|Qt|
+ 1{t∈[τk+r2−r1,τk+1)}

Qt

|Qt|
,

and both (HY,τk

t , RY,τk

t ) and (HZ,τk

t , RZ,τk

t ) satisfy the SDE

(7.3)

{
dHt = tVtσ(Qt)dBt − γdt,

dRt =
(
σ(Qt) − 1

|Qt|2
Qt{tQt}σ(Qt)

)
dBt − Qt·Vt

|Qt|2
Rtdt.

Since all of the coefficients in (7.2) and (7.3) are Lipschitz continuous, the pathwise

uniqueness of the solution of (7.2) and (7.3) holds. Therefore,

P (Yt = Zt, t < τk+1) = 1.

This completes the proof of Claim 2 by induction.

Now, we are ready to complete the proof of Theorem 1.1 (1). By Claims 1 and

2, it suffices to prove that the pathwise uniqueness of the solution of (7.1) implies

that the uniqueness in the sense of the probability law holds for the solution of the

same equation. We prove this in the following. The idea is similar to that of [5].

Let (Yt, Bt) and (Y ′
t , B

′
t) be two weak solutions of (7.1), and let P (dw1dw2) and

P ′(dw1dw2) be the probability laws of them on (W̃ × W,B(W̃ × W )). Here W̃ is as

before, and W = C([0,∞); Rd). Let Pw2(dw1) be the regular conditional distribution

of P (dw1dw2) given w2, and define P ′
w2

(dw1) in the same way. Finally, define a

probability measure Q(dw1dw2dw3) on (W̃ × W̃ × W,B(W̃ × W̃ × W )), by

Q(dw1dw2dw3) = Pw3(dw1)P
′
w3

(dw2)R(dw3),

where R is the probability law of Brownian motion {Bt} on (W,B(W )).

Define Bt(W ) = σ{w(s), s ≤ t}, and define Bt(W̃ ), Bt(W̃ ×W ) and Bt(W̃ × W̃ ×
W ) in the same way. As in [5, Lemma 1], for any B ∈ Bt(W̃ ), we have that Pw(B)

and P ′
w(B) are Bt(W )-measurable. So for any t > s > 0, any Bs(W̃ )-measurable

functions F1, F2 and Bs(W )-measurable function F3, we have that
∫

fW
F1(w1)Pw(dw1)

and
∫

fW
F2(w2)P

′
w(dw2) are Bs(W )-measurable, hence

∫

fW×fW×W

[wi
3(t) − wi

3(s)]F1(w1)F2(w2)F3(w3)Q(dw1dw2dw3)

=

∫

W

[wi
3(t) − wi

3(s)]
(∫

fW

F1(w1)Pw(dw1)
)(∫

fW

F2(w2)P
′
w(dw2)

)
F3(w)R(dw)

= 0.
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Similarly,
∫

fW×fW×W

{
[wi

3(t) − wi
3(s)][w

j
3(t) − wj

3(s)] − δij(t − s)
}

F1(w1)F2(w2)F3(w3)Q(dw1dw2dw3) = 0.

Therefore, {w3(t)}t is a {Bt(W̃ × W̃ × W )}-BM under Q.

Since (Yt, Bt) and (w1, w3) are the equivalent processes and so are (Y ′
t , B

′
t) and

(w2, w3), we have two solutions (w1, w3) and (w2, w3) on the same filtered space (W̃ ×
W̃×W,B(W̃×W̃ ×W ), Q;Bt(W̃×W̃ ×W )). Since the initial conditions are the same,

we get from the pathwise uniqueness of the solution that w1(t) = w2(t), Q-almost

surely. This implies that P (dw1dw2) = P ′(dw1dw2), and completes our proof of the

uniqueness.

8. The convergence

In this section, we prove that any cluster point of µλ as λ → ∞ satisfies (µ1)

∼ (µ5). This combined with Theorem 1.1 (1) completes the proof of Theorem 1.1

(2). First, it suffices to prove the assertion with t ∈ [0, T ] for any T > 0. Also, since

limλ→∞ µλ(τ < T ) = 0 by Corollary 3.2, it suffices to consider the processes with t∧τ

instead of t.

Let µ∞ be any such cluster point, i.e., there exists a sequence λn → ∞ (n → ∞)

such that µλn
→ µ∞ weakly as n → ∞.

The fact that µ∞ satisfies (µ1) is trivial, and the fact that µ∞ satisfies (µ2) is a

direct consequence of Corollary 3.2.

Also, if we can prove that it satisfies (µ4), then dVt = 0 in the domain |Qt| ∈
(r1, r2); while when |Qt| > r2, we have that ∇U(Qt) = 0, so by a simple calculation, we

get that in the domain |Qt| > r2, dV λ
t = Av

1(Q
λ
t , V

λ
t )dBt + Av

2(Q
λ
t , V

λ
t )dt. Combining

this with Lemmas 3.1 and 4.2, we get that µ∞ satisfies (µ3).

Therefore, in order to get our assertion, it suffices to prove that µ∞ satisfies (µ4)

and (µ5).

We first prepare the following.

Lemma 8.1.
∫ T∧τ

0
f(Qt)g(Vt)dt is continuous in (Q·, V·) ∈ D([0, T ])× Lp([0, T ]) for

any p ≥ 1 and any f, g ∈ C1
b (Rd; R).

Proof. For any (Q1, V 1) and (Q2, V 2), we have that

∣∣∣
∫ T

0

f(Q1
t )g(V 1

t )dt −
∫ T

0

f(Q2
t )g(V 2

t )dt
∣∣∣

≤
∣∣∣
∫ T

0

f(Q1
t )(g(V 1

t ) − g(V 2
t ))dt

∣∣∣+
∣∣∣
∫ T

0

(
f(Q1

t ) − f(Q2
t )g(V 2

t )
)
dt
∣∣∣
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≤ ‖f‖∞‖g′‖∞
∣∣∣
∫ T

0

∣∣∣V 1
t − V 2

t

∣∣∣dt + ‖g‖∞‖f ′‖∞
∫ T

0

|Q1
t − Q2

t |dt.

So if {Q1
t − Q2

t ; t ∈ [0, T ]} → 0 in D([0, T ]), hence in Lp([0, T ]), and if {V 1
t − V 2

t ; t ∈
[0, T ]} → 0 in L1([0, T ]), then

∫ T∧τ

0
f(Q1

t )g(V 1
t )dt −

∫ T∧τ

0
f(Q2

t )g(V 2
t )dt → 0.

Notice that since Vt =
√

1 − |Vt|2Rt + πQt
Vt, and Rt is almost surely finite, we

have that {Vt 6= ± Qt

|Qt|
} ⊂ {|Vt| < 1}. Therefore, the fact that µ∞ satisfies (µ4) is a

consequence of the following two lemmas.

Lemma 8.2. For any g ∈ C∞
0 (Rd × R

d) with supp(g) ∈
(
B(0, r2) \ B(0, r1)

)
× R

d,

we have that g(Qt, Vt) is continuous under µ∞.

Proof. Choose any such g. Then there exist constants ε1, ε2 > 0 such that g(Qt, Vt) 6=
0 ⇒ |Qt| ∈ (r1 + ε1, r2 − ε1), hence U(Qt) < −ε2.

By Lemma 5.1 and Ito’s formula, we have that

dg(Qλ
t , V

λ
t )

= g1(Q
λ
t , V

λ
t ) · V λ

t dt + g2(Q
λ
t , V

λ
t ) ·

(
Av

1(Q
λ
t , V

λ
t )dBt + Av

2(Q
λ
t , V

λ
t )dt

)

−g2(Q
λ
t , V

λ
t ) · λ

(
(1 − |V λ

t |2)1/2∇U(Qλ
t ) − (V λ

t · ∇U(Qλ
t ))(1 − |V λ

t |2)Pt

)
dt

+
1

2
g22(Q

λ
t , V

λ
t )Av

1(Q
λ
t , V

λ
t )2dt.

By Lemma 5.5, we have that

(8.1) sup
λ≥1

sup
s∈[0,T ]

λ2Eµλ

[
(1 − |V λ

t |2)1{|Qλ
t |∈(r1+ε1,r2−ε1)}

]
< ∞.

The other coefficients are all bounded. Therefore, we get by Lemma 2.2 that

{the distribution of {g(Qλ
t , V

λ
t ), t ∈ [0, T ]}; λ ≥ 1} is tight in D([0, T ]). Since g(Qλ

t , V
λ
t )

is continuous for any λ ≥ 1, and C([0, T ]) is closed in D([0, T ]), we get our asser-

tion.

Lemma 8.3. We have µ∞-almost surely that |Vt| = 1 whenever |Qt| < r2.

Proof. We first prove the assertion for |Qt| ∈ (r1, r2), i.e., we prove that

µ∞(
{
|Qt| ∈ (r1, r2) and |Vt| < 1 for some t ∈ [0, T ]

}
) = 0.

It suffices to prove that

µ∞(
{
|Qt| ∈ (r1 + ε, r2 − ε) and |Vt| < 1 − δ for some t ∈ [0, T ]

}
) = 0

for any ε, δ > 0. Since by Lemma 8.2, we have µ∞-almost surely that Vt is continuous

with respect to t when |Qt| ∈ (r1, r2), it suffices, in turn, to prove that

(8.2) µ∞(
{∫ T

0

1{|Qt|∈(r1+ε,r2−ε)}1{|Vt|<1−δ}dt > 0
}

) = 0.
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Fix any ε, δ > 0. Choose g1, g2 ∈ C1
0 (Rd) such that 1{|q|∈(r1+ε,r2−ε)} ≤ g1(q) ≤

1{|q|∈(r1+
ε
2
,r2−

ε
2
)} and 1{|v|<1−δ} ≤ g2(v) ≤ 1{|v|<1− δ

2
}. Then in order to prove (8.2), it

suffices to prove that

µ∞

({∫ T∧τ

0

g1(Qt)g2(Vt)dt > 0
})

= 0.

By Lemma 8.1, we have that {
∫ T

0
g1(Qt)g2(Vt)dt > 0} is an open set. So

µ∞(
{∫ T∧τ

0

g1(Qt)g2(Vt)dt > 0
}

)

≤ lim
n→∞

µλn
(
{∫ T∧τ

0

g1(Qt)g2(Vt)dt > 0
}

)

≤ lim
n→∞

µλn
(
{∫ T∧τ

0

1{|Qt|∈(r1+ ε
2
,r2−

ε
2
)}1{|Vt|<1− δ

2
}dt > 0

}
)

≤ lim
n→∞

µλn
(
{
|Qt| ∈ (r1 +

ε

2
, r2 −

ε

2
) and |Vt| < 1 − δ

2
for some t ∈ [0, T ∧ τ ]

}
).

On the other hand, by assumption, there exists a constant η > 0 such that

|q| ∈ (r1 + ε
2
, r2 − ε

2
) ⇒ U(q) < −η. Also, for any λ ≥ 1, we have that

|V λ
t | < 1 − δ

2
⇔ |P λ

t | <
1 − δ

2√
1 − (1 − δ

2
)2

⇒ |P λ
t | <

√
1

δ
.

So

|Qλ
t | ∈ (r1 +

ε

2
, r2 −

ε

2
), |V λ

t | < 1 − δ

⇒ Hλ
t =

√
1 + |P λ

t |2 + λU(Qλ
t ) <

√
1 +

1

δ
− λη.

Therefore, for any λ ≥ 1 large enough such that
√

1 + 1
δ
−λη < −η

2
λ, we have by the

definition of µλ and Lemma 3.1 (2) that

µλ(
{
|Qt| ∈ (r1 +

ε

2
, r2 −

ε

2
) and |Vt| < 1 − δ

2
for some t ∈ [0, T ∧ τ ]

}
)

= P (
{
|Qλ

t | ∈ (r1 +
ε

2
, r2 −

ε

2
) and |V λ

t | < 1 − δ

2
for some t ∈ [0, T ∧ τ ]

}
)

≤ P (
{
Hλ

t <

√
1 +

1

δ
− λη for some t ∈ [0, T ∧ τ ]

}
)

≤ P (
{

sup
t∈[0,T ]

|Hλ
t | >

η

2
λ
}

)

≤ λ−1 2

η
E[ sup

t∈[0,T ]

|Hλ
t |]

≤ λ−1 2

η
C2 → 0, λ → ∞.

This completes the proof of our assertion for |Qt| ∈ (r1, r2).
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Since |Qt| ≥ r1 µ∞-almost surely by (µ2), the only thing left to be proven is that

under µ∞, |Vt| = 1 when |Qt| = r1. It suffices to prove that there exists an ε > 0

small enough such that
∫ T∧τ

0
(1 − |Vt|2)1{|Qt|∈(r1−ε,r1+ε)}dt = 0, µ∞-almost surely.

By assumption, there exists a function g ∈ C1
b (R

d) and constants δ, ε > 0 such

that δ1{|q|∈(r1−ε,r1+ε)} ≤ g(q) ≤ |∇U(q)| for any q ∈ R
d. By Lemma 8.1, we have that

{
∫ T∧τ

0
(1 − |Vt|2)g(Qt)dt > a} is an open set in D([0, T ]) × Lp([0, T ]) for any a > 0.

So for any a > 0, we have that

µ∞

(∫ T∧τ

0

(1 − |Vt|2)1{|Qt|∈(r1−ε,r1+ε)}dt > a
)

≤ µ∞

(∫ T∧τ

0

(1 − |Vt|2)g(Qt)dt > δa
)

≤ lim
n→∞

µλn

(∫ T∧τ

0

(1 − |Vt|2)g(Qt)dt > δa
)

≤ (δa)−1 lim
n→∞

λ−1
n Eµλn

[
λn

∫ T∧τ

0

(1 − |Vt|2)|∇U(Qt)|dt
]
.

The expectation on the right hand side above is bounded for n ∈ N by Lemma 6.5,

so

µ∞

(∫ T∧τ

0

(1 − |Vt|2)1{|Qt|∈(r1−ε,r1+ε)}dt > a
)

= 0, a > 0.

Therefore,

µ∞

( ∫ T∧τ

0

(1 − |Vt|2)1{|Qt|∈(r1−ε,r1+ε)}dt = 0
)

= 1.

Finally, we check that µ∞ satisfies (µ5). This is a consequence of the following

three Lemmas.

Lemma 8.4. There exists a constant ε > 0 such that
∫ T∧τ

0

1
{Ht<

√
1+|Rt|2}

1{|Qt|∈(r2−ε,r2+ε)}(1 − |Vt|2)dt = 0, µ∞ − almost surely.

Proof. Let ε > 0 be a constant such that |∇U(x)| > 0 as long as |x| ∈ (r2 − 2ε, r2).

It suffices to prove that

µ∞

(∫ T∧τ

0

1
{Ht<

√
1+|Rt|2−2ε1}

1{|Qt|∈(r2−ε,r2+ε)}(1 − |Vt|2)dt > ε3

)
= 0

for any ε1, ε3 > 0.

Choose f1 ∈ C∞
b (R) and f2 ∈ C∞

0 (Rd) such that

1{x>2ε1} ≤ f1(x) ≤ 1{x>ε1}, 1{|x|∈(r2−ε,r2+ε)} ≤ f2(x) ≤ 1{|x|∈(r2−2ε,r2+2ε)}.
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Since
∫ T∧τ

0
f1(
√

1 + |Rt|2−Ht)f2(Qt)(1−|Vt|2)dt is continuous with respect to (Q, V, H, R),

we have that

µ∞

(∫ T∧τ

0

1
{Ht<

√
1+|Rt|2−2ε1}

1{|Qt|∈(r2−ε,r2+ε)}(1 − |Vt|2)dt > ε3

)

≤ µ∞

(∫ T∧τ

0

f1(
√

1 + |Rt|2 − Ht)f2(Qt)(1 − |Vt|2)dt > ε3

)

≤ lim
n→∞

µλn

(∫ T∧τ

0

f1(
√

1 + |Rt|2 − Ht)f2(Qt)(1 − |Vt|2)dt > ε3

)
.

Therefore, in order to get our assertion, it suffices to prove that

(8.3) lim
λ→∞

P
(∫ T∧τ

0

f1(
√

1 + |Rλ
t |2 − Hλ

t )f2(Q
λ
t )(1 − |V λ

t |2)dt > ε3

)
= 0.

We prove this in the following.

Notice that for any λ ≥ 1, we have that Hλ
t =

√
1 + |P λ

t |2+λU(Qλ
t ) ≥

√
1 + |Rλ

t |2+
λU(Qλ

t ), therefore, if Hλ
t <

√
1 + |Rλ

t |2 − ε1, then U(Qλ
t ) < 0, which implies that

Qλ
t ∈ (r1, r2), so if |Qλ

t | ∈ (r2−2ε, r2 +2ε) in addition, we get that |Qλ
t | ∈ (r2−2ε, r2).

So for any δ ∈ (0, 2ε) and λ ≥ 1, we have that

P
(∫ T∧τ

0

f1(
√

1 + |Rλ
t |2 − Hλ

t )f2(Q
λ
t )(1 − |V λ

t |2)dt > ε3

)

≤ P
(∫ T∧τ

0

1
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−2ε,r2−δ]}(1 − |V λ
t |2)dt > ε3/2

)

+P
(∫ T∧τ

0

1
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−δ,r2)}(1 − |V λ
t |2)dt > ε3/2

)
.

Let us first deal with the second term on the right hand side above. Since

|Qλ
t | ∈ (r2 − δ, r2), we have that Hλ

t + λ|U(Qλ
t )| = Hλ

t − λU(Qλ
t ) =

√
1 + |P λ

t |2 =

(1 − |V λ
t |2)−1/2, so

λ|∇U(Qλ
t )|(1 − |V λ

t |2)1/2 =
|∇U(Qλ

t )|
|U(Qλ

t )|
· λ|U(Qλ

t )|
Ht + λ|U(Qλ

t )|
.

Let a(δ) := inf |x|∈(r2−δ,r2)
|∇U(x)|
|U(x)|

. Then by assumption, we have that a(δ) → ∞ as

δ → 0. Moreover, since λ|U(Qλ
t )| =

√
1 + |P λ

t |2 − Hλ
t ≥

√
1 + |Rλ

t |2 − Hλ
t , we have

that

λ|U(Qλ
t )|

Hλ
t + λ|U(Qλ

t )|
= 1 − Hλ

t

Hλ
t + λ|U(Qλ

t )|

≥ 1 − Hλ
t

Hλ
t +

√
1 + |Rλ

t |2 − Hλ
t

=

√
1 + |Rλ

t |2 − Hλ
t√

1 + |Rλ
t |2

,

so
λ|U(Qλ

t )|
Hλ

t + λ|U(Qλ
t )|

≥ ε1√
1 + |Rλ

t |2
, if Hλ

t <
√

1 + |Rλ
t |2 − ε1.
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Combining the above, we get that

λ|∇U(Qλ
t )|(1 − |V λ

t |2)3/2

≥ λ|∇U(Qλ
t )|(1 − |V λ

t |2)1/21
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−δ,r2)}(1 − |V λ
t |2)

≥ a(δ)
ε1√

1 + |Rλ
t |2

1
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−δ,r2)}(1 − |V λ
t |2).

Therefore,

P
(∫ T∧τ

0

1
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−δ,r2)}(1 − |V λ
t |2)dt > ε3/2

)

≤ P
(∫ T∧τ

0

1

a(δ)ε1
λ|∇U(Qλ

t )|(1 − |V λ
t |2)3/2

√
1 + |Rλ

t |2dt > ε3/2
)

≤ a(δ)−1 2

ε1ε3
E
[ ∫ T∧τ

0

λ|∇U(Qλ
t )|(1 − |V λ

t |2)3/2
√

1 + |Rλ
t |2dt

]
.

The expectation on the right hand side above is bounded for λ ≥ 1 by Lemma 5.4.

Therefore, we get that

lim
δ→0

sup
λ≥1

P
(∫ T∧τ

0

1
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−δ,r2)}(1 − |V λ
t |2)dt > ε3/2

)
= 0.

Therefore, in order to prove (8.3), it suffices to prove that

lim
λ→∞

µλ

(∫ T∧τ

0

1
{Ht<

√
1+|Rt|2−ε1}

1{|Qt|∈(r2−2ε,r2−δ]}(1 − |Vt|2)dt > ε3/2
)

= 0

for any δ > 0. We prove it in the following. By Lemma 5.5, we have that Cδ :=

supλ≥1 sups∈[0,T ] λ
2E
[
(1 − |V λ

t |2)1{|Qλ
t |∈(r2−2ε,r2−δ]}

]
< ∞. Therefore,

P
(∫ T∧τ

0

1
{Hλ

t <
√

1+|Rλ
t |

2−ε1}
1{|Qλ

t |∈(r2−2ε,r2−δ]}(1 − |V λ
t |2)dt > ε3/2

)

≤ (ε3/2)−1E
[ ∫ T∧τ

0

1{|Qλ
t |∈(r2−2ε,r2−δ]}(1 − |V λ

t |2)dt
]

≤ (ε3/2)−1TCδλ
−2,

which converges to 0 as λ → ∞ for any δ > 0.

Lemma 8.5. We have µ∞-almost surely that if |Qt| = r2, Qt · Vt− > 0 and Ht >
√

1 + |Rt|2, then Vt =

√
H2

t −1−|Rt|2Qt/|Qt|+Rt

Ht
.

Proof. It suffices to prove the assertion with the condition Ht >
√

1 + |Rt|2 substi-

tuted by Ht >
√

1 + |Rt|2 + ε2 for any ε > 0. We prove the latter in the following.

Choose ε1 > 0 such that U(x) ≤ 0 whenever |x| ≥ r2−ε1(> r1). Let B be the set

of ω’s that satisfy the following: there exist t1, t2, t3 ∈ [0, T ∧τ ] such that t1 < t2 < t3,

Hs >
√

1 + |Rs|2 + ε2 and |Qs| > r2 − ε1 for any s ∈ [t1, t3], |Qt2 |2 − |Qt1 |2 >∫ t2
t1

2εr1√
1+|Ru|2+ε2

du and |Qt3 |2 − |Qt2 |2 <
∫ t3

t2

2εr1√
1+|Ru|2+ε2

du. Then B is an open set.
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We prove in the following that

(8.4) µλ(B) = 0, for any λ ≥ 1.

Indeed, for any λ ≥ 1, if |Qλ
t2 |2 − |Qλ

t1 |2 >
∫ t2

t1

2εr1√
1+|Rλ

u|
2+ε2

du and |Qλ
t3 |2 − |Qλ

t2 |2 <
∫ t3

t2

2εr1√
1+|Rλ

u|
2+ε2

du, then there exists a t ∈ [t1, t3] such that

(8.5)
d

dt

(
|Qλ

t |2 −
∫ t

0

2εr1√
1 + |Rλ

u|2 + ε2
du
)

= 0.

In particular, Qλ
t · V λ

t > 0. On the other hand, if Hλ
s >

√
1 + |Rλ

s |2 + ε2 and |Qs| >

r2 − ε1 for any s ∈ [t1, t3], then

|Qλ
s · V λ

s |2 = |πQλ
s
V λ

s |2|Qλ
s |2 =

(
1 − 1 + |Rλ

s |2
1 + |P λ

s |2
)
|Qλ

s |2

=
(
1 − 1 + |Rλ

s |2
(Hλ

s + λ|U(Qλ
s )|)2

)
|Qλ

s |2

≥
( ε√

1 + |Rλ
s |2 + ε2

· r1

)2

, for any s ∈ [t1, t3].

Since V λ
· and Qλ

· are continuous, and (Qλ
t , V

λ
t ) > 0 with some t ∈ [t1, t3], this implies

Qλ
s · V λ

s >
ε√

1 + |Rt|2 + ε2
· r1, for any s ∈ [t1, t3].

Therefore,

d

ds

(
|Qλ

s |2−
∫ s

0

2εr1√
1 + |Rλ

u|2 + ε2
du
)

= 2(Qλ
s , V

λ
s )− 2εr1√

1 + |Rλ
s |2 + ε2

> 0, s ∈ [t1, t3].

This contradicts (8.5). Therefore, µλ(B) = 0.

Since B is open, (8.4) implies that

(8.6) µ∞(B) = 0.

Now, under µ∞, if |Qt| = r2, Qt · Vt− > 0 and Ht >
√

1 + |Rt|2 + ε2, then we

have that there exists a δ > 0 small enough such that Hs >
√

1 + |Rs|2 + ε2 and

|Qs| > r2 − ε1 for any s ∈ [t − δ, t + δ], and Vs = Qt

|Qt|
for any s ∈ [t − δ, t). Without

loss of generality, we assume that δ < 2(r2 − εr1). Then for any s ∈ [t− δ, t], we have

that Qs = Qt − (t − s) Qt

|Qt|
= (1 − t−s

r2
)Qt, hence

|Qt|2 − |Qs|2 =
(
1 −

(
1 − t − s

r2

)2)
|Qt|2

= 2(t − s)r2 − (t − s)2 = (2r2 − (t − s))(t − s)

> 2εr1(t − s)

≥
∫ t

s

2εr1√
1 + |Ru|2 + ε2

du.
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This combined with (8.6) implies that under our condition, for any t3 ∈ (t, t + δ),

we have |Qt3 |2 − |Qt|2 ≥
∫ t3

t
2εr1√

1+|Ru|2+ε2
du, in particular, |Qt3 | > r2, therefore, Vt3 =

√
H2

t3
−1−|Rt3 |

2Qt3/|Qt3 |+Rt3

Ht3
. Taking t3 → t + 0 in this equation, since H· and R· are

continuous and V· is right-continuous, we get our assertion.

Lemma 8.6. We have µ∞-almost surely that if |Qt| = r2 and Qt · Vt− < 0, then

Vt = − Qt

|Qt|
.

Proof. The proof is similar to that of Lemma 8.5. For any ε > 0, let Bε be the set of

ω’s that satisfy the following: there exist t1, t2, t3 ∈ [0, T ∧ τ ] such that t1 < t2 < t3,

Hs >
√

1 + |Rs|2 + ε2 for any s ∈ [t1, t3], |Qt2 |2 − |Qt1 |2 < −
∫ t2

t1

2ε(r1−ε0)√
1+|Ru|2+ε2

du and

|Qt3 |2 − |Qt2 |2 > −
∫ t3

t2

2ε(r1−ε0)√
1+|Ru|2+ε2

du. Then Bε is an open set, and by exactly the

same method as in the proof of Lemma 8.5, we get that µ∞(Bε) = 0.

Choose any ε > 0 and suppose that |Qt| = r2 and Qt · Vt− < −ε. Then since

Q is continuous, we have that there exists a δ > 0 such that |Qs| ∈ (r2, 2r2) and

Qs ·Vs < −ε for any s ∈ [t−δ, t). Similar as in the proof of Lemma 8.5, since |Qs| > r2

implies Hs =
√

1 + |Rs|2 +
|πQsVs|2

1−|Vs|2
, this implies that Hs >

√
1 + |Rs|2 + ( ε

2r2
)2 for

any s ∈ [t − δ, t). Since H and R are continuous, we get that there exists a δ′ > 0

such that Hs >
√

1 + |Rs|2 + ( ε
4r2

)2 for any s ∈ [t− δ′, t + δ′]. On the other hand, for

any s ∈ [t − δ′, t), we have that

|Qt|2 − |Qs|2 =

∫ t

s

2Qu · Vudu < −
∫ t

s

2εdu < −
∫ t

s

2 ε
4r2

(r1 − ε0)√
1 + |Ru|2 + ( ε

4r2
)2

du.

Combining this with the fact that µ∞(B ε
4r2

) = 0, we get µ∞-almost surely that for

any t3 ∈ (t, t + δ′], we have |Qt3 |2 − |Qt|2 < −
∫ t3

t

2 ε
4r2

(r1−ε0)√
1+|Ru|2+( ε

4r2
)2

du < 0, in particular,

|Qt3 | < r2. By (µ4), this implies that Vt3 = − Qt3

|Qt3 |
. Since Q is continuous and V is

right-continuous, by taking t3 → t + 0, we get that Vt = − Qt

|Qt|
.

We have now completed the proof of the fact that for any converging subsequence

{µλn
; n ∈ N} of {µλ; λ ≥ 1} with limn→∞ λn = ∞, its limit satisfies conditions (µ1)

∼ (µ5). By uniqueness, this completes the proof of Theorem 1.1 (2).
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