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ABSTRACT. This paper deals with the practical stability problem for impulsive functional dif-

ferential systems with finite delays in terms of two measurements. Some sufficient conditions which

guarantee the uniformly asymptotically practical stability of the addressed systems are derived by

using Lyapunov functions and the Razumikhin technique. Finally, two examples are given to show

the effectiveness of the obtained results.
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1. INTRODUCTION

Recently, special interest was paid to the practical stability of differential sys-

tems arising in engineering, economics and neural networks, see [24, 25]. In fact, the

desired state of a system may be mathematically unstable and yet the system may

oscillate sufficiently near this state and its performance is acceptable. To deal with

such situations, the notion of practical stability is useful. Based on the theory of im-

pulsive differential systems, see [1–17], some results for practical stability of impulsive

differential systems were obtained in the literature, see [18–27].

For asymptotical stability, in the sense of Lyapunov, the domain of attraction

h0(t0, x0) < δ, where δ is related to ǫ, may not be large enough to allow the desired

deviations to cancel out. However, asymptotically practical stability requires the

given domain of attraction h0(t0, x0) < u to be independent of ǫ. Hence, in practice,

asymptotically practical stability is more useful. In [21–26], the authors obtained

some results for practical stability of ordinary differential systems or impulsive sys-

tems. Unfortunately, there are only a few results concerning uniformly asymptotically

practical stability of impulsive functional differential systems. The purpose of this
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paper is to establish some criteria which guarantee uniformly asymptotically practi-

cal stability of impulsive functional differential systems by using Lyapunov functions

and the Razumikhin technique. This work is organized as follows. In Section 2, we

introduce some basic definitions and notations. In Section 3, the main results are

presented. In Section 4, two examples are discussed to illustrate the results.

2. PRELIMINARIES

Let R denote the set of real numbers, R+ the set of nonnegative real numbers,

R
n the n-dimensional real space equipped with the Euclidean norm ‖ · ‖, and Z+

the set of positive integers. For any interval I ⊆ R, set C(I,Rn) , {ϕ : I → R
n |

ϕ is continuous}, and PC(I,Rn) , {ϕ : I → R
n | ϕ(t+) = ϕ(t) for t ∈ I, ϕ(t−) exists

for t ∈ I, ϕ(t−) = ϕ(t) for all but the points tk ∈ I}, ϕ(t+) and ϕ(t−) denote the

left limit and right limit of function ϕ(t), respectively. For ϕ ∈ PC([−τ, 0],Rn), the

norm of ϕ is defined by ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|, where −∞ < −τ < 0. The impulse

times tk satisfy 0 < t1 < t2 < · · · < tk < · · · , limk→∞ tk = +∞. Let R
+
τ = [−τ,∞).

Consider the impulsive functional differential system:

(2.1)



















ẋ(t) = f(t, xt), t ≥ t0, t 6= tk, k ∈ Z+,

∆x(tk) = Ik(t
−
k , x(t

−
k )), k ∈ Z+,

x(t0 + s) = ϕ(s), s ∈ [−τ, 0],

where 0 ≤ t0 < t1, ϕ ∈ PC([−τ, 0],Rn), f ∈ C([tk, tk+1)×D,Rn), f(t, 0) = 0, D is an

open set in PC([−τ, 0],Rn). For each t ≥ t0, xt ∈ D is defined by xt(s) = x(t + s),

s ∈ [−τ, 0]. For each k ∈ Z+, Ik ∈ C([−τ,∞) × R
n,Rn), Ik(t, 0) = 0, and for any

ρ > 0, there exists a ρ1 ∈ (0, ρ) such that x ∈ S(ρ1) implies that x+ Ik ∈ S(ρ), where

S(ρ) = {x :| x |< ρ, x ∈ R
n}.

In this paper, we assume that f and Ik satisfy certain conditions such that the

solution of system (2.1) exists on [t0,+∞) and is unique [22]. We denote by x(t) =

x(t, t0, ϕ) the solution of system (2.1) with initial value (t0, ϕ).

For convenience, we define the following classes of functions:

K = {w ∈ C(R+,R+) : w is strictly increasing and w(0) = 0};

K1 = {w ∈ C(R+,R+) : w(0) = 0 and w(s) > 0 for s > 0};

K2 = {ψ ∈ C(R+,R+) : ψ is increasing and ψ(s) < s for s > 0};

Γn = {h ∈ C(R+ × R
n,R+) : ∀t ∈ R+, infx h(t, x) = 0};

Γnτ = {h ∈ C(R+
τ × R

n,R+) : ∀t ∈ R
+
τ , infx h(t, x) = 0}.

h̃0(t, xt) = sup−τ≤θ≤0 h0(t+ θ, xt(θ)), where h0 ∈ Γnτ , xt ∈ PC([−τ, 0],Rn), t ∈ R+.

In addition, we introduce some definitions as follows:

Definition 2.1 ([16]). The function V : [−τ,∞) × D → R+ belongs to class ν0 if
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(i) V is continuous on each of the sets [tk−1, tk)×D, k ∈ Z+, and lim(t,ϕ)→(t−
k
,ψ) V (t, ϕ) =

V (t−k , ψ) exists;

(ii) V (t, x) is locally Lipschitzian in x and for all t ≥ t0, V (t, 0) ≡ 0.

Definition 2.2 ([16]). Given a function V ∈ ν0, for any (t, ψ) ∈ [tk−1, tk) × D, the

upper right-hand Dini derivative of V (t, x) along the solution of (2.1) is defined by

D+V (t, ψ(0)) = lim
h→0+

sup{V (t+ h, ψ(0) + hf(t, ψ)) − V (t, ψ(0))}/h.

Definition 2.3 ([24, 25]). Given two constants u, v, 0 < u < v, and let h0 ∈ Γnτ ,

h ∈ Γn. Then, the impulsive functional differential system (2.1) with respect to (u, v)

is said to be

(S1) (h̃0, h)-practically stable, if given (u, v) with 0 < u < v, we have h̃0(t0, xt0) < u

implies h(t, x(t)) < v, t ≥ t0 for some t0 ∈ R+;

(S2) (h̃0, h)-uniformly practically stable if (S1) holds for every t0 ∈ R+;

(S3) (h̃0, h)-asymptotically practically stable, if (S1) holds and for any ǫ > 0 there

exists T = T (t0, ǫ) > 0 such that h̃0(t0, xt0) < u implies h(t, x(t)) < ǫ, t ≥ t0 +T

for some t0 ∈ R+;

(S4) (h̃0, h)-uniformly asymptotically practically stable if (S2) holds and the latter

part of (S3) holds for a constant T = T (ǫ) > 0 only dependent on ǫ.

3. MAIN RESULTS

Theorem 3.1. Assume that there exist functions α, β, φ, ω ∈ K, g ∈ PC(R+,R+),

ψ ∈ K2, V ∈ v0 such that

(i) 0 < u < v are given;

(ii) h0 ∈ Γnτ , h ∈ Γn, h(t, x) ≤ φ(h̃0(t, xt)) whenever h̃0(t, xt) < u;

(iii) β(h(t, x)) ≤ V (t, x) ≤ α(h0(t, x)) for (t, x) ∈ [t0 − τ,∞) × S(ρ);

(iv) V (tk, x(t
−
k ) + Ik(t

−
k , x(t

−
k ))) ≤ ψ(V (t−k , x(t

−
k )));

(v) P (V (t, x(t))) ≥ V (t+ s, x(t+ s)), s ∈ [−τ, 0], t ∈ [tk−1, tk), k ∈ Z+, implies that

D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))),

where P (s) > ψ−1(s), s > 0,

sup
s>0

ω(s)

s
· sup
k∈Z+

∫ tk

tk−1

g(s)ds+ sup
s>0

ψ(s)

s
< 1,

and x(t) is a solution of system (2.1);

(vi) φ(u) < v, α(u) < ψ(β(v)).

Then the system (2.1) with respect to (u, v) is (h̃0, h)-uniformly asymptotically prac-

tically stable.
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Proof. Let

A , sup
k∈Z+

∫ tk

tk−1

g(s)ds, η , sup
s>0

ω(s)

s
, q ,

(

sup
s>0

ψ(s)

s

)−1

> 1.

Since ψ ∈ K2,

inf
s>0

ψ−1(s)

s
≥ q.

Then it follows from (v) that ηA+ q−1 < 1, which implies that

ω(s)

s
A+ q−1 ≤ ηA+ q−1 < 1, s > 0.

Thus
1

ω(s)
>

A

s(1 − q−1)
, s > 0.

Now we show that ln q > 1 − q−1. Let F (t) = ln t − (1 − t−1), t > 1, and it can be

deduced that F
′

(t) = t−1
t2

> 0, F (1) = 0, and therefore, F (t) is nondecreasing. Thus

ln q > 1 − q−1, q > 1.

For any t0 ≥ 0, let x(t)
.
= x(t, t0, ϕ) be the solution of system (2.1) through

(t0, ϕ), where (t0, ϕ) ∈ R+ × PC([−τ, 0],Rn), and h̃0(t0, xt0) < u. It suffices to show

that

h(t, x(t)) < v, t ≥ t0.

By conditions (ii) and (vi),

h(t0, x(t0)) ≤ φ(h̃0(t0, xt0)) < φ(u) < v.

Next we shall prove that

(3.1) V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [t0 − τ,+∞).

For any t ∈ [t0 − τ, t0], there exists a s ∈ [−τ, 0], such that t = t0 + s, and then from

the definition of h̃0(t, xt), we know that for t ∈ [t0 − τ, t0]

h0(t, x(t)) = h0(t0 + s, x(t0 + s)) = h0(t0 + s, xt0(s)) ≤ h̃0(t0, xt0) < u.

Thus for all t ∈ [t0 − τ, t0]

(3.2) V (t, x(t)) ≤ α(h0(t, x(t))) ≤ α(h̃0(t0, xt0)) < α(u) < ψ−1(α(u)).

Now we show that

(3.3) V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [t0, t1).

If it does not hold, then there exists a r ∈ [t0, t1), such that V (r, x(r)) > ψ−1(α(u)).

Let r2 = inf{t : V (t, x(t)) > ψ−1(α(u)), t ∈ [t0, t1)}. Since V (t0, x(t0)) ≤ ψ−1(α(u)),

it is clear that

r2 > t0, V (r2, x(r2)) = ψ−1(α(u)).

Let r1 = sup{t : V (t, x(t)) ≤ α(u), t ∈ [t0, r2)}. Thus

V (r1, x(r1)) = α(u), α(u) ≤ V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [r1, r2].
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By (3.2), we obtain that for any t ∈ [r1, r2]

P (V (t, x(t))) > ψ−1(V (t, x(t))) ≥ ψ−1(α(u)) ≥ V (t+ s, x(t+ s)), s ∈ [−τ, 0].

Using condition (v), the inequality D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))) holds for all

t ∈ [r1, r2]. Hence we obtain

(3.4)

∫ V (r2,x(r2))

V (r1,x(r1))

ds

ω(s)
≤

∫ r2

r1

g(t)dt ≤

∫ t1

t0

g(t)dt ≤ A.

On the other hand,

∫ V (r2,x(r2))

V (r1,x(r1))

ds

ω(s)
=

∫ ψ−1(α(u))

α(u)

ds

ω(s)

>
A

1 − q−1

∫ ψ−1(α(u))

α(u)

ds

s

=
A

1 − q−1
ln
ψ−1(α(u))

α(u)

≥
A

1 − q−1
ln inf

s>0

ψ−1(s)

s

=
A

1 − q−1
ln q

> A,

which is a contradiction with the inequality (3.4) and thus (3.3) holds.

Then it follows from condition (iv) that

V (t1, x(t
−
1 ) + I1(t

−
1 , x(t

−
1 ))) ≤ ψ(V (t−1 , x(t

−
1 ))) ≤ α(u).

Next, we claim that

(3.5) V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [t1, t2).

If this assertion is not true, then there exists a r ∈ [t1, t2), such that V (r, x(r)) >

ψ−1(α(u)). Let r4 = inf{t : V (t, x(t)) > ψ−1(α(u)), t ∈ [t1, t2)}. Since V (t1, x(t1)) ≤

α(u) ≤ ψ−1(α(u)), we have

r4 > t1, V (r4, x(r4)) = ψ−1(α(u)).

Let r3 = sup{t : V (t, x(t)) ≤ α(u), t ∈ [t1, r4)}. Thus

V (r3, x(r3)) = α(u), α(u) ≤ V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [r3, r4].

Considering (3.2) and (3.4), we obtain for any t ∈ [r3, r4]

P (V (t, x(t))) > ψ−1(V (t, x(t))) ≥ ψ−1(α(u)) ≥ V (t+ s, x(t+ s)), s ∈ [−τ, 0].
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Using condition (v), the inequality D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))) holds for all

t ∈ [r3, r4]. Hence

A <
A

1 − q−1
ln q ≤

A

1 − q−1
ln
ψ−1(α(u))

α(u)

=
A

1 − q−1

∫ ψ−1(α(u))

α(u)

ds

s

<

∫ V (r4,x(r4))

V (r3,x(r3))

ds

ω(s)

≤

∫ r4

r3

g(t)dt

≤ A,

which is a contradiction and thus (3.5) holds.

Then from (iv), we get

V (t2, x(t
−
2 ) + I2(t

−
2 , x(t

−
2 ))) ≤ ψ(V (t−2 , x(t

−
2 ))) ≤ α(u).

Similarly, it can be deduced that

V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [t2, t3).

By simple induction, we can prove that

V (t, x(t)) ≤ ψ−1(α(u)), t ∈ [tk, tk+1), k ∈ Z+,

and

V (tk+1, x(t
−
k+1) + Ik+1(t

−
k+1, x(t

−
k+1))) ≤ ψ(V (t−k+1, x(t

−
k+1))) ≤ α(u) < ψ−1(α(u)).

It follows from condition (iii) and (vi) that

V (t, x(t)) ≤ ψ−1(α(u)) < β(v),

h(t, x(t)) ≤ β−1(V (t, x(t))) < β−1(β(v)) = v, t ≥ t0.

This inequality implies that the system (2.1) with respect to (u, v) is (h̃0, h)-uniformly

practically stable.

Next, we show that the system (2.1) with respect to (u, v) is (h̃0, h)-uniformly

asymptotically practically stable. For any ǫ, 0 < ǫ < v, there exist numbers a =

a(ǫ) > 0, 0 < d < a, such that

P (s) > ψ−1(s) + a, ψ−1(s) + a > ψ−1(s + d), s ∈ [β(ǫ), ψ−1(α(u))].

Let N = N(ǫ) satisfy β(ǫ)+ (N −1)d ≤ ψ−1(α(u)) ≤ β(ǫ)+Nd, and T = (N −1)λτ ,

where λ ≥ 1. We shall prove that

V (t, x(t)) ≤ ψ−1(β(ǫ)), t ≥ t0 + T.
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In order to do this, we first prove that there exists a T1 ≥ t0, such that

(3.6) V (T1, x(T1)) ≤ β(ǫ) + (N − 1)d.

If (3.6) does not hold, then for any t ≥ t0, V (t, x(t)) > β(ǫ) + (N − 1)d. Note that

for s ∈ [−τ, 0]

P (V (t, x(t))) > ψ−1(V (t, x(t))) + a ≥ ψ−1(β(ǫ) + (N − 1)d) + a

> ψ−1(β(ǫ) +Nd) ≥ ψ−1(α(u)) ≥ V (t+ s, x(t+ s)).

Thus

D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))), t ≥ t0,

which implies that

(3.7)

∫ t

t0

D+V (s, x(s)) ≤

∫ t

t0

g(s)ω(V (s, x(s)))ds.

Suppose t ∈ [tl, tl+1), l ∈ Z+, so from (3.7) and ηA+ q−1 < 1, it can be derived that

V (t, x(t)) ≤ V (t0, x(t0)) +

∫ t

t0

g(s)ω(V (s, x(s)))ds

+
∑

t0<tk≤t

[V (tk, x(tk)) − V (t−k , x(t
−
k )]

≤ ψ−1(α(u)) +

l
∑

j=0

∫ tj+1

tj

g(s)ω(V (s, x(s)))ds

+
∑

t0<tk≤t

[ψ(V (t−k , x(t
−
k ))) − V (t−k , x(t

−
k )]

≤ ψ−1(α(u)) + ω(ψ−1(α(u)))

l
∑

j=0

∫ tj+1

tj

g(s)ds

+
∑

t0<tk≤t

V (t−k , x(t
−
k ))[

ψ(V (t−k , x(t
−
k ))

V (t−k , x(t
−
k ))

− 1]

≤ ψ−1(α(u)) + ω(ψ−1(α(u)))(l + 1)A+ lψ−1(α(u))[sup
s>0

ψ(s)

s
− 1]

≤ ψ−1(α(u)) + ψ−1(α(u))
ω(ψ−1(α(u)))

ψ−1(α(u))
(l + 1)A+ lψ−1(α(u))[q−1 − 1]

≤ ψ−1(α(u)) + ψ−1(α(u))η(l + 1)A+ lψ−1(α(u))[q−1 − 1]

≤ ψ−1(α(u)) + ψ−1(α(u))l
(

ηA+ q−1 − 1
)

+ ψ−1(α(u))ηA

→ −∞, as l → +∞,

which is a contradiction. Thus, there exists a T1 ≥ t0, such that (3.6) holds.

Next we prove that

(3.8) V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 1)d), t ≥ T1.
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Let m = min{m ∈ Z+ : tm ≥ T1}, and we show that

(3.9) V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 1)d), t ∈ [T1, tm).

If (3.9) does not hold, then there is a r ∈ [T1, tm) such that

V (r, x(r)) > ψ−1(β(ǫ) + (N − 1)d).

Let r⋆ = inf{t : V (t, x(t)) > ψ−1(β(ǫ) + (N − 1)d), t ∈ [T1, tm)}. Since

V (T1, x(T1)) ≤ β(ǫ) + (N − 1)d ≤ ψ−1(β(ǫ) + (N − 1)d),

we have

r⋆ > t1, V (r⋆, x(r⋆)) = ψ−1(β(ǫ) + (N − 1)d).

Let r̂ = sup{t : V (t, x(t)) ≤ β(ǫ) + (N − 1)d, t ∈ [T1, r
⋆)}. Note

V (r⋆, x(r⋆)) = ψ−1(β(ǫ) + (N − 1)d) > β(ǫ) + (N − 1)d.

Thus

r̂ < r⋆, V (r̂, x(r̂)) = β(ǫ) + (N − 1)d,

β(ǫ) + (N − 1)d ≤ V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 1)d), t ∈ [r̂, r⋆].

Thus for any t ∈ [r̂, r⋆]

P (V (t, x(t))) > ψ−1(V (t, x(t))) + a ≥ ψ−1(β(ǫ) + (N − 1)d) + a

> ψ−1(β(ǫ) +Nd) ≥ ψ−1(α(u)) ≥ V (t+ s, x(t+ s)), s ∈ [−τ, 0].

Using condition (v), the inequality D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))) holds for all

t ∈ [r̂, r⋆]. Hence we obtain

A <
A

1 − q−1
ln q ≤

A

1 − q−1
ln
ψ−1(β(ǫ) + (N − 1)d)

β(ǫ) + (N − 1)d

=
A

1 − q−1

∫ ψ−1(β(ǫ)+(N−1)d)

β(ǫ)+(N−1)d)

ds

s

<

∫ V (r⋆,x(r⋆))

V (r̂,x(r̂))

ds

ω(s)

≤

∫ r⋆

r̂

g(t)dt

≤ A,

which is a contradiction and thus (3.9) holds.

Then from condition (iv), we get

V (tm, x(t
−
m) + Im(t−m, x(t

−
m))) ≤ ψ(V (t−m, x(t

−
m))) ≤ β(ǫ) + (N − 1)d.

Similarly, it can be deduced that

V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 1)d), t ∈ [tm, tm+1).
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By simple induction, one may derive that

V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 1)d), t ∈ [tk, tk+1), k ≥ m,

and

V (tk+1, x(t
−
k+1) + Ik+1(t

−
k+1, x(t

−
k+1))) ≤ ψ(V (t−k+1, x(t

−
k+1))) ≤ β(ǫ) + (N − 1)d.

Thus (3.8) holds.

Now we prove that there exists a T2 ≥ T1 + λτ, λ ≥ 1, such that

(3.10) V (T2, x(T2)) ≤ β(ǫ) + (N − 2)d.

If (3.10) does not hold, then for any t ≥ T1 + λτ, V (t, x(t)) > β(ǫ) + (N − 2)d. Note

that for s ∈ [−τ, 0]

P (V (t, x(t))) > ψ−1(V (t, x(t))) + a ≥ ψ−1(β(ǫ) + (N − 2)d) + a

> ψ−1(β(ǫ) + (N − 1)d) ≥ V (t+ s, x(t+ s)).

Hence, it follows from condition (v) that

D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))), t ≥ T1 + λτ,

which implies that

(3.11)

∫ t

T1+λτ

D+V (s, x(s)) ≤

∫ t

T1+λτ

g(s)ω(V (s, x(s)))ds.

Suppose T1 + λτ ∈ [tn̂−1, tn̂), n̂ ∈ Z+, t ∈ [tn̂+i−1, tn̂+i), i ∈ Z+, so from (3.11) and

ηA+ q−1 < 1, it can be derived that

V (t, x(t)) ≤ V (T1 + λτ, x(T1 + λτ)) +

∫ t

T1+λτ

g(s)ω(V (s, x(s)))ds

+
∑

T1+λτ<tk≤t

[V (tk, x(tk) − V (t−k , x(t
−
k ))]

≤ ψ−1(α(u)) +

i
∑

j=0

∫ tn+j

tn+j−1

g(s)ω(V (s, x(s)))ds

+
∑

T1+λτ<tk≤t

[ψ(V (t−k , x(t
−
k )) − V (t−k , x(t

−
k ))]

≤ ψ−1(α(u)) + ω(ψ−1(α(u)))

i
∑

j=0

∫ tn+j

tn−1+j

g(s)ds

+
∑

T1+λτ<tk≤t

V (t−k , x(t
−
k ))[

ψ(V (t−k , x(t
−
k ))

V (t−k , x(t
−
k )

− 1]

≤ ψ−1(α(u)) + ω(ψ−1(α(u)))(i+ 1)A+ iψ−1(α(u))[sup
s>0

ψ(s)

s
− 1]

≤ ψ−1(α(u)) + ψ−1(α(u))
ω(ψ−1(α(u)))

ψ−1(α(u))
(i+ 1)A+ iψ−1(α(u))[q−1 − 1]
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≤ ψ−1(α(u)) + ψ−1(α(u))η(i+ 1)A+ iψ−1(α(u))[q−1 − 1]

≤ ψ−1(α(u)) + ψ−1(α(u))i
(

ηA+ q−1 − 1
)

+ ψ−1(α(u))ηA,

→ −∞, as l → +∞,

which is a contradiction. Therefore, there exists a T2 ≥ T1 + λτ such that (3.10)

holds. Next we shall show that

(3.12) V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 2)d), t ≥ T2.

Let n = min{n ∈ Z+ : tn ≥ T2}, and we claim that

(3.13) V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 2)d), t ∈ [T2, tn).

If (3.13) does not hold, then there is a r ∈ [T2, tn) such that

V (t, x(t)) > ψ−1(β(ǫ) + (N − 2)d).

Let r̄ = inf{t : V (t, x(t)) > ψ−1(β(ǫ) + (N − 2)d), t ∈ [T2, tn)}. Since V (T2, x(T2)) ≤

ǫ) + (N − 2)d, we have

r̄ > T2, V (r̄, x(r̄)) = ψ−1(β(ǫ) + (N − 2)d).

Let r̃ = sup{t : V (t, x(t)) ≤ β(ǫ) + (N − 2)d, t ∈ [T2, r̄)}. Note

V (r̄, x(r̄)) = ψ−1(β(ǫ) + (N − 2)d) > β(ǫ) + (N − 2)d.

Thus

r̃ < r̄, V (r̃, x(r̃)) = β(ǫ) + (N − 2)d,

β(ǫ) + (N − 2)d ≤ V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 2)d), t ∈ [r̃, r̄].

Thus for any t ∈ [r̃, r̄]

P (V (t, x(t))) > ψ−1(V (t, x(t))) + a ≥ ψ−1(β(ǫ) + (N − 2)d) + a

> ψ−1(β(ǫ) + (N − 1)d) ≥ V (t+ s, x(t+ s)), s ∈ [−τ, 0].

Using condition (v), the inequality D+V (t, x(t)) ≤ g(t)ω(V (t, x(t))) holds for all

t ∈ [r̃, r̄]. Hence we obtain

A <
A

1 − q−1
ln q <

A

1 − q−1
ln
ψ−1(α(u))

α(u)
)

<
A

1 − q−1

∫ ψ−1(α(u))

α(u))

ds

s

<

∫ V (r̄,x(r̄))

V (r̃,x(r̃))

du

ω(u)

≤

∫ r̄

r̃

g(t)dt

≤ A,

which is a contradiction and thus (3.13) holds.
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Then from condition (iv), we obtain

V (tn, x(t
−
n ) + In(t

−
n , x(t

−
n ))) ≤ ψ(V (t−n , x(t

−
n ))) ≤ β(ǫ) + (N − 2)d.

Similarly, we have

V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 2)d), t ∈ [tn, tn+1).

By simple induction, one may derive that

V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 2)d), t ∈ [tk, tk+1), k ≥ n,

and

V (tk+1, x(t
−
k+1) + Ik+1(t

−
k+1, x(t

−
k+1))) ≤ ψ(V (t−k+1, x(t

−
k+1))) ≤ β(ǫ) + (N − 2)d).

Thus (3.12) holds. Similarly, we can prove that there exists a T3 ≥ T2 + λτ , λ ≥ 1,

such that

V (T3, x(T3)) ≤ β(ǫ) + (N − 3)d,

and

V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − 3)d), t ≥ T3.

By simple induction, we can prove, in general, that

V (Tj, x(Tj)) ≤ β(ǫ) + (N − j)d,

and

V (t, x(t)) ≤ ψ−1(β(ǫ) + (N − j)d), t ≥ Tj , j = 1, 2, . . . , N.

Therefore, when choosing j = N , we obtain

V (t, x(t)) ≤ ψ−1(β(ǫ)), t ≥ TN ,

where TN ≥ t0 + (N − 1)λτ . Therefore

h(t, x(t)) ≤ β−1(ψ−1(β(ǫ))), t ≥ t0 + T,

where T = (N − 1)λτ .

The proof is complete.

Theorem 3.2. Assume that there exist functions α, β, φ ∈ K, ω ∈ C(R+,R+), P ∈

K1, V ∈ v0 such that

(i) 0 < u < v are given;

(ii) h0 ∈ Γnτ , h ∈ Γn, h(t, x) ≤ φ(h̃0(t, xt)) whenever h̃0(t, xt) < u;

(iii) β(h(t, x)) ≤ V (t, x) ≤ α(h0(t, x)) for (t, x) ∈ [t0 − τ,∞) × S(ρ);

(iv) V (tk, x(t
−
k )+ Ik(t

−
k , x(t

−
k ))) ≤ (1+βk)V (t−k , x(t

−
k )), where βk ≥ 0,

∑∞

k=1 βk <∞;
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(v) P (V (t, x(t))) ≥ V (t + s, x(t + s)), s ∈ [−τ, 0], t ∈ [tk−1, tk), k ∈ Z+, implies

that

D+V (t, x(t)) ≤ −ω(V (t, x(t))),

with P (s) > Ms, s > 0, M =
∏∞

k=1(1 + βk) < ∞, where x(t) is a solution of

system (2.1);

(vi) φ(u) < v, Mα(u) < β(v).

Then the system (2.1) with respect to (u, v) is (h̃0, h)-uniformly asymptotically prac-

tically stable.

Proof. For any t0 ≥ 0, let x(t)
.
= x(t, t0, ϕ) be the solution of system (2.1) through

(t0, ϕ), where (t0, ϕ) ∈ R+ × PC([−τ, 0],Rn), and h̃0(t0, xt0) < u. It suffices to show

that

h(t, x(t)) < v, t ≥ t0.

By conditions (ii) and (vi),

h(t0, x(t0)) ≤ φ(h̃0(t0, xt0)) < φ(u) < v.

Next we prove that

V (t, x(t)) ≤Mα(u), t ∈ [t0 − τ,+∞).

noindent For any t ∈ [t0 − τ, t0], there exists a s ∈ [−τ, 0], such that t = t0 + s, and

then from the definition of h̃0(t, xt), we know that for t ∈ [t0 − τ, t0]

h0(t, x(t)) = h0(t0 + s, x(t0 + s)) = h0(t0 + s, xt0(s)) ≤ h̃0(t0, xt0) < u.

Thus for all t ∈ [t0 − τ, t0]

V (t, x(t)) ≤ α(h0(t, x(t))) ≤ α(h̃0(t0, xt0)) < α(u) < Mα(u).

In particular,

V (t0, x(t0)) < α(u) < Mα(u).

Now, we show that

(3.14) V (t, x(t)) ≤ α(u), t ∈ [t0, t1).

If it does not hold, then there exists a r ∈ [t0, t1), such that

V (r, x(r)) > α(u).

Let r1 = inf{t : V (t, x(t)) > α(u), t ∈ [t0, t1)}. Since V (t0, x(t0)) ≤ α(u), it is clear

that

r1 > t0, V (r1, x(r1)) = α(u), D+V (r1, x(r1)) ≥ 0.

Thus for s ∈ [−τ, 0]

P (V (r1, x(r1))) > MV (r1, x(r1)) ≥ α(u) ≥ V (r1 + s, x(r1 + s)).
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By condition (v), we have that

D+(V (r1, x(r1))) ≤ −ω(V (r1, x(r1))) < 0,

which is a contradiction. Thus (3.14) holds. From (3.14) and condition (iii), we

obtain

V (t1, x(t1)) ≤ (1 + β1)V (t−1 , x(t
−
1 )) ≤ (1 + β1)α(u).

Next, we show that

(3.15) V (t, x(t)) ≤ (1 + β1)α(u), t ∈ [t1, t2).

If this assertion is not true, then there exists a r ∈ [t1, t2), such that

V (r, x(r)) > (1 + β1)α(u).

Let r2 = inf{t : V (t, x(t)) > (1 + β1)α(u), t ∈ [t1, t2)}. Since V (t1, x(t1)) ≤ (1 +

β1)α(u), we get

r2 > t1, V (r2, x(r2)) = (1 + β1)α(u), D+V (r2, x(r2)) ≥ 0.

Thus for s ∈ [−τ, 0]

P (V (r2, x(r2))) > MV (r2, x(r2)) ≥ (1 + β1)α(u) ≥ V (r2 + s, x(r2 + s)).

By condition (v), we have that

D+(V (r2, x(r2))) ≤ −ω(V (r2, x(r2))) < 0,

which is a contradiction. Thus (3.15) holds.

Considering (3.15) and condition (iii), it can be deduced that

V (t2, x(t2)) ≤ (1 + β2)V (t−2 , x(t
−
2 )) ≤ (1 + β1)(1 + β2)α(u).

By simple induction, we have that

V (t, x(t)) ≤ (1 + β1)(1 + β2) · · · (1 + βk)α(u), t ∈ [tk, tk+1), k ∈ Z+,

which, together with (3.14) yields

V (t, x(t)) ≤Mα(u) < β(v), t ≥ t0.

Therefore from condition (iii), we have that

h(t, x(t)) ≤ v, t ≥ t0.

Thus the system (2.1) with respect to (u, v) is (h̃0, h)-uniformly practically stable.

Next, we show that the system (2.1) with respect to (u, v) is (h̃0, h)-uniformly

asymptotically practically stable. For any ǫ, 0 < ǫ < v, there exists number d =

d(ǫ) > 0 such that

P (s) > Ms + d, s ∈

[

β(ǫ)

M
,Mα(u)

]

.



634 C. LIU, X. LI, AND D. O’REGAN

Let N = N(ǫ) be the smallest integer such that

β(ǫ) +Nd

M
≥Mα(u),

and

γ = inf
β(ǫ)
M

≤s≤Mα(u)

ω(s), h = max

{

Mα(u)(1 + M̄)

γ
, τ

}

,

where M̄ =
∑∞

k=1 βk. Let T = T (ǫ) = (2N − 1)h, and we shall prove that

V (t, x(t)) ≤ β(ǫ), t ≥ t0 + T.

To this end, we first prove that

(3.16) V (t, x(t)) ≤ β(ǫ) + (N − 1)d, t ≥ t0 + h.

In fact, when t ∈ [t0, t0 + h], there exists a r ∈ [tm, tm+1) ⊂ [t0, t0 + h], m ∈ Z+, such

that

(3.17) V (r, x(r)) ≤
β(ǫ) + (N − 1)d

M
.

If (3.17) does not hold, it is clear that for any t ∈ [t0, t0 + h]

V (t, x(t)) >
β(ǫ) + (N − 1)d

M
,

β(ǫ)

M
≤ V (t, x(t)) ≤Mα(u).

Thus for s ∈ [−τ, 0]

P (V (t, x(t))) ≥ MV (t, x(t)) + d ≥ β(ǫ) + (N − 1)d+ d = β(ǫ) +Nd

≥ Mα(u) ≥ V (t+ s, x(t+ s)).

It follows from condition (v) that

D+V (t, x(t)) ≤ −ω(V (t, x(t))) ≤ −γ, t ∈ [t0, t0 + h],

which implies that
∫ t

t0

D+V (s, x(s)) ≤

∫ t

t0

−γds, t ∈ [t0, t0 + h].

Consequently, for t ∈ [t0, t0 + h]

V (t, x(t)) ≤ V (t0, x(t0)) +
∑

t0<tk≤t

[V (tk, x(tk)) − V (t−k , x(t
−
k ))] − γ(t− t0)

≤ Mα(u) +
∑

t0<tk≤t

βkV (t−k , x(t
−
k )) − γ(t− t0).

≤ Mα(u) + M̄Mα(u) − γ(t− t0).

In particular,

V (t0 + h, x(t0 + h)) ≤ Mα(u)(1 + M̄) − γh ≤ 0,
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which is a contradiction. Hence when t ∈ [t0, t0 + h], there exists a r ∈ [tm, tm+1) ⊂

[t0, t0 + h], m ∈ Z+, such that

V (r, x(r)) ≤
β(ǫ) + (N − 1)d

M
.

Then, we claim that

(3.18) V (t, x(t)) ≤
β(ǫ) + (N − 1)d

M
, t ∈ [r, tm+1).

If (3.18) does not hold, there exists a r̂ ∈ [r, tm+1), such that

V (r̂, x(r̂)) >
β(ǫ) + (N − 1)d

M
.

Let r̃ = inf{t : V (t, x(t)) > β(ǫ)+(N−1)d
M

, t ∈ [r, tm+1)}. Since

V (r, x(r)) ≤
β(ǫ) + (N − 1)d

M
,

we have that

r̃ > r, V (r̃, x(r̃)) =
β(ǫ) + (N − 1)d

M
, D+(V (r̃, x(r̃))) ≥ 0.

Noting that β(ǫ)
M

≤ V (r̃, x(r̃)) ≤ Mα(u), thus for s ∈ [−τ, 0]

P (V (r̃, x(r̃))) ≥ MV (r̃, x(r̃)) + d ≥ β(ǫ) + (N − 1)d+ d = β(ǫ) +Nd

≥ Mα(u) ≥ V (r̃ + s, x(r̃ + s)).

It follows from condition (v) that

D+(V (r̃, x(r̃))) ≤ −ω(V (r̃, x(r̃))) < 0,

which is a contradiction. Thus (3.18) holds.

Considering (3.18) and condition (iii), it can be deduced that

V (tm+1, x(tm+1)) ≤ (1 + βm+1)V (t−m+1, x(t
−
m+1)) ≤ (1 + βm+1)

β(ǫ) + (N − 1)d

M
.

Similarly, we may show

V (t, x(t)) ≤ (1 + βm+1)
β(ǫ) + (N − 1)d

M
, t ∈ [tm+1, tm+2),

and

V (tm+2, x(tm+2)) ≤ (1+βm+2)V (t−m+2, x(t
−
m+2)) ≤ (1+βm+2)(1+βm+1)

β(ǫ) + (N − 1)d

M
.

By simple induction, we can prove in general that

V (t, x(t)) ≤
i

∏

j=1

(1 + βm+j)
β(ǫ) + (N − 1)d

M

≤ β(ǫ) + (N − 1)d, t ∈ [tm+i, tm+i+1), i ∈ Z+.

Thus, (3.16) holds.
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Next, we prove that

(3.19) V (t, x(t)) ≤ β(ǫ) + (N − 2)d, t ≥ t0 + 3h.

In fact, when t ∈ [t0 + 2h, t0 + 3h], there exists a r̄ ∈ [tn, tn+1) ⊂ [t0 + 2h, t0 + 3h],

n ∈ Z+, such that

(3.20) V (r̄, x(r̄)) ≤
β(ǫ) + (N − 2)d

M
.

If (3.20) does not hold, then for any t ∈ [t0 + 2h, t0 + 3h]

V (t, x(t)) >
β(ǫ) + (N − 2)d

M
,

β(ǫ)

M
≤ V (t, x(t)) ≤Mα(u),

and thus for s ∈ [−τ, 0]

P (V (t, x(t))) ≥ MV (t, x(t)) + d ≥ β(ǫ) + (N − 2)d+ d > β(ǫ) + (N − 1)d

≥ V (t+ s, x(t+ s)).

By condition (v), we have that

D+V (t, x(t)) ≤ −ω(V (t, x(t))) ≤ −γ, t ∈ [t0 + 2h, t0 + 3h],

which implies that
∫ t

t0+2h

D+V (s, x(s)) ≤

∫ t

t0+2h

−γds, t ∈ [t0 + 2h, t0 + 3h].

Therefore for any t ∈ [t0 + 2h, t0 + 3h]

V (t, x(t)) ≤ V (t0, x(t0)) +
∑

t0+2h<tk≤t

[V (tk, x(tk)) − V (t−k , x(t
−
k ))] − γ(t− t0 − 2h)

≤ Mα(u) +
∑

t0+2h<tk≤t

βkV (t−k , x(t
−
k )) − γ(t− t0 − 2h)

≤ Mα(u) + M̄Mα(u) − γ(t− t0 − 2h).

In particular,

V (t0 + 3h, x(t0 + 3h)) ≤Mα(u)(1 + M̄) − γh ≤ 0,

which is a contradiction. Hence when t ∈ [t0 + 2h, t0 + 3h], there exists a r̄ ∈

[tn, tn+1) ⊂ [t0 + 2h, t0 + 3h], n ∈ Z+, such that

V (r̄, x(r̄)) ≤
β(ǫ) + (N − 2)d

M
.

Similarly, we can prove that (3.19) holds. By simple induction we have that

V (t, x(t)) ≤ β(ǫ) + (N − i)d, t ≥ t0 + (2i− 1)h, i = 1, 2, · · · , N.

Therefore, when choosing i = N , we obtain

V (t, x(t)) ≤ β(ǫ), t ≥ t0 + T.
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From condition (iii), we have that

h(t, x(t)) ≤ ǫ, t ≥ t0 + T.

The proof is complete.

4. APPLICATIONS

The following illustrative examples will demonstrate the effectiveness of our re-

sults.

Example 4.1. Consider the following impulsive functional differential system:

(4.1)



















ẋ(t) = a(t)x(t) +
∫ t

t−τ(t)
b(s)x(s)ds, t ≥ t0, t 6= tk, k ∈ Z+,

x(tk) = qx(t−k ), k ∈ Z+,

x(t0 + s) = ϕ(s), s ∈ [−τ, 0],

where q < 1, a ∈ C(R+,R+), b ∈ C(R,R), τ(t) ∈ C([t0,+∞), [0, τ ]), τ is a nonnega-

tive constant. For convenience, we consider h0(x) = h(x) = ‖x‖.

Property 4.1. Given constants u, v satisfying u < qv, and a constant λ > 1
q
. Then

the system (4.1) with respect to (u, v) is (h̃0, h)-uniformly asymptotically practically

stable if

sup
k∈Z+

∫ tk

tk−1

g(s)ds < 1 − q,

where g(t) = a(t) + λ
∫ t

t−τ
b(s)ds.

Proof. Choose V (t, x(t)) = ‖x(t)‖, where x(t) is a solution of system (4.1). Let

α(s) = β(s) = s, P (s) = λs, ω(s) = s, ψ(s) = qs, s > 0, and then

D+V (t, x(t)) = ‖a(t)x(t) +

∫ t

t−τ(t)

b(s)x(s)ds‖

≤ a(t)‖x(t)‖ +

∫ t

t−τ

‖b(s)x(s)‖ds

≤ a(t)V (t, x(t)) +

∫ t

t−τ

‖b(s)‖V (s, x(s))ds

≤ a(t)V (t, x(t)) +

∫ t

t−τ

‖b(s)‖P (V (t, x(t)))ds

= a(t)V (t, x(t)) +

∫ t

t−τ

‖b(s)‖λV (t, x(t))ds

=
(

a(t) + λ

∫ t

t−τ

‖b(s)‖ds
)

V (t, x(t))

= g(t)ω(V (t, x(t))).

By Theorem 3.1, the above property can be easily derived.
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Remark 4.1. It can be found that the system (4.1) is not asymptotically stable

without impulsive effects. However, under the impulsive control, the system (4.1) can

be asymptotically practically stable. Thus, our results are more useful and effective

in practice.

Example 4.2. Consider the following impulsive functional differential system:

(4.2)



























ẋ(t) = − cos(t)y(t) + sin(t)x(t− τ), t ≥ t0, t 6= tk, k ∈ Z+,

ẏ(t) = cos(t)x(t) + sin(t)y(t− τ), t ≥ t0, t 6= tk, k ∈ Z+,

x(tk) = qx(t−k ), k ∈ Z+,

y(tk) = qy(t−k ), k ∈ Z+,

where q < 1, τ is a nonnegative constant. For convenience, we consider h0(x, y) =

h(x, y) = x2 + y2.

Property 4.2. We have given constants u, v satisfying u < qv, and a constant

λ > 1
q
. Then the system (4.1) with respect to (u, v) is (h̃0, h)-uniformly asymptotically

practically stable if

(1 + λ) max
k∈Z+

{tk − tk−1} < 1 − q.

Proof. Choose V (x(t), y(t)) = x2(t) + y2(t), where (x(t), y(t)) is a solution of system

(4.2). Let α(s) = β(s) = s, P (s) = λs, ω(s) = (1 + λ)s, ψ(s) = qs, s > 0, and then

D+V (t, x(t)) = 2x(t)ẋ(t) + 2y(t)ẏ(t)

= 2x(t)
(

− cos(t)y(t) + sin(t)x(t− τ)
)

+2y(t)
(

cos(t)x(t) + sin(t)y(t− τ)
)

= 2 sin(t)x(t)x(t − τ) + 2 sin(t)y(t)y(t− τ)

= sin(t)
(

x2(t) + y2(t) + x2(t− τ) + y2(t− τ)
)

= sin(t)
(

V (x(t), y(t)) + V (x(t− τ), y(t− τ))
)

≤ ‖ sin(t)‖
(

V (x(t), y(t)) + λV (x(t), y(t))
)

= ‖ sin(t)‖(1 + λ)V (x(t), y(t))

= g(t)ω(V (t, x(t))),

where g(t) = ‖ sin(t)‖, ω(V (t, x(t))) = (1 + λ)V (x(t), y(t)). By Theorem 3.1, the

above property can be easily derived.
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