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ABSTRACT. Initial boundary value problems for nonlinear first order partial functional differen-

tial equations are transformed by discretization in space variables into systems of ordinary functional

differential equations. A method of quasi linearization is adopted. Sufficient conditions for the con-

vergence of the method of lines and error estimates for approximate solutions are presented. The

proof of the stability of the differential difference problems is based on a comparison technique. Non-

linear estimates of the Perron type with respect to the functional variable for given functions are

used. Results obtained in the paper can be applied to differential integral problems and equations

with deviated variables.
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1. Introduction

We are interested in establishing a method of approximation of solutions to first

order partial functional differential equations with solutions of associated systems of

ordinary functional differential equations and in estimating of the difference between

the exact and approximate solutions. We investigate the question of under what con-

ditions solutions of ordinary functional differential equations tend to a solutions of the

original problem when a step size tends to zero. The systems of ordinary functional

differential equations mentioned above are obtained in the paper by using a discretiza-

tion in spatial variables of original problems, and they are called differential difference

systems or method of lines. The advantage of the method of lines is that it allows

to solve the problems for partial differential equations (often quite complicated) by

using the general-purpose methods and software that have been developed for numer-

ically integrating ordinary differential equations. It is easy to construct a differential

difference system which satisfies consistency conditions with respect to the original

problem on sufficiently regular solutions. The main question in these consideration

is to find sufficient conditions for the stability of the method of lines. The method of
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differential inequalities and comparison techniques are used in investigations of the

stability. There is an ample literature on the method of lines. The monographs [10],

[12], [21], [23], [24], [28] contain a large bibliography on theoretical investigations

and applications. The papers [5], [16] initiated a theory of the numerical method of

lines for functional differential equations. Nonlinear parabolic functional differential

equations with initial boundary value conditions were investigated in [15], [19], [29].

Results concerning the stability of the method of lines were obtained in these pa-

pers by using a comparison technique. The papers [1], [2], [6], [7], [14], [30] concern

equations with first order partial derivatives. Initial problems with solutions defined

on the Haar pyramid and initial boundary value problems were considered. Error

estimates implying the convergence of the method are obtained by using a method of

differential inequalities. It is assumed that given operators satisfy nonlinear estimates

of the Perron type with respect to functional variables. The monograph [13] contains

an exposition of the method of lines for hyperbolic functional differential problems.

The method is also treated as a tool for proving existence theorems for differential

problems corresponding to parabolic equations [22], [24]–[26] or hyperbolic problems

[3], [4], [9], [18], [20].

The aim of the paper is to construct a method of lines for nonlinear first order

partial functional differential equations with initial boundary conditions. Our results

are based on the following idea. The original problem is transformed into a system

of quasilinear functional differential equations for an unknown function and for their

partial derivatives with respect to spatial variables. The numerical method of lines

is constructed for systems such obtained. All the results on the numerical method

of lines given in [1], [2], [5]–[7], [14], [15], [29], [30] have the following property. The

authors have assumed that given operators satisfy the Lipschitz condition or satisfy

nonlinear estimates of the Perron type with respect to functional variables and these

conditions are global with respect to all variables. Our assumptions on regularity

of given functions are more general. We assume nonlinear estimates of the Perron

type and suitable inequalities are local with respect to functional variables. It is clear

that there are differential equations with deviated variables and differential integral

equations such that local estimates of the Perron type hold and global inequalities are

not satisfied We use in the paper general ideas for functional differential equations

and inequalities which were introduced in [13], [27].

We formulate our functional differential problems. For any metric spaces X and

Y we denote by C(X, Y ) the class of all continuous functions from X into Y . We use

vectorial inequalities with the understanding that the same inequalities hold between

their corresponding components. Write E = [0, a] × [−b, b], E0 = [−b0, 0] × [−b, b]

where a > 0, b0 ∈ R+, R+ = [0,+∞), b = (b1, . . . , bn) ∈ R
n and bi > 0 for 1 ≤ i ≤ n.
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For (t, x) ∈ E we define

D[t, x] = {(τ, s) ∈ R
1+n : τ ≤ 0, (t+ τ, x+ s) ∈ E0 ∪E}.

It is clear that D[t, x] = [−b0 − t, 0] × [−b− x, b− x]. For a function z : E0 ∪E → R

and for a point (t, x) ∈ E we define a function z(t,x) : D[t, x] → R by

z(t,x)(τ, s) = z(t+ τ, x+ s), (τ, s) ∈ D[t, x].

Then z(t,x) is the restriction of z to the set (E0∪E)∩([−b0, t]×R
n) and this restriction

is shifted to the set D[t, x].

Write B = [−b0 − a, 0] × [−2b, 2b]. Then D[t, x] ⊂ B for (t, x) ∈ E. The

maximum norm in C(B,R) will be denoted by ‖ · ‖B. Suppose that φ0 : [0, a] → R

and φ : E → R
n, φ = (φ1, . . . , φn), are given functions. The requirements on φ0 and

φ are that 0 ≤ φ0(t) ≤ t for t ∈ [0, a] and φ(t, x) ∈ [−b, b] for (t, x) ∈ E. Write

ϕ(t, x) = (φ0(t), φ(t, x)) for (t, x) ∈ E.

Suppose that Ξ ⊂ R
n is an open and bounded domain and E ⊂ Ξ. Set

Ω = Ξ × C(B,R) × C(B,R) × R
n, ∂0E = [0, a] × ([−b, b] \ (−b, b)),

and suppose that F : Ω → R, ψ : E0 ∪ ∂0E → R are given functions. Let z be an

unknown function of the variables (t, x), x = (x1, . . . , xn). We consider the functional

differential equation

(1.1) ∂tz(t, x) = F (t, x, z(t,x), zϕ(t,x), ∂xz(t, x))

with the initial boundary condition

(1.2) z(t, x) = (t, x) on E0 ∪ ∂0E,

where ∂xz = (∂x1z, . . . , ∂xn
z).

We will say that F satisfies condition (V ) if for each (t, x, q) ∈ Ξ×R
n and for v,

w, ṽ, w̃ ∈ C(B,R) such that v(τ, s) = ṽ(τ, s) for (τ, s) ∈ D[t, x] and w(τ, s) = w̃(τ, s)

for (τ, s) ∈ D[ϕ(t, x)] we have F (t, x, v, w, q) = F (t, x, ṽ, w̃, q). Condition (V ) means

that the value of F at (t, x, v, w, q) ∈ Ω depends on (t, x, q) and on the restrictions of

v and w to the sets D[t, x] and D[ϕ(t, x)] only. We assume that F satisfies condition

(V ) and we consider classical solutions of (1.1), (1.2).

Sufficient conditions for the existence and uniqueness of classical or generalized

solutions to initial boundary value problems can be found in [8] and [13], Chapter 5.

We give examples of functional differential equations which can be obtained from

(1) by specializing given functions. Suppose that G : Ξ × R
2 × R

n → R and

ϑ0, γ0 : [0, a] → R, (ϑ1, . . . , ϑn), (γ1, . . . , γn) : E → R
n

are given functions. Write

ϑ(t, x) = (ϑ0(t), ϑ1(t, x), . . . , ϑn(t, x)) and γ(t, x) = (γ0(t), γ1(t, x), . . . , γn(t, x)).
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We assume that 0 ≤ ϑ0(t) ≤ t and 0 ≤ γ0(t) ≤ t for t ∈ [0, a] and ϑ(t, x), γ(t, x) ∈ E

for (t, x) ∈ E. Then ϑ(t, x) − (t, x) ∈ B and γ(t, x) − (t, x) ∈ B for (t, x) ∈ E.

Consider the operator F defined by

(1.3) F (t, x, v, w, q) = G
(

t, x,

∫ γ(t,x)−(t,x)

ϑ(t,x)−(t,x)

v(τ, s)dsdτ, w(0, 0[n]), q
)

on Ω,

where 0[n] = (0, . . . , 0) ∈ R
n. Then (1.1) is equivalent to the functional differential

equation

(1.4) ∂tz(t, x) = G
(

t, x,

∫ (t,x)

ϑ(t,x)

z(τ, s)dsdτ, z(ϕ(t, x)), ∂xz(t, x)
)

.

For the above G we put

(1.5) F (t, x, v, w, q) = G(t, x, v(0, 0[n]), w(0, 0[n]), q) on Ω.

Then (1.1) reduces to the differential equation with deviated variables

(1.6) ∂tz(t, x) = G(t, x, z(t, x), z(ϕ(t, x)), ∂xz(t, x)).

Note that F given by (1.3) and F defined by (1.5) satisfy condition (V ). It is clear

that more complicated examples can be obtained from (1.1) by specializing F and ϕ.

2. Differential difference problems

We will be denote by N and Z the sets of natural numbers and integers respec-

tively. Let Mn×n be the class of all n× n matrices with real elements. If W ∈ Mn×n

then W T is the transpose matrix. For x, y ∈ R
n, x = (x1, . . . , xn), y = (y1, . . . , yn),

and W ∈Mn×n, W = [wij]i,j=1,...,n we put

x ⋄ y = (x1y1, . . . , xnyn) ∈ R
n, x ◦ y =

n
∑

i=1

xiyi, ‖x‖ =
n
∑

i=1

|xi|,

‖x‖∞ = max {|xi| : 1 ≤ i ≤ n} , ‖W‖n×n = max

{

n
∑

j=1

|wij| : 1 ≤ i ≤ n

}

.

We denote by CL(B,R) the set of all linear and continuous real functions defined

on C(B,R) and by ‖ · ‖⋆ the norm in CL(B,R) generated by the maximum norm in

C(B,R). Write

∆+
i = {(t, x) ∈ E : xi = bi}, ∆−

i = {(t, x) ∈ E : xi = −bi}, i = 1, . . . , n.

Suppose that ψ ∈ C(E0∪∂0E,R). Let us denote by Uψ the set of all z ∈ C(E0∪E,R)

such that z(t, x) = ψ(t, x) on E0 ∪ ∂0E. The following assumptions on F , ϕ, ψ are

needed in our considerations.

Assumption H [ϕ]. The functions φ0 : [0, a] → R and φ : E → R
n, φ = (φ1, . . . , φn),

are continuous and

1) 0 ≤ φ0(t) ≤ t for t ∈ [0, a] and ϕ(t, x) = (φ0(t), φ(t, x)) ∈ E for (t, x) ∈ E,
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2) there exist the derivatives ∂xφ = [∂xj
φi]i,j=1,...,n and ∂xφ ∈ C(E,Mn×n) and

Q ∈ R+ is defined by the relation: ‖∂xφ(t, x)‖n×n ≤ Q on E.

Assumption H [F, ψ]. The function F : Ω → R of the variables (t, x, v, w, q), q =

(q1, . . . , qn), satisfies condition (V ) and

1) F ∈ C(Ω,R) and the partial derivatives (∂x1F, . . . , ∂xn
F )∂xF , (∂xF, ∂q1F, . . .,

∂qnF ) = ∂qF exist on Ω and ∂xF , ∂qF ∈ C(Ω,Rn),

2) there exist the Fréchet derivatives ∂vF (P ), ∂wF (P ) and ∂vF (P ), ∂wF (P ) ∈

CL(B,R) for P = (t, x, v, w, q) ∈ Ω,

3) there is x̃ ∈ (−b, b), x̃ = (x̃1, . . . , x̃n), such that

(2.1) (x− x̃) ⋄ ∂qF (t, x, v, w, q) > 0[n] for (t, x, q) ∈ ∂0E × R
n, v, w ∈ C(B,R),

where 0[n] = (0, . . . , 0) ∈ R
n,

4) for each x ∈ [−b, b] the the function

sign ∂qF (·, x, ·) : [0, a] × C(B,R) × C(B,R) × R
n → R

n

is constant, where

sign ∂qF (·, x, ·) =
(

sign ∂q1F (·, x, ·), . . . , sign ∂qnF (·, x, ·)
)

,

5) ψ : E0 ∪ ∂0E → R is of class C1 and for z, z̃ ∈ Uψ we have

F (t, x, z(t,x), zϕ(t,x), q) = F (t, x, z̃(t,x), zϕ(t,x), q) for (t, x, q) ∈ ∂0E × R
n,

6) the function χ : ∂0E → R
n, χ = (χ1, . . . , χn), satisfies the conditions:

(i) for (t, x) ∈ ∆+
i ∪ ∆−

i we have

(2.2) χj(t, x) = ∂xj
(t, x) for j 6= i

and

(2.3) ∂tψ(t, x) = F
(

t, x, z(t,x), zϕ(t,x),Πi(t, x)
)

where z ∈ Uψ and

Πi(t, x) =
(

∂x1(t, x), . . . , ∂xi−1
(t, x), χi(t, x), ∂xi+1

(t, x), . . . , ∂xn
(t, x)

)

,

(ii) χ ∈ C(∂0E,R
n).

Suppose that Assumption H [F, ψ] is satisfied. Let Ψ : E0 ∪ ∂0E → R, Ψ =

(Ψ1, . . . ,Ψn), be defined by

(2.4) Ψ(t, x) = ∂x(t, x) on E0 and Ψ(t, x) = χ(t, x) on ∂0E.

We give comments on Assumption H [F, ψ].
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Remark 2.1. If we assume that

(2.5) (x− x̃) ⋄ ∂qF (t, x, v, w, q) ≥ 0[n] on Ω,

then condition 4) of Assumption H [F, ψ] is satisfied. Assumption (2.5) is typical in

theorems on the method of lines for Hamilton Jacobi functional differential equations,

see [1], [2], [5]–[7], [14], [30].

Remark 2.2. Relations 5) and 6) of Assumption H [F, ψ] are called the compatibility

conditions for (1.1), (1.2). Formulas (2.2), (2.3) can be considered as the definitions

of χ.

The above compatibility conditions appear in the theorem on the existence and

uniqueness of solutions of (1.1), (1.2).

Two types of assumptions are needed in theorems on the existence and uniqueness

of classical or generalized solutions for (1.1), (1.2). The first type conditions deal with

the regularity of given functions. It is assumed in a theorem on the uniqueness of

solutions that F is continuous on and it satisfies nonlinear estimates of Perron type

with respect to the functional variables. The assumption of the second type are

connected with the theory of bicharacteristics and condition (2.1) is needed. Suppose

that z ∈ C(E0 ∪ E,R) and u ∈ C(E0 ∪ E,Rn). Let us denote by g[z, u](·, t, x) the

solution of the Cauchy problem

ω′(τ) = −∂qF
(

τ, ω(τ), z(τ,ω(τ)), zϕ(τ,ω(τ)), u(τ, ω(τ))
)

, ω(t) = x,

where (t, x) ∈ E. The function g[z, u](·, t, x) = (g1[z, u](·, t, x), . . . , gn[z, u](·, t, x))

is the bicharacteristic of (1.1) corresponding to (z, u). Condition (2.1) states that

the function gi[z, u](·, t, x) is non decreasing if (t, x) ∈ ∆−

i and it is non increasing

if (t, x) ∈ ∆+
i , where 1 ≤ i ≤ n. The uniqueness condition is a consequence of a

comparison theorem for functional differential inequalities (see [13], Chapter V) and

condition (2.1) is needed in these considerations.

The existence theory of classical or generalized solutions for (1.1), (1.2) is based

on the method of bicharacteristics. If Assumptions H [ϕ], H [F, ψ] are satisfied and

the functions ∂xF , ∂qF , ∂vF , ∂wF satisfy the Lipschitz condition with respect to

(x, v, w, q) then under natural assumptions on there exists a solution of (1.1), (1.2).

The solution is local with respect to t. Conditions (2.1), (2.5) are important in this

result.

Thus we see that Assumption H [F, ψ] is natural in the theory of initial boundary

value problems (1.1), (1.2).

Remark 2.3. Suppose that F is given by (1.3). Then (1.1) reduces to (1.4). If we

assume that ϑ, γ, φ satisfy the conditions

ϑi(t, x) = bi, γi(t, x) = bi, φi(t, x) = bi for (t, x) ∈ ∆+
i ,
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ϑi(t, x) = −bi, γi(t, x) = −bi, φi(t, x) = −bi for (t, x) ∈ ∆−

i ,

where 1 ≤ i ≤ n, then condition 5) of Assumption H [F, ψ] is satisfied.

Suppose that F is given by (1.5). Then (1.1) is equivalent to (1.6). If we assume

that

φi(t, x) = bi for (t, x) ∈ ∆+
i , φi(t, x) = −bi for (t, x) ∈ ∆−

i ,

where 1 ≤ i ≤ n, then condition 5) of Assumption H [F, ψ] is satisfied.

Remark 2.4. Suppose that f : Ξ × C(B,R) × R
n → R is a given function. Let us

consider the functional differential equation

(2.6) ∂tz(t, x) = f(t, x, z(t,x), ∂xz(t, x)).

The above equation is a particular case of (1.1). The functional differential problem

consisting of (2.6), (1.2) is an initial boundary value problem.

There are the following motivation for investigation of (1.1), (1.2) instead of (2.6),

(1.2). Differential equations with deviated variables can be obtained from (2.6) in the

following way. Suppose that G : Ξ × R
2 × R

n → R is a given function. Set

(2.7) f(t, x, v, q) = G
(

t, x, v(0, 0[n]), v(ϕ(t, x) − (t, x)), q
)

on Ξ × C(B,R) × R
n.

Then (2.6) is equivalent to (1.6). Note that Assumption H [F, ψ] is not satisfied for f

given by (2.7). More precisely, the derivatives (∂x1f, . . . , ∂xn
f) = ∂xf do not exist on

Ξ×C(B,R)× R
n. With the above motivation we consider problem (1.1), (1.2) with

F depending on two functional variables.

We define a mesh on E0 ∪E in the following way. Suppose that (h1, . . . , hn) = h,

hi > 0 for 1 ≤ i ≤ n, stand for steps of the mesh. For m = (m1, . . . , mn) ∈ Z
n we

put x(m) = (x
(m1)
1 , . . . , x

(mn)
n ) = m ⋄ h and

R
1+n
t.h = {(t, x(m)) : t ∈ R, m ∈ Z

n}.

Write

Bh = B ∩ R
1+n
t.h , Eh = E ∩ R

1+n
t.h ,

E0.h = E0 ∩ R
1+n
t.h , ∂0Eh = ∂0 ∩ R

1+n
t.h .

Elements of the set E0.h ∪ Eh will be denoted by (t, x(m)) or (t, x). For functions

z : E0.h ∪Eh → R, u : E0.h ∪Eh → R
n, u = (u1, . . . , un), we write z(m)(t) = z(t, x(m))

and u(m)(t) = u(t, x(m)).

Let us denote by Fc(E0.h ∪ Eh,R) the class of all z : E0.h ∪ Eh → R such that

z(·, x(m)) ∈ C([−b0, a],R) for −K ≤ m ≤ K. In a similar way we define the space

Fc(E0.h∪Eh,R
n). Solutions of differential difference equations corresponding to (1.1),

(1.2) are defined on E0.h ∪Eh. Since equation (1.1) contains the functional variables

z(t,x) and zϕ(t,x) which are elements of the spaces C(D[t, x],R) and C(D[ϕ(t, x),R)

then we need an interpolating operator Th : Fc(E0.h ∪ Eh,R) → C(E0 ∪ E,R). In
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the next part of the paper we adopt additional assumptions on Th. For z : E0.h ∪

Eh → R we write (Thz)[t,m] instead of (Thz)(t,x(m)) and we write (Thz)[t,m] instead

of (Thz)ϕ(t,x(m)). Let us denote by ∆ the set of all h = (h1, . . . , hn) satisfying the

conditions:

1) ‖h‖∞ < min {b⋆, b
⋆} where b⋆ = min {bi − x̃i : 1 ≤ i ≤ n} and

b⋆ = min {bi + x̃i : 1 ≤ i ≤ n},

2) there is K = (K1, . . . , Kn) ∈ N
n such that K ⋄ h = b.

Suppose that Assumption H [F, ψ] is satisfied. For x(m) ∈ (−b, b) we put

I+[m] = {i ∈ {1, . . . , n} : ∂qiF (·, x(m), ·) ≥ 0},

I−[m] = {1, . . . , n} \ I+[m].

Write ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 standing on the i-th place. For functions

z : E0.h ∪ Eh → R, u : E0.h ∪ Eh → R
n, u = (u1, . . . , un), and for (t, x(m)) ∈

[0, a] × (−b, b) we write

δiz
(m)(t) =

1

hi

[

z(m+ei)(t) − z(m)(t)
]

if i ∈ I+[m],

δiz
(m)(t) =

1

hi

[

z(m)(t) − z(m−ei)(t)
]

if i ∈ I−[m],

and

δiu
(m)(t) =

1

hi

[

u(m+ei)(t) − u(m)(t)
]

if i ∈ I+[m],

δiu
(m)(t) =

1

hi

[

u(m)(t) − u(m−ei)(t)
]

if i ∈ I+[m],

and we put i = 1, . . . , n in the above definitions. Set

δz(m)(t) =
(

δ1z
(m)(t), . . . , δnz

(m)(t)
)

, δu(m)(t) =
[

δju
(m)
i

]

i,j=1,...,n
.

Write

P [z, u](m)(t) =
(

t, x(m), (Thz)[t,m], (Thz)ϕ[t,m], u
(m)(t)

)

.

For u : E0.h ∪Eh → R
n, u = (u1, . . . , un), and for P ∈ Ω we put

∂vF (P ) ⋆ (Thu)[r,m] =
(

∂vF (P )(Thu1)[r,m], . . . , ∂vF (P )(Thun)[r,m]

)

and

[

∂wF (P ) ⋆ (Thu)ϕ[t,m]

]

∂xφ
(m)(t)

=

n
∑

j=1

∂wF (P )(Thuj)ϕ[t,m]∂x1φ
(m)
j (t), . . . ,

(

n
∑

j=1

∂wF (P )(Thuj)ϕ[t,m]∂xn
φ

(m)
j (t)

)

Set

Fh.0[z, u]
(m)(t) = F (P [z, u](m)(t)) + ∂qF (P [z, u](m)(t)) ◦

(

δz(m)(t) − u(m)(t)
)
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and

Fh[z, u]
(m)(t) = ∂xF (P [z, u](m)(t)) + ∂vF (P [z, u](m)(t)) ⋆ (Thu)[r,m]

+
[

∂wF (P [z, u](m)(t)) ⋆ (Thu)ϕ[t,m]

]

∂xφ
(m)(t)

+ ∂qF (P [z, u](m)(t))
[

δu(m)(t)
]T
.

We consider the system of functional differential equations

(2.8)
d

dt
z(m)(t) = Fh.0[z, u]

(m)(t),

(2.9)
d

dt
u(m)(t) = Fh[z, u]

(m)(t)

with the initial boundary conditions

(2.10) z(m)(t) = ψ
(m)
h (t), u(m)(t) = Ψ

(m)
h (t) on E0.h ∪ ∂0Eh

where ψh : E0.h ∪ ∂0Eh → R and Ψh : E0.h ∪ ∂0Eh → R
n are given functions. The

above problem is obtained in the following way. We use a method of quasilineariza-

tion for (1.1), (1.2). It consists in replacing problem (1.1), (1.2) with the following

one. Suppose that Assumption H [F, ψ] is satisfied. Let (z, u), u = (u1, . . . , un), be

unknown functions of the variables (t, x) ∈ E0 ∪ E. We introduce an additional un-

known function u = ∂xz in (1.1) and we consider the following linearization of (1.1)

with respect u:

(2.11) ∂tz(t, x) = F (Υ(t, x)) + ∂qF
(

Υ(t, x)
)

◦
(

∂xz(t, x) − u(t, x)
)

where Υ(t, x) =
(

t, x, z(t,x), zϕ(t,x), u(t, x)
)

. We get functional differential equations

for u by differentiating equation (1.1). The result is the following

∂tu(t, x) = ∂xF (Υ(t, x)) + ∂vF (Υ(t, x)) ⋆ u(t,x)(2.12)

+
[

∂wF (Υ(t, x)) ⋆ uϕ(t,x)

]

∂xφ(t, x) + ∂qF (Υ(t, x))
[

∂xu(t, x)
]T
.

where

∂vF (Υ(t, x)) ⋆ u(t, x) =
(

∂vF (Υ(t, x))(u1)(t,x), . . . , ∂vF (Υ(t, x))(un)(t,x)

)

,

[

∂wF (Υ(t, x)) ⋆ uϕ(t,x)

]

∂xφ(t, x)

=

( n
∑

j=1

∂wF (Υ(t, x))(uj)ϕ(t,x)∂x1φj(t, x), . . . ,

n
∑

j=1

∂wF (Υ(t, x))(uj)ϕ(t,x)∂xn
φj(t, x)

)

.

It is natural to consider the following initial boundary conditions for (2.11), (2.12):

(2.13) z(t, x) = ψ(t, x), u(t, x) = Ψ(t, x) on E0 ∪ ∂0E

where Ψ is given by (2.4). There are the following relations between (1.1), (1.2) and

(2.11)–(2.13). Under natural assumptions on F , ϕ, ψ, we have
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(I) If (z,u) is a solution of (2.11)–(2.13) then ∂xz = u and z is a solution of (1.1),

(1.2).

(II) If z is a solution of (1.1), (1.2) and u = ∂xz then (z,u) is a solution of (2.11)–

(2.13).

Existence results for (1.1), (1.2) are obtained by using the above method of quasi

linearization (see [8] and [13], Chapter 5). Differential difference problem (2.8)–(2.10)

is obtained by the discretization of (2.11)–(2.13) with respect to the spatial variable

x.

3. Solutions of functional differential problems

In this Section we prove that there is a solution to (2.8)–(2.10) and we give

estimates of solutions of (1.1), (1.2) and (2.8)–(2.10). For functions z ∈ C(E0∪E,R),

u ∈ C(E0 ∪ E,R
n) and zh ∈ Fc(E0.h ∪ Eh,R), uh ∈ Fc(E0.h ∪ Eh,R

n) we define the

seminorms

‖z‖t = max {|z(τ, s)| : (τ, s) ∈ E0 ∪E, τ ≤ t},

[|u|]t = max {‖u(τ, s)‖∞ : (τ, s) ∈ E0 ∪E, τ ≤ t},

‖zh‖h.t = max {|zh(τ, s)| : (τ, s) ∈ E0.h ∪ Eh, τ ≤ t},

[|uh|]h.t = max {‖uh(τ, s)‖∞ : (τ, s) ∈ E0.h ∪Eh, τ ≤ t},

where t ∈ [0, a].

Assumption H [Th]. The operator Th : Fc(E0.h ∪ Eh,R) → C(E0 ∪ E,R) satisfies

the conditions:

1) for z, z̃ ∈ Fc(E0.h ∪ Eh,R) we have

‖Thz − Thz̃‖t ≤ ‖z − z̃‖h.t, t ∈ [0, a],

2) if θh ∈ Fc(E0.h ∪ Eh,R) is given by θh(τ, s) = 0 for (τ, s) ∈ E0.h ∪ Eh then

(Thθh)(τ, s) = 0 for (τ, s) ∈ E0 ∪ E,

3) if z : E0 ∪ E → R is of class C1 and zh is the restriction of z to E0.h ∪ Eh then

there is γ⋆ : ∆ → R+ such that

‖Thzh − z‖t ≤ γ⋆(h) for t ∈ [0, a] and lim
h→0[n]

γ⋆(h) = 0.

Remark 3.1. The interpolating operator Th given in [13] (Chapter VI) satisfies As-

sumption H [Th].

Assumption H [F, ̺, A]. The functions ϕ and F , ψ satisfy Assumptions H [ϕ] and

H [F, ψ] and
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1) there is ρ ∈ C([0, a] × R+ × R+,R+) such that

‖∂xF (t, x, v, w, q)‖∞ ≤ ̺
(

t,max {‖v‖B, ‖w|B}, ‖q‖
)

on Ω

and the function ρ is nondecreasing with respect to the last two variables,

2) there is A ∈ R+ such that for P = (t, x, v, w, q) ∈ Ω we have

‖∂qF (P )‖∞, ‖∂vF (P )‖⋆, ‖∂wF (P )‖⋆ ≤ A,

3) the constant A0 ∈ R+ is defined by the relation

|F (t, x, θ, θ, 0[n])| ≤ A0, (t, x) ∈ E,

where θ ∈ C(B,R) is given by θ(τ, s) = 0 for (τ, s) ∈ B,

4) for each (µ, ν) ∈ R+×R+ there is on [0, a] the maximal solution
(

ω0(·, µ, ν), ω(·, µ, ν)
)

of the Cauchy problem

(3.1) ξ′(t) = A0 + 2A
(

ξ(t) + κ(t)
)

,

(3.2) κ′(t) = ̺(t, ξ(t), κ(t)) + A(1 +Q)κ(t),

(3.3) ξ(0) = µ, κ(0) = ν,

5) ψh : E0.h ∪ ∂0Eh → R, Ψh : E0.h ∪ ∂0Eh → R
n and there are α0, α : ∆ → R+

such that

(3.4) |ψ(t, x) − ψh(t, x)| ≤ α0(h), ‖Ψ(t, x) − Ψh(t, x)‖∞ ≤ α(h) on E0.h ∪ ∂0Eh,

and

(3.5) lim
h→0[n]

α0(h) = 0, lim
h→0[n]

α(h) = 0.

Suppose that Assumption H [F, ̺, A] is satisfied. Let the constants µ̄, ν̄ ∈ R+ are

defined by the relations

(3.6) |ψ(t, x)| ≤ µ̄, ‖Ψ(t, x)‖∞ ≤ ν̄ on E0 ∪ ∂0E,

(3.7) |ψh(t, x)| ≤ µ̄, ‖Ψh(t, x)‖∞ ≤ ν̄ on E0.h ∪ ∂0Eh.

Lemma 3.2. If Assumptions H [F, ̺, A], H [Th] are satisfied then there is a solution

(zh,uh) : E0.h ∪Eh → R
1+n, uh = (uh.1, . . . ,uh.n), of (2.8)–(2.10) and

(3.8) ‖zh‖h.t ≤ ω0(t, µ̄, ν̄), [|uh|]h.t ≤ ω(t, µ̄, ν̄), t ∈ [0, a],

where
(

ω0(·, µ̄, ν̄), ω(·, µ̄, ν̄)
)

is the maximal solution of (3.1)–(3.3) for (µ, ν) = (µ̄, ν̄).
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Proof. From classical theorems on ordinary functional differential equations [11] it

follows that there is ε̃ > 0 such that the solution (zh,uh) of (2.8)–(2.10) is defined

on (E0.h ∪ Eh) ⊂ ([−b0, ε̃] × R
n). Suppose that (zh,uh) is defined on (E0.h ∪ Eh) ⊂

([−b0, ã) × R
n), ã > 0, and it is non continuable. We prove that

‖zh‖h.t ≤ ω0(t, µ̄, ν̄) and [|uh|]h.t ≤ ω(t, µ̄, ν̄) for t ∈ [0, ã).

For ε > 0 we denote by
(

ω0(·, µ̄, ν̄; ε), ω(·, µ̄, ν̄; ε)
)

the maximal solution of the Cauchy

problem

(3.9) ξ′(t) = A0 + 2A(ξ(t) + κ(t)) + ε,

(3.10) κ′(t) = ̺(t, ξ(t), κ(t)) + A(1 +Q)κ(t) + ε,

(3.11) ξ(0) = µ̄+ ε, κ(0) = ν̄ + ε.

There is ε0 > 0 such that for 0 < ε < ε0 the functions
(

ω0(·, µ̄, ν̄; ε), ω(·, µ̄, ν̄; ε)
)

are

defined on [−b0, ã) and

(3.12) lim
ε→0

ω0(·, µ̄, ν̄; ε) = ω0(·, µ̄, ν̄), lim
ε→0

ω(·, µ̄, ν̄; ε) = ω(·, µ̄, ν̄)

uniformly on [0, ã). Set

ξh(t) = ‖zh‖h.t, κh(t) = [|uh|]h.t, t→ [0, a).

We prove that

(3.13) ξh(t) < ω0(t, µ̄, ν̄; ε) and κh(t) < ω(t, µ̄, ν̄; ε)

where t→ [0, ã). It is clear that there is t̃ > 0 such that estimates (3.13) are satisfied

on [0, t̃). Suppose by contradiction that (3.13) fails to be true on [0, ã). Then there

is t ∈ (0, ã) such that

ξh(τ) < ω0(τ, µ̄, ν̄; ε) and κh(τ) < ω(τ, µ̄, ν̄; ε) for τ ∈ [0, t)

and

ξh(t) = ω0(t, µ̄, ν̄; ε) or κh(t) = ω(·, µ̄, ν̄; ε).

Let us consider the case when κh(t) = ω(t, µ̄, ν̄; ε). Then we have

(3.14) D−κh(t) ≥ ω(t, µ̄, ν̄; ε),

where D− is the left hand lower Dini derivative. There are m ∈ Z
n, −K ≤ m ≤ K,

and t̄ ≤ t and j, 1 ≤ j ≤ n, such that κh(t) = |u
(m)
h.j (t̄)|. If t̄ < t then D−κh(t) = 0

which contradicts (3.14). Suppose that t̄ = t. Then we have (i) κh(t) = u
(m)
h.j (t)

or (ii) κh(t) = −u
(m)
h.j (t). Let us consider the first case. We deduce from (3.7) that

x(m) ∈ (−b, b). Then we have

D−κh(t) ≤
d

dt
u

(m)
h.j (t) = ∂xj

F (P [zh,uh]
(m)(t)) + ∂vF (P [zh,uh]

(m)(t))
(

Thuh.j
)

[r,m]
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+

n
∑

i=1

∂wF (P [zh,uh]
(m)(t))

(

Thuh.i
)

ϕ[t,m]
∂xj

φ
(m)
i (t) + ∂qF (P [zh,uh]

(m)(t)) ◦ δu
(m)
h.j (t).

It follows from conditions 3), 4) of Assumption H [F, ψ] and from the definition of

δu
(m)
h (t) that

∂qF (P [zh,uh]
(m)(t)) ◦ δu

(m)
h.j (t) ≤ 0.

This gives

D−κh(t) ≤ ̺
(

t, ω0(t, µ̄, ν̄; ε), ω(t, µ̄, ν̄; ε)
)

+ A(1 +Q)ω(t, µ̄, ν̄; ε) + ε = ω′(t, µ̄, ν̄; ε),

which contradicts (3.14). The case (ii) can be treated in a similar way.

The same proof remains valid for the case when ξh(t) = ω0(t, µ̄, ν̄; ε). Then

inequalities (3.13) are satisfied on [0, ã). From (3.13) we obtain in the limit, letting ε

tend to zero, inequalities (3.8) on (E0.h ∪Eh) \ ([−b0, ã) × R
n).

We prove that there are the limits

lim
t→ã
t<ã

z
(m)
h (t), lim

t→ã
t<ã

u
(m)
h (t) for −K < m < K.

Write

ω̃h.0(t, t̄) = max {|z
(m)
h (t̄) − z

(m)
h (t)| : −K < m < K}

ω̃h(t, t̄) = max {‖u
(m)
h (t̄) − u

(m)
h (t)‖∞ : −K < m < K}

where t, t̄ ∈ [0, ã). We prove that

(3.15) ω̃h.0(t, t̄) ≤
∣

∣ω0(t̄, µ̄, ν̄) − ω0(t, µ̄, ν̄)
∣

∣

(3.16) ω̃h(t, t̄) ≤
∣

∣ω(t̄, µ̄, ν̄) − ω(t, µ̄, ν̄)
∣

∣.

We consider (3.16). Suppose that t̄ > t. The are j, 1 ≤ j ≤ n, and m ∈ Z
n,

−K < m < K, such that ω̃h(t, t̄) = u
(m)
h.j (t̄)−u

(m)
h.j (t) or ω̃h(t, t̄) = −[u

(m)
h.j (t̄)−u

(m)
h.j (t)].

Let us consider the first case. Then we have

ω̃h(t, t̄) =

∫ t̄

t

∂xj
F (P [zh,uh]

(m)(τ))dτ +

∫ t̄

t

∂νF (P [zh,uh]
(m)(τ))

(

Thuh.j
)

[τ,m]
dτ

+

n
∑

i=1

∫ t̄

t

∂wF (P [zh,uh]
(m)(τ))

(

Thuh.i
)

ϕ[τ,m]
∂xj

φ
(m)
i dτ

+

∫ t̄

t

∂qF (P [zh,uh]
(m)(τ)) ◦ δu

(m)
h.j dτ.

It follows from conditions 3), 4) of Assumption H [F, ψ] and from the definition of

δu
(m)
h (t) that

∫ t̄

t

∂qF (P [zh,uh]
(m)(τ)) ◦ δu

(m)
h.j dτ ≤ 0.
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We thus get

ωh(t, t̄) ≤

∫ t̄

t

ρ
(

τ, ω0(τ, µ̄, ν̄), ω(τ, µ̄, ν̄)
)

dτ + A(1 +Q)

∫ t̄

t

ω(τ, µ̄, ν̄)dτ

=

∫ t̄

t

ω′(τ, µ̄, ν̄)dτ = ω(t̄, µ̄, ν̄) − ω(t, µ̄, ν̄),

which proves (3.16). The case ωh(t, t̄) = −[u
(m)
h.j (t̄) − u

(m)
h.j (t)] can be treated in a

similar way. The same considerations apply to (3.15). We omit details. It follows

from (3.15), (3.16) that there are the limits

lim
t→ã
t<ã

z
(m)
h (t) = z

(m)
h (ã), lim

t→ã
t<ã

u
(m)
h (t) = u

(m)
h (ã) for −K < m < K

Then the solution (zh,uh) is defined on (E0.h ∪ Eh) \ ([−b0, ã] × R
n). If ã < a then

there is ā > ã such that (zh,uh) is defined on (E0.h ∪ Eh) \ ([−b0, ā] × R
n). This

contradicts our assumption that (zh,uh) is defined on (E0.h ∪ Eh) \ ([−b0, ã) × R
n)

and it is non continuable.

It follows from the above considerations that (zh,uh) is defined on E0.h ∪Eh and

estimates (3.8) are satisfied. The proof of the lemma is completed.

Now we give estimates of solutions of (2.11)–(2.13).

Lemma 3.3. If Assumption H [F, ρ, A] is satisfied and (z̄, ū) : E0 ∪ E → R
1+n,

ū = (ū1, . . . , ūn), is a solution of (2.11))–(2.13) then

(3.17) ‖z̄‖t ≤ ω0(t, µ̄, ν̄), [|ū|]t ≤ ω(t, µ̄, ν̄), t ∈ [0, a],

where
(

ω0(·, µ̄, ν̄), ω(·, µ̄, ν̄)
)

is the maximal solution of (3.1)–(3.3) with (µ, ν) =

(µ̄, ν̄).

Proof. Let us denote by
(

ω0(·, µ̄, ν̄; ε), ω(·, µ̄, ν̄; ε)
)

the maximal solution of (3.9)–

(3.11) where ε > 0. There is ε0 > 0 such that for 0 < ε < ε0 the above solutions are

defined on [0, a] and conditions (3.12) are satisfied on [0, a]. Set

ξ̃(t) = ‖z̄‖t, κ̃(t) = [|ū|]t, t ∈ [0, a].

We prove that for 0 < ε < ε0 we have

(3.18) ξ̃(t) < ω0(t, µ̄, ν̄; ε) and κ̃ < ω(t, µ̄, ν̄; ε),

where t ∈ [0, a]. It is clear that there is t̃ ∈ (0, a] such that inequalities (3.18) hold on

[0, t̃). Suppose by contradiction that estimates (3.18) are not satisfied on [0, a]. Then

there is t ∈ (0, a] such that

ξ̃(τ) < ω0(τ, µ̄, ν̄; ε) and κ̃(τ) < ω(τ, µ̄, ν̄; ε) for τ ∈ [0, t)

and

ξ̃(t) = ω0(t, µ̄, ν̄; ε) or κ̃(t) = ω(t, µ̄, ν̄; ε).
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Suppose that κ̃(t) = ω(t, µ̄, ν̄; ε). Then we have

(3.19) D−κ̃(t) ≥ ω′(t, µ̄, ν̄; ε).

There are (t̄, x) ∈ E, t̄ ≤ t, and j, 1 ≤ j ≤ n, such that κ̃(t) = |uj(t̄, x)|. If t̄ < t then

D−κ̃(t) = 0 which contradicts (3.19). Suppose that t̄ = t. We deduce from (3.6) that

x ∈ (−b, b). This gives ∂xuj(t, x) = 0[n]. It follows from (2.12) and from Assumption

H [F, ̺, A] that

D−κ̃(t) ≤ |∂tuj(t, x)| < ̺(t, ω0(t, µ̄, ν̄; ε), ω(t, µ̄, ν̄; ε))

+ A(1 +Q)ω(t, µ̄, ν̄; ε) + ε = ω′(t, µ̄, ν̄; ε),

which contradicts (3.19).

The case when ξ̃(t) = ω0(t, µ̄, ν̄; ε) can be treated in a similar way. Then estimates

(3.18) are satisfied on [0, a]. From (3.18) we obtain in the limit, letting ε tend to zero,

inequalities (3.17). This is the desired conclusion.

4. Convergence of the method of lines

We will assume nonlinear estimates of Perron type for ∂xF , ∂vF , ∂wF , ∂qF on a

subspace of Ω. Now we construct this subspace. Suppose that Assumptions H [F, ̺, A]

and H [Th] are satisfied and (µ̄, ν̄) are defined by (3.6), (3.7). Set c̄ = ω0(a, µ̄, ν̄),

c̃ = ω(a, µ̄, ν̄), C = (c̄, c̃) and

Ω[C] = {(t, x, v, w, q) ∈ Ω : ‖v‖B ≤ c̄, ‖w‖B ≤ c̄, ‖q‖∞ ≤ c̃}.

Write

E ′

h = {(t, x(m)) ∈ Eh : −K < m < K}.

Assumption H [F, σ]. The functions ϕ and F , ψ satisfy Assumption H [F, ̺, A] and

1) σ : [0, a] × R+ → R+ is continuous and it is nondecreasing with respect to the

second variable,

2) for each c ≥ 1 the maximal solutions of the Cauchy problem

ω′(t) = c
[

ω(t) + σ(t, ω(t))
]

, ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a],

3) the expressions

‖∂xF (t, x, v, w, q)− ∂xF (t, x, v̄, w̄, q̄)‖, ‖∂qF (t, x, v, w, q)− ∂qF (t, x, v̄, w̄, q̄)‖,

‖∂vF (t, x, v, w, q)− ∂vF (t, x, v̄, w̄, q̄)‖⋆, ‖∂wF (t, x, v, w, q)− ∂wF (t, x, v̄, w̄, q̄)‖⋆,

are estimated on Ω[C] by σ
(

t,max {‖v − v̄‖B, ‖w − w̄‖B} + ‖q − q̄‖
)

.
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Remark 4.1. It is important in Assumption H [F, σ] that we have assumed nonlinear

estimates for ∂xF , ∂vF , ∂wF , ∂qF on Ω[C]. There are differential equations with

deviated variables and differential integral equations such that Assumption H [F, σ]

is satisfied and global estimates for ∂xF , ∂vF , ∂wF , ∂qF are not satisfied. We give

comments on such equations.

Set Ω0 = Ξ×R
2 ×R

n and suppose that the function G : Ω0 → R of the variables

(t, x, p, r, q) satisfies the conditions:

1) G is continuous and for each t ∈ [0, a] the function G(t, ·) is of class C2,

2) there is A ∈ R
+ such that

|∂pG(P )|, |∂rG(P )|, ‖∂qG(P )‖∞ ≤ A, P = (t, x, p, r, q) ∈ Ω0,

3) A0 ∈ R+ is defined by the relation

|G(t, x, 0, 0, 0[n])| ≤ A0 for (t, x) ∈ E,

and there is ̺ : [0, a] × R+ × R+ → R such that condition 4) of assumption

H [F, ̺, A] is satisfied and

‖∂xG(t, x, p, r, q)‖∞ ≤ ̺(t,max {|p|, |r|}, ‖q‖∞) on Ω0.

Then there is L ∈ R+ such that

(i) the operator F given by (1.3) satisfies Assumption H [F, σ] for σ(t, p) = Lp,

(ii) the operator F given by (1.5) satisfies Assumption H [F, σ] for σ(t, p) = Lp.

It is important that we do not assume that the partial derivatives of the second order

of G(t, ·) are bounded on Ω0. It follows that the main assumption is satisfied for a

large class of differential equations with deviated variables and differential integral

equations

Remark 4.2. It is assumed in [1], [6], [7], [30] that right hand sides of differential

function equations satisfy global estimates of Perron type. It follows from our con-

siderations that local estimates are sufficient for the convergence of the method of

lines.

Lemma 4.3. If Assumptions H [Th] and H [F, σ] are satisfied then the solution (zh,uh)

of (2.8)–(2.10) is unique.

Proof. Suppose that (zh,uh) and (z̃h, ũh) are solutions of (2.8)–(2.10). Set

λ̃h(t) = ‖zh − z̃h‖h.t, ζ̃h(t) = [|uh − ũh|]h.t, t ∈ [0, a],

and ω̃h = λ̃h + ζ̃h. It is easy to prove that there is ch ≥ 1 such that the function ω̃h

satisfies the differential inequality

D−ω̃h(t) ≤ ch
[

ω̃h(t) + σ(t, ω̃h(t))
]

, t ∈ (0, a],
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and ω̃h(0) = 0. It follows from condition 2) of Assumption H [F, σ] and from classical

theorems on differential inequalities [17] that ω̃h(t) = 0 for t ∈ [0, a] and the lemma

follows.

Now we formulate the main theorem of the paper.

Theorem 4.4. Suppose that Assumption H [Th] and H [F, σ] are satisfied and

1) z̄ : E0 ∪ E → R is a solution of (1.1), (1.2) and z̄ is of class C2,

2) ū = ∂xz̄ and (z̄h, ūh) is the restriction of (z̄, ū) to E0.h ∪ Eh.

Then

(i) there is exactly one solution (zh,uh) : E0.h ∪ Eh → R
1+n of (2.8)–(2.10),

(ii) there are β0, β : ∆ → R+ such that

(4.1) ‖z̄h − zh‖h.t ≤ β0(h), [|ūh − uh|]h.t ≤ β(h) for t ∈ [0, a],

and

(4.2) lim
h→0[n]

β0(h) = 0, lim
h→0[n]

β(h) = 0.

Proof. The existence and uniqueness of a solution of (2.8)–(2.10) follows from Lem-

mas 3.2 and 4.3. Let Γh.0 : E ′

h → R, Γh : E ′

h → R
n be defined by the relations

d

dt
z̄

(m)
h (t) = Fh.0[z̄h, ūh]

(m)(t) + Γ
(m)
h.0 (t),

d

dt
ū

(m)
h (t) = Fh[z̄h, ūh]

(m)(t) + Γ
(m)
h (t),

There are γ0, γ : ∆ → R+ such that

|Γ
(m)
h.0 (t)| ≤ γ0(h), ‖Γ

(m)
h (t)‖∞ ≤ γ(h) on E ′

h

and

lim
h→0[n]

γ0(h) = 0, lim
h→0[n]

γ(h) = 0.

There is c⋆ → R+ such that

‖∂xxz̄(t, x)‖n×n ≤ c⋆ on E where ∂xxz̄ =
[

∂xixj
z̄
]

i,j=1,...,n
.

It follows from Lemmas 3.2 and 3.3 and from Assumption H [Th] that for (t, x(m)) ∈ E ′

h

we have

(4.3) |(Thzh)[t,m](τ, s)| ≤ c̄, |(Thz̄h)[t,m](τ, s)| ≤ c̄, (τ, s) ∈ D[t, x(m)],

and

(4.4) |(Thzh)ϕ[t,m](τ, s)| ≤ c̄, |(Thz̄h)ϕ[t,m](τ, s)| ≤ c̄, (τ, s) ∈ D[ϕ(t, x(m))],

and

(4.5) ‖u
(m)
h (t)‖∞ ≤ c̃, ‖ū

(m)
h (t)‖∞ ≤ c̃.
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Let us denote by
(

ωh.0(·, ε), ωh(·, ε)
)

the maximal solution of the Cauchy problem

(4.6) ξ′(t) = 2A(κ(t) + ξ(t)) + 2c̃σ
(

t, ξ(t) + κ(t)
)

+ γ0(h) + ε,

(4.7) κ′(t) = āσ
(

t, ξ(t) + κ(t)
)

+ A(1 +Q)κ(t) + γ(h) + ε,

(4.8) ξ(0) = α0(h) + ε, κ(0) = α(h) + ε,

where ā = 1 + c̃(1 +Q) + c⋆ and α0, α : ∆ → R+ are given by (3.4), (3.5). Note that

the function ωh.⋆(·, ε) = ωh.0(·, ε) + ωh(·, ε) is a solution of the initial problem

(4.9) ω′(t) = ĉ
[

ω(t) + σ(t, ω))
]

+ γ0(h) + γ(h) + 2ε,

(4.10) ω(0) = α0(h) + α(h) + 2ε,

where ĉ = max {A(3 +Q), 2c̃+ ā}. It follows from condition 2) of Assumption

H [F, σ] that there is ε0 > 0 such that for 0 < ε < ε0 the functions
(

ωh.0(·, ε), ωh(·, ε)
)

are defined on [0, a] and

lim
ε→0

ωh.0(t, ε) = ωh.0(t), lim
ε→0

ωh(t, ε) = ωh(t),

where (ωh.0, ωh) is the maximal solution of (4.6)–(4.8) with ε = 0. Set

λh(t) = ‖z̄h − zh‖h.t, ζh(t) = [|ūh − uh|]h.t, t ∈ [0, a].

We prove that for each 0 < ε < ε0 we have

(4.11) λh(t) < ωh.0(t, ε) and ζh(t) < ωh(t, ε)

where t ∈ [0, a]. It is clear that there is t̃ ∈ (0, a] such that estimates (4.11) are

satisfied on [0, t̃). Suppose by contradiction that (4.11) fails to be true on [0, a]. Then

there is t ∈ (0, a] such that

λh(τ) < ωh.0(τ, ε) and ζh(τ) < ωh(τ, ε) for τ ∈ [0, t)

and

λh(t) = ωh.0(t, ε) or ζh(t) = ωh(t, ε).

Suppose that λh(t) = ωh.0(t, ε). Then we have

(4.12) D−λh(t) ≥ ω′

h.0(t, ε).

There are m ∈ Z
n, −K ≤ m ≤ K, and t̄ ≤ t such that λh(t) = |z

(m)
h (t̄)− z̄

(m)
h (t̄)|.

If t̄ < t then D−λh(t) = 0 which contradicts (4.12). Suppose that t̄ = t. Then we

have (i) λh(t) = z
(m)
h (t)− z̄

(m)
h (t) or (ii) λh(t) = −

[

z
(m)
h (t) − z̄

(m)
h (t)

]

. Let us consider

the first case.

It follows from (3.4) that x(m) ∈ (−b, b). We deduce from condition 3) of As-

sumption H [F, σ] and from (4.3)–(4.5) that

‖∂qF (P [zh,uh]
(m)(t)) − ∂qF (P [z̄h, ūh]

(m)(t))‖ ≤ σ
(

t, ωh.0(t, ε) + ωh(t, ε)
)

.
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Then we have

D−λh(t) ≤
d

dt

[

z
(m)
h (t) − z̄

(m)
h (t)

]

≤ 2A
(

ωh.0(t, ε) + ωh(t, ε)
)

+ 2c̃σ
(

t, ωh.0(t, ε) + ωh(t, ε)
)

+ ∂qF (P [zh,uh]
(m)(t)) ◦ δ(zh − z̄h)

(m)(t) + γ0(h) + ε.

It follows from conditions 3), 4) of Assumption H [F, ψ] that

∂qF (P [zh,uh]
(m)(t)) ◦ δ(zh − z̄h)

(m)(t) ≤ 0.

Then we obtain

D−λh(t) < 2A
(

ωh.0(t, ε)+ωh(t, ε)
)

+2c̃σ
(

t, ωh.0(t, ε)+ωh(t, ε)
)

+γ0(h)+ε = ω′

h.0(t, ε),

which contradicts (4.12). The case (ii) can be treated in a similar way.

Suppose that ζh(t) = ωh(t, ε) Then we have

(4.13) D−ζh(t) ≥ ω′

h(t, ε).

There are m ∈ Z
n, −K ≤ m ≤ K and t̄ ∈ (0, t] and j ∈ {1, . . . , n} such that ζh(t) =

|u
(m)
h.j (t̄) − ū

(m)
h.j (t̄)|. If t̄ < t then D−ζh(t) = 0 which contradicts (4.13). Suppose that

t̄ = t. Then we have (i) ζh(t) = u
(m)
h.j (t)− ū

(m)
h.j (t) or (ii) ζh(t) = −

[

u
(m)
h.j (t)− ū

(m)
h.j (t)

]

.

Let us consider the first case. It follows that x(m) ∈ (−b, b). We deduce from condition

3) of Assumption H [F, σ] and from (4.3)–(4.5) that the expressions

‖∂xF (P [zh,uh]
(m)(t)) − ∂xF (P [z̄h, ūh]

(m)(t))‖,

‖∂vF (P [zh,uh]
(m)(t)) − ∂vF (P [z̄h, ūh]

(m)(t))‖⋆,

‖∂wF (P [zh,uh]
(m)(t)) − ∂wF (P [z̄h, ūh]

(m)(t))‖⋆

may be estimated by σ
(

t, ωh.0(t, ε) + ωh(t, ε)
)

. Then we have

D−ζh(t) ≤
d

dt

[

u
(m)
h.j (t) − ū

(m)
h.j (t)

]

≤ āσ
(

t, ωh.0(t, ε) + ωh(t, ε)
)

+ A(1 +Q)ωh(t, ε)

+∂qF (P [zh,uh]
(m)(t)) ◦ δ(uh.j − ūh.j)

(m)(t) + γ(h).

It follows from conditions 3), 4) of Assumption H [F, ψ] that

∂qF (P [zh,uh]
(m)(t)) ◦ δ(uh.j − ūh.j)

(m)(t) ≤ 0.

Then we obtain

D−ζh(t) < āσ
(

t, ωh.0(t, ε) + ωh(t, ε)
)

+ A(1 +Q)ωh(t, ε) + γ(h) + ε = ω′

h(t, ε)

which contradicts (4.13). The case (ii) can be treated in a similar way.

Then inequalities (4.11) are satisfied on [0, a]. From (4.11) we obtain in the limit,

letting ε tend to zero, the following estimates

λh(t) ≤ ωh.0(t) and ζh(t) ≤ ωh(t), t ∈ [0, a],
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where (ωh.0, ωh) is the maximal solution of (4.6)–(4.8) with ε = 0. It follows that

conditions (4.1), (4.2) are satisfied for β0(h) = ωh.0(a) and β(h) = ωh(a). This

completes the proof.

Remark 4.5. Suppose that all the assumptions of Theorem 4.4 are satisfied with

σ(t, p) = Lp, (t, p) ∈ [0, a] × R+, where L ∈ R+. Then we have

‖z̄h − zh‖h.t + [|ūh − uh|]h.t ≤ β̃(h) for t ∈ [0, a],

where

β̃(h) =
(

α0(h) + α(h)
)

exp {ĉ(1 + L)a} +
γ0(h) + γ(h)

ĉ(1 + L)

[

exp {ĉ(1 + L)a} − 1
]

.

The above estimates is obtained by solving problem (4.9), (4.10) with σ(t, p) = Lp

and ε = 0.

5. Examples

Put n = 2 and E = [0, 0.5] × [−1, 1] × [−1, 1], E0 = 0 × [−1, 1] × [−1, 1]. We

consider initial boundary value problems for functional differential equations with

solutions defined on E. We apply the Euler difference method or the Lax difference

scheme to solve numerically ordinary functional differential problems. Nodal point

on [0, 0.5] are defined by t(r) = rh0, r = 0, 1, . . . , N0.

Example 5.1. Consider the differential equation with deviated variable

∂tz(t, x, y) = x
{

2∂xz(t, x, y) + sin
[

∂xz(t, x, y) − z(t, 0.5x, 0.5y)
]}

+ y
{

2∂yz(t, x, y) + cos
[

∂yz(t, x, y) + z(t, 0.5(x+ y), 0.5(x− y))
]}

+ f(t, x, y).

with initial boundary conditions

z(0, x, y) = 1, (x, y) ∈ [−1, 1] × [−1, 1],

z(t,−1, y) = z(t, 1, y) = exp {t(1 − y2)}, (t, y) ∈ [0, 0.5] × [−1, 1],

z(t, x,−1) = z(t, x, 1) = exp {t(x2 − 1)}, (t, x) ∈ ([0, 0.5] × [−1, 1].

where

f(t, x, y) = exp {t(x2 − y2)}(x2−y2)(1−4t)−y cos
{

exp {txy} − 2yt exp {t(x2 − y2)}
}

−x sin
{

exp {t(x2 − y2)}
[

2xt− exp {−
3

4
t(x2 − y2)}

]}

.
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The solution of the above problem is known, it is z̄(t, x, y) = exp {t(x2 − y2)}.

Let us denote by (z̃h, z̃h.x, z̃h.y) approximate solutions of ordinary differential equation

corresponding to the above problem. They are obtained by using the explicit Euler

difference method. Set

(5.1) ε
(r)
h = max {|(z̄ − z̃h)(t

(i), x(m1), y(m2))| : x(m1), y(m2) ∈ [−1, 1], 0 ≤ i ≤ r},

and

(5.2) ε
(r)
h.x = max {|(∂xz̄ − z̃h.x)(t

(i), x(m1), y(m2))| : x(m1), y(m2) ∈ [−1, 1], 0 ≤ i ≤ r},

(5.3) ε
(r)
h.y = max {|(∂yz̄ − z̃h.y)(t

(i), x(m1), y(m2))| : x(m1), y(m2) ∈ [−1, 1], 0 ≤ i ≤ r}.

Let us denote by ẑh an approximate solution of (1.1), (1.2) which is obtained by using

the Lax difference scheme. Set

ε̂
(r)
h = max {|(z̄ − ẑh)(t

(i), x(m1), y(m2))| : x(m1), y(m2) ∈ [−1, 1], 0 ≤ i ≤ r}.

In the Table we give experimental values of the errors (εh, εh.x, εh.y) and ε̂h. Note

Table 1. Table of errors, h0 = 0.0001, h1 = h2 = 0.01

t(r) ε
(r)
h ε

(r)
h.x ε

(r)
h.y ε̂

(r)
h

0.30 0.000353 0.000836 0.001217 0.003378

0.25 0.000464 0.001092 0.002091 0.007177

0.40 0.000545 0.003375 0.003255 0.005060

0.45 0.000698 0.005012 0.005301 0.007177

0.50 0.000712 0.006413 0.005956 0.012831

that the errors of the classical difference method ε̂
(r)
h are larger than the errors ob-

tained by discretization of the numerical method of lines ε
(r)
h . This is due to the fact

that the Lax difference scheme has the following property: we approximate partial

derivatives of z with respect to spatial variables by difference expressions which are

calculated by means of previous values of the approximate solution. In our approach

we approximate the partial derivatives for the unknown function in (1.1), (1.2) by

using difference equations which are generated by the original problem.

Example 5.2. Consider the differential integral equation

∂tz(t, x, y) = x arctan
[

∂xz(t, x, y) +
π2

4

∫ x

0

z(t, s, y)ds
]

+y arctan
[

∂yz(t, x, y) −
π2

4

∫

−y

0

z(t, s, y)ds
]

−

∫ t

0

z(τ, x, y)dτ + cos
πx

2
cos

πy

2

with the initial boundary condition

z(t, x, y) = 0 for (t, x, y) ∈ E0 ∪ ∂0E.
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The solution of the above problem is known. It is z̄(t, x, y) = sin t cos πx
2

cos πy
2

.

Let us denote by (z̃h, z̃h.x, z̃h.y) approximate solutions of ordinary differential equation

corresponding to the above problem. They are obtained by using the implicit Euler

difference method.

Let (εh, εh.x, εh.y) be defined by (5.1)–(5.3). In the Table we give experimental

values of the above defined errors.

Table 2. Table of errors, h0 = 0.01, h1 = h2 = 0.005

t(r) ε
(r)
h ε

(r)
h.x ε

(r)
h.y

0.30 0.001972 0.004665 0.004187

0.25 0.002213 0.006204 0.005626

0.40 0.002472 0.007900 0.006244

0.45 0.002792 0.008731 0.007028

0.50 0.002931 0.009243 0.008965

Two types of assumptions are needed in theorems on the convergence of functional

difference schemes for (1.1), (1.2). The first type conditions the regularity of given

functions. The second type conditions concern the mesh and they are known as (CFL)

conditions (see [13], Theorem 3.21)

The (CFL) conditions for the differential integral equation considered here have

the form:

2h0 ≤ hi, i = 1, 2.

Note the the steps h0 = 0.01, h1 = h2 = 0.005 do not satisfy the above condition and

the classical Lax difference scheme is not applicable.

Results on the method of lines presented here have the potential for applications

in the numerical solving of first order partial functional differential equations.
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