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ABSTRACT. In this paper, a class of n-th order functional differential equations is considered for

which the generalized Emden-Fowler-neutral type equation

(E) (y(t) + p(t)y(t − τ))(n) + q(t)|y(t − σ)|µ(t)sgn y(t − σ) = 0

can be considered as a nonlinear model, where n > 2, q ∈ Lloc(R+, R), p ∈ Lloc(R+, R), and

µ ∈ C(R+, (0, 1]) is a nondecreasing function. It has been proved that the oscillation properties of

(E) substantially depend on the rate at which the function µ+ −µ(t) tends to zero as t → ∞, where

µ+ = limt→∞ µ(t). New sufficient conditions for (E) to have Properties A and B are established.
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1. INTRODUCTION

Properties A and B are introduced in [8]. The problem of determining criteria

for nonlinear differential equations of the second and higher order to have that each

solution oscillates or converges to zero (or be oscillatory, converges to zero or diverges

to ∞) has been interest to researchers even before the now commonly used names

of Properties A and B. Actually, it has its roots in the pioneering paper of Atkinson

[2] for second order equations and the work of Kiguradze [7], who gave sufficient

conditions for this behaviour in case n is even, and Licko and Svec [12], who gave

necessary and sufficient conditions for n both even and odd. In the present paper,

the authors have made an attempt to establish Properties A and B for a general class

of nonlinear neutral differential equations of the form

(y(t) + p(t)y(t − τ))(n) + q(t)|y(t− σ)|µ(t)sgn y(t− σ)) = 0,(1.1)
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where n > 2, q ∈ Lloc(R+, R), p ∈ Lloc(R+, R), µ ∈ C(R+, (0, 1]), and σ > 0, τ > 0

are constants. In case µ(t) ≡ constant > 0, the oscillatory properties of (1.1) have

been extensively studied (see for e.g. [10, 11, 13, 14, 15]) classifying as linear, sublinear

and superlinear, where as µ(t) 6≡ constant, to the extent of authors’ knowledge, the

analogous questions have not been examined. If p(t) ≡ 0 and σ = 0, then (1.1)

reduces to

y(n)(t) + q(t)|y(t)|µ(t)sgn y(t)) = 0.(1.2)

Graef et. al [4] have studied (1.2) and established sufficient conditions under which

(1.2) admits Properties A and B. It reveals that their work is motivated by the recent

work of Grammatikopulos et. al [5]. However, nothing is known about (1.1) to have

Properties A and B. Clearly, (1.2) is a particular case of (1.1). Hence, the study of

(1.1) subject to the Properties A and B is more interesting. In this direction, we refer

the reader to some of the works [8, 9, 10, 11] and the references cited therein.

Let t0 ∈ R+, t0 > max{σ, τ}. A function y : [t0, +∞) → R is said to be a proper

solution of (1.1) if it is locally continuous along with its derivatives of order up to

and including n − 1, sup{|y(t)| : t ∈ [t0, +∞)} > 0, for t > t0, there exists a function

u ∈ C(R+, R) such that u(t) = y(t) on [t0, +∞), and the equality

(u(t) + p(t)u(t − τ))(n) + q(t)|u(t − σ)|µ(t)sgn u(t − σ) = 0

holds for t ∈ [t0, +∞). A proper solution of (1.1) is said to be oscillatory, if it has a

sequence of zeros tending to +∞. Otherwise, the solution is said to be nonoscillatory.

Definition 1.1 ([4, 8]). We say that (1.1) has Property A, if any proper solution y

is oscillatory if n is even and is either oscillatory or satisfies

|y(i)(t)| ↓ 0 ast ↑ +∞ (i = 0, 1, 2, . . . , n − 1),(1.3)

if n is odd.

Definition 1.2 ([4, 8]). We say that (1.1) has Property B if any proper solution y is

either oscillatory, satisfies (1.3) or satisfies

|y(i)(t)| ↑ +∞ as t ↑ +∞ (i = 0, 1, 2, . . . , n − 1),(1.4)

if n is even, and is either oscillatory or satisfies (1.4), if n is odd.

The higher order nonlinear neutral delay differential equation

(y(t) + p(t)y(t − τ))(n) + q(t)|y(t− σ)|λsgn y(t − σ) = 0,(1.5)

where p ∈ Lloc(R+, R), q ∈ Lloc(R+, R+), λ > 0, and λ 6= 1 is a special case of (1.1) if

we let λ = limt→∞ µ(t) and µ(t) 6= λ for t ∈ R+. It may turn out to be that in certain

cases, (1.1) may not have Property A(B), but the ‘limiting’ equation (1.5) does have

this property.
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2. SOME AUXILIARY LEMMAS

In the sequel, C̄n−1
loc ([t0, +∞)) denotes the set of all functions y : [t0, +∞) → R

that are absolutely continuous on any finite subinterval of [t0, +∞) along with their

derivatives of order up to and including n − 1.

Lemma 2.1 ([8]). Let u ∈ C̄n−1
loc ([t0, +∞)) satisfy u(t) > 0 and u(n)(t) 6 0 (u(n)(t) >

0), for t > t0 and u(n)(t) 6≡ 0 in any neighbourhood of +∞. Then there exist t1 > t0

and l ∈ {0, 1, 2, . . . , n} such that (l + n) is odd (even) and

u(i)(t) > 0, for t > t1 (i = 0, 1, 2, . . . , l − 1),

(−1)i+lu(i)(t) > 0, for t > t1 (i = l, l + 1, . . . , n − 1).(2.1)

NOTE. In case l = 0, we mean that the second inequality in (2.1) holds, while

if l = n, the first one holds.

Lemma 2.2 ([4, 5]). Let u ∈ C̄n−1
loc ([t0, +∞)) and (2.1) be satisfied for some l ∈

{1, 2, . . . , n − 1} with (l + n) odd (even). Then

∫ +∞

tn−l−1|u(n)(t)|dt < +∞.

If, moreover,

∫ +∞

tn−l−1|u(n)(t)|dt = +∞,(2.2)

then there exists t∗ > t0 such that

u(i)(t)

tl−i
↓,

u(i)(t)

tl−i−1
↑ (i = 0, 1, 2, . . . , n − 1),(2.3)

u(t) >
tl−1

l!
u(l−1)(t), for t > t∗,(2.4)

and

u(l−1)(t) >
t

(n − l)!

∫ +∞

t

sn−l−1|u(n)(s)|ds

+
1

(n − l)!

∫ t

t∗
sn−l|u(n)(s)|ds, t > t∗.(2.5)

Lemma 2.3 ([3]). Let u ≥ 0 and v ≥ 0. Then

uγ + vγ
> δ(u + v)γ, γ > 0,

where δ = 1, if 0 < γ ≤ 1 and δ = 21−γ, if γ > 1.
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3. Eq. (1.1) WITH PROPERTIES A AND B

In this section sufficient conditions are obtained in order for (1.1) to have no

solutions of the type (2.1), which then implies that (1.1) has either Property A or

Property B. For convenience, we view (1.1) as

(E1) (y(t) + p(t)y(t− τ))(n) + q(t)|y(t− σ)|µ(t)sgn y(t− σ)) = 0

and

(E2) (y(t) + p(t)y(t − τ))(n) − q(t)|y(t− σ)|µ(t)sgn y(t− σ)) = 0,

where q ∈ Lloc(R+, R+).

Proposition 3.1. Let 0 6 p(t) 6 a < ∞ and µ+ = limt→∞ µ(t). For every 0 < ǫ <

µ+, let l ∈ {1, 2, . . . , n − 1} with (l + n) odd and

lim sup
t→+∞

[

(t − σ)(µ+
−ǫ)

∫ +∞

t

(s − σ)n−l−1+(l−1)(µ+
−ǫ)Q(s)ds

+
1

t

∫ t

0

(s − σ)n−l+l(µ+
−ǫ)Q(s)ds

]

> l!(n − l)!Ω(µ+ − ǫ)(1 + aµ+
−ǫ)(H1)

holds,where Q(t) = min{q(t), q(t − τ)}, t > τ , and Ω(s) =

{

1, s = 1

0, 0 < s < 1.
Then

(E1) has no solution of the type (2.1).

Proof. We will first show that (H1) implies

(H2)

∫ +∞

tn−l−1+l(µ+
−ǫ)Q(t)dt = +∞.

Indeed, if this is not the case, then it is easy to verify that

(t − σ)(µ+
−ǫ)

∫ +∞

t

(s − σ)n−l−1+(l−1)(µ+
−ǫ)Q(s)ds → 0 as t → ∞

and

1

t

∫ t

0

(s − σ)n−l+l(µ+
−ǫ)−lQ(s)ds

=
1

t

∫ t∗

0

(s − σ)n−l+l(µ+
−ǫ)Q(s)ds +

1

t

∫ t

t∗
(s − σ)n−l+l(µ+

−ǫ)Q(s)ds

<
1

t

∫ t∗

0

(s − σ)n−l+l(µ+
−ǫ)Q(s)ds +

∫ t

t∗
(s − σ)n−l−1+l(µ+

−ǫ)Q(s)ds

→ 0 as t → ∞,

implies a contradiction to (H1). Thus our assertion holds, that is, Lemma 2.2 can be

applied in this case.
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Suppose that (E1) has a proper nonoscillatory solution y(t) on [t0, +∞) with

l ∈ {1, 2, . . . , n − 1} and (l + n) is odd. Setting

(3.1) z(t) = y(t) + p(t)y(t− τ),

we obtain from (E1) that

z(n)(t) + q(t)|y(t− σ)|µ(t)sgn y(t − σ) = 0.

Without loss of generality, we may assume that y(t) > 0, for t > t0. Hence for t1 > t0,

(3.2) z(n)(t) = −q(t)(y(t − σ))µ(t)
6 0, 6≡ 0,

for t > t1. Consequently, z(t) is a monotonic function on [t1, +∞). Since y(t) is a

proper nonoscillatory solution, then z(t) is nonoscillatory and hence it satisfies (2.1).

By Lemma 2.1, there exist c > 0 and t2 > t1 such that z(t) > ctl−1, for t > t2.

Therefore, from (H1), we see that z(t) satisfies the hypotheses of Lemma 2.2, that is,

(2.3) holds. Because limt→∞ µ(t) = µ+, then there exists T > 0 such that for every

0 < ǫ < µ+, µ(t) > µ+− ǫ for t > T . Let t3 = max{T, t2}. Due to (3.2), it is to verify

that

z(n)(t) + q(t)(y(t− σ))µ(t) + a(µ+
−ǫ)z(n)(t− τ) + a(µ+

−ǫ)q(t− τ)(y(t− τ − σ))µ(t−τ) = 0

for t > t3. Hence, for t > t3 + τ , using Lemma 2.3, we obtain

0 > z(n)(t) + a(µ+
−ǫ)z(n)(t − τ)

+ Q(t)[(y(t − σ))µ(t) + a(µ+
−ǫ)(y(t − τ − σ))µ(t−τ)]

> z(n)(t) + a(µ+
−ǫ)z(n)(t − τ)

+ Q(t)[(y(t − σ))(µ+
−ǫ) + a(µ+

−ǫ)(y(t− τ − σ))(µ+
−ǫ)]

> z(n)(t) + a(µ+
−ǫ)z(n)(t − τ) + Q(t)(z(t − σ))(µ+

−ǫ),

where 0 < z(t) 6 y(t) + ay(t − τ). Thus, for t > t4 > t3 + τ ,

(3.3) [z(t) + a(µ+
−ǫ)z(t − τ)](n)

6 −Q(t)(z(t − σ))(µ+
−ǫ).
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We note that, when (3.2) holds so does (3.3) for t > t4. By Lemma 2.2 and in view

of (3.3), we have

[z(t) + a(µ+
−ǫ)z(t − τ)](l−1)

>
t

(n − l)!

∫ +∞

t

sn−l−1|[z(s) + a(µ+
−ǫ)z(s − τ)](n)|ds

+
1

(n − l)!

∫ t

t∗
sn−l|[z(s) + a(µ+

−ǫ)z(s − τ)](n)|ds

>
t

(n − l)!

∫ +∞

t

sn−l−1Q(s)(z(s − σ))(µ+
−ǫ)ds

+
1

(n − l)!

∫ t

t∗
sn−lQ(s)(z(s − σ))(µ+

−ǫ)ds

>
t

l!(n − l)!

∫ +∞

t

sn−l−1(s − σ)(l−1)(µ+
−ǫ)Q(s)[z(l−1)(s − σ)](µ

+
−ǫ)ds

+
1

l!(n − l)!

∫ t

t∗
sn−l(s − σ)(l−1)(µ+

−ǫ)Q(s)[z(l−1)(s − σ)](µ
+
−ǫ)ds

>
t[z(l−1)(t − σ)](µ

+
−ǫ)

l!(n − l)!

∫ +∞

t

sn−l−1(s − σ)(l−1)(µ+
−ǫ)Q(s)ds

+
1

l!(n − l)!

∫ t

t∗
sn−l(s − σ)l(µ+

−ǫ)Q(s)

[

z(l−1)(s − σ)

(s − σ)

](µ+
−ǫ)

ds

>
t[z(l−1)(t − σ)](µ

+
−ǫ)

l!(n − l)!

∫ +∞

t

(s − σ)n+(l−1)(µ+
−ǫ)−l−1Q(s)ds

+
1

l!(n − l)!

[

z(l−1)(t − σ)

(t − σ)

](µ+
−ǫ) ∫ t

t∗
(s − σ)n+l(µ+

−ǫ)−lQ(s)ds,

that is, since z(l−1)(t) is nondecreasing,

z(l−1)(t) + aµ+
−ǫz(l−1)(t)

>
t[z(l−1)(t − σ)](µ

+
−ǫ)

l!(n − l)!(t − σ)(µ+
−ǫ)

(t − σ)(µ+
−ǫ)

∫ +∞

t

(s − σ)n+(l−1)(µ+
−ǫ)−l−1Q(s)ds

+
1

l!(n − l)!

[

z(l−1)(t − σ)

(t − σ)

](µ+
−ǫ) ∫ t

t∗
(s − σ)n+l(µ+

−ǫ)−lQ(s)ds.

Consequently, for t > t∗ > t4 the last inequality reduces to

(1 + aµ+
−ǫ)

z(l−1)(t)

t
>

1

l!(n − l)!

[

z(l−1)(t − σ)

(t − σ)

](µ+
−ǫ)

×

[

(t − σ)(µ+
−ǫ)

∫ +∞

t

(s − σ)n+(l−1)(µ+
−ǫ)−l−1Q(s)ds

+
1

t

∫ t

t4

(s − σ)n+l(µ+
−ǫ)−lQ(s)ds

]

.(3.4)



EMDEN-FOWLER EQUATIONS WITH PROPERTIES A AND B 7

Since z(l−1)(t)
t

is nonincreasing for large t,

lim sup
t→+∞

[

z(l−1)(t)

t

]1−(µ+
−ǫ)

6 Ω(µ+ − ǫ),

and hence (3.4) becomes

(1 + aµ+
−ǫ)

[

z(l−1)(t)

t

]1−(µ+
−ǫ)

>
1

l!(n − l)!

[

(t − σ)(µ+
−ǫ)

∫ +∞

t

(s − σ)n+(l−1)(µ+
−ǫ)−l−1Q(s)ds

+
1

t

∫ t

t4

(s − σ)n+l(µ+
−ǫ)−lQ(s)ds

]

,

that is,

lim sup
t→+∞

[

(t − σ)(µ+
−ǫ)

∫ +∞

t

(s − σ)n+(l−1)(µ+
−ǫ)−l−1Q(s)ds

+
1

t

∫ t

t4

(s − σ)n+l(µ+
−ǫ)−lQ(s)ds

]

6 (1 + aµ+
−ǫ)Ω(µ+ − ǫ)l!(n − l)!,

a contradiction to (H1). This completes the proof of the proposition.

Proposition 3.2. Let −∞ < −b 6 p(t) 6 0, b > 0, and µ+ = limt→∞ µ(t). Assume

that

(H3) l ∈ {1, 2, . . . , n − 1} with (l + n) odd and

lim sup
t→+∞

[

(t − σ)µ(t)

∫ +∞

t

(s − σ)n+(l−1)µ(s)−l−1q(s)ds +
1

t

∫ t

0

(s − σ)n+lµ(s)−lq(s)ds

]

> l!(n − l)!Ω(µ+).

Furthermore, assume that τ < σ,

(H4) l ∈ {1, 2, . . . , n − 2} with (l + n) even and

lim sup
t→+∞

[

(t + τ − σ)µ(t)

∫ +∞

t

(s + τ − σ)n+(l−1)µ(s)−l−1q(s)b−µ(s)ds

+
1

t

∫ t

0

(s + τ − σ)n+lµ(s)−lq(s)b−µ(s)ds

]

> l!(n − l)!Ω(µ+)

holds, where Ω(s) is defined in Proposition 3.1. Then (E1) has no solution of the type

(2.1).

Proof. Proceeding as in the proof of Proposition 3.1, it is easy to verify that (H4)

implies

(H5)
∫ +∞

tn+lµ(t)−l−1q(t)dt = +∞,

and (H3) implies

(H6)
∫ +∞

tn+lµ(t)−l−1q(t)dt = +∞.
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Let y(t) be a proper nonoscillatory solution of (1.1) on [t0,∞) and l ∈ {1, 2, . . . ,

n − 1} such that (l + n) odd/(even). Defining z as in (3.1), we get (3.2) for t > t1.

Consequently, z(t) is monotonic on [t1,∞). Here, we have either z(t) > 0 or z(t) < 0,

for t > t1. Suppose the former holds. Then z(t) 6 y(t) implies that |z(n)(t)| >

q(t)(z(t− σ))µ(t) > 0 for t > t1 + σ. Therefore, from (H3) it follows that z(t) satisfies

the hypotheses of Lemma 2.2, that is, (2.3) holds and hence

z(l−1)(t) >
t

(n − l)!

∫ +∞

t

sn−l−1|z(n)(s)|ds +
1

(n − l)!

∫ t

t∗
sn−l|z(n)(s)|ds

>
t

(n − l)!

∫ +∞

t

sn−l−1q(s)(z(s − σ))µ(s)ds

+
1

(n − l)!

∫ t

t∗
sn−lq(s)(z(s − σ))µ(s)ds

for t > t∗ > t2 > t1 + σ. Using (2.4), we obtain from the last inequality that

z(l−1)(t) >
t

l!(n − l)!

∫ +∞

t

sn−l−1q(s)(s − σ)(l−1)µ(s)(z(l−1)(s − σ))µ(s)ds

+
1

l!(n − l)!

∫ t

t∗
sn−lq(s)(s − σ)(l−1)µ(s)(z(l−1)(s − σ))µ(s)ds

>
t(z(l−1)(t − σ))µ(t)

l!(n − l)!

∫ +∞

t

sn−l−1q(s)(s − σ)(l−1)µ(s)ds

+
1

l!(n − l)!

∫ t

t2

sn−lq(s)(s − σ)lµ(s)

[

z(l−1)(s − σ)

(s − σ)

]µ(s)

ds

>
t[z(l−1)(t − σ)]µ(t)

l!(n − l)!

∫ +∞

t

(s − σ)n+(l−1)µ(s)−l−1q(s)ds

+
1

l!(n − l)!

[

z(l−1)(t − σ)

(t − σ)

]µ(t) ∫ t

t2

(s − σ)n+lµ(s)−lq(s)ds

due to (2.3). Hence,

z(l−1)(t)

t
>

1

l!(n − l)!

[

z(l−1)(t − σ)

(t − σ)

]µ(t)

×

[

(t − σ)µ(t)

∫ +∞

t

(s − σ)n+(l−1)µ(s)−l−1q(s)ds

+
1

t

∫ t

t2

(s − σ)n+lµ(s)−lq(s)ds

]

.(3.5)

Since z(l−1)(t)
t

is nonincreasing for large t,

lim sup
t→+∞

[

z(l−1)(t)

t

]1−µ(t)

6 Ω(µ+),
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and hence (3.5) becomes
[

(t − σ)µ(t)

∫ +∞

t

(s − σ)n+(l−1)µ(s)−l−1q(s)ds +
1

t

∫ t

t2

(s − σ)n+lµ(s)−lq(s)ds

]

6 Ω(µ+)l!(n − l)!,

a contradiction to (H3).

Now, assume that z(t) < 0 for t ≥ t1. Setting x(t) = −z(t) > 0, (E1) can be

written as

x(n)(t) − q(t)(y(t− σ))µ(t) = 0.

Consequently, x(n)(t) > 0, for t > t1 + σ. Because x(t) 6 by(t − τ), y(t − σ) >

1
b
x(t + τ − σ). It follows from Lemma 2.1 that x(n−1)(t) 6 0, for t > t2 > t1 + σ.

Hence, applying Lemma 2.2, when l ∈ {1, 2, . . . , n − 2} with (l + n) even, we get

x(l−1)(t) >
t

(n − l)!

∫ +∞

t

sn−l−1q(s)(y(s − σ))µ(s)ds

+
1

(n − l)!

∫ t

t∗
sn−lq(s)(y(s − σ))µ(s)ds

>
t

(n − l)!

∫ +∞

t

sn−l−1q(s)b−µ(s)(x(s + τ − σ))µ(s)ds

+
1

(n − l)!

∫ t

t∗
sn−lq(s)b−µ(s)(x(s + τ − σ))µ(s)ds

>
t

l!(n − l)!

∫ +∞

t

sn−l−1q(s)(s + τ − σ)(l−1)µ(s)b−µ(s)(x(l−1)(s + τ − σ))µ(s)ds

+
1

l!(n − l)!

∫ t

t2

sn−lq(s)(s + τ − σ)(l−1)µ(s)b−µ(s)(x(l−1)(s + τ − σ))µ(s)ds,

for t > t∗ > t2 > t1 +σ. Using the same type of reasoning as in the former case yields

lim sup
t→+∞

[

(t + τ − σ)µ(t)

∫ +∞

t

(s + τ − σ)n+(l−1)µ(s)−l−1b−µ(s)q(s)ds

+
1

t

∫ t

t2

(s + τ − σ)n+lµ(s)−lb−µ(s)q(s)ds

]

6 Ω(µ+)l!(n − l)!,

a contradiction to (H4). Hence, the proposition is proved.

Theorem 3.3. Let 0 6 p(t) 6 a < ∞ and µ+ = limt→∞ µ(t). For every 0 < ǫ < µ+,

let l ∈ {1, 2, . . . , n − 1} with (l + n) odd. If (H1) and

(H7)
∫ +∞

tn−1Q(t)dt = +∞

hold, then (E1) has the Property A.

Proof. Suppose that (E1) has a proper nonoscillatory solution y(t) on [t0, +∞) such

that y(t) > 0 for t > t0. The case y(t) < 0 on [t0, +∞) can similarly be dealt

with. Then by Lemma 2.1, there exists l ∈ {0, 1, 2, . . . , n} such that l + n is odd

and condition (2.1) holds. In view of (H2) and Proposition 3.1, l /∈ {1, 2, . . . , n − 1}.
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Hence n is odd and l = 0. We assert that (1.3) holds. If this is not the case, then

there exist c > 0 and t1 > t0 such that z(t) > c for t > t1, where z(t) defined by (3.1)

satisfying the inequality

z(n)(t) + aµ+
−ǫz(n)(t − τ) + Q(t)(z(t − σ))µ+

−ǫ
6 0(3.6)

due to Lemma 2.3, for t > t3 + τ . Therefore, for t > t4 > t3 + τ + σ, (3.6) implies

cµ+
−ǫQ(t) 6 −z(n)(t) − aµ+

−ǫz(n)(t − τ).(3.7)

Using the fact that (2.1) holds, and then integrating (3.7), n-times from t4 to +∞,

we obtain

cµ+
−ǫ

∫ +∞

t4

sn−1Q(s)ds < +∞,

a contradiction to (H7). Thus our assertation holds and (E1) has the Property A.

Theorem 3.4. Let −∞ < −b 6 p(t) 6 0, b > 0 and µ+ = limt→∞ µ(t). If (H3) holds

and n is odd, let

(H8)
∫ +∞

tn−1q(t)dt = +∞

hold; then (E1) has the Property A. If (H4) holds, n is even,

(H9)
∫ +∞

tn−2q(t)dt = +∞

and

(H10)
∫ +∞

(s + τ − σ)(n−1)µ(s)q(s)ds = +∞,

hold, then (E1) has the Property B.

Proof. Let y(t) be a proper nonoscillatory solution of (E1) on [t0, +∞). Without loss

of generality, we may assume that y(t) > 0, for t > t0. Since z(t) is monotonic, then

z(t) > 0 or < 0 for t > t1. Let z(t) > 0 for t > t1. Then by Lemma 2.1, there exists

l ∈ {0, 1, 2, . . . , n} such that l + n is odd and condition (2.1) holds. In view of (H4)

and Proposition 3.2, l /∈ {1, 2, . . . , n − 1}. Thus n is odd and l = 0. We claim that

(1.3) holds. If not, there exist c > 0 and t2 > t1 such that z(t) > c, for t > t2, where

z(t) is defined by (3.1) satisfying the inequality

z(n)(t) + q(t)(z(t − σ))µ(t)
6 0, t > t2,

that is, for t > t2 + σ,

(3.8) z(n)(t) + cµ(t)q(t) 6 z(n)(t) + q(t)(z(t − σ))µ(t)
6 0.

Integrating (3.8), n-times from t2 + σ to t and then using (2.1), we get
∫ t

t2+σ

sn−1q(s)dt < ∞,

a contradiction to (H8). Hence (E1) has the Property A. If z(t) < 0, for t > t1,

then from Proposition 3.2 it follows that x(n)(t) > 0 with (l + n) even. Since l /∈
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{1, 2, 3, . . . , n − 2}, then either l = 0 and n is even or l = n. Consider the case l = 0

and n is even. Proceeding as in Proposition 3.2, we obtain

(3.9) x(n)(t) −

(

1

b

)µ(t)

(x(t + τ − σ))µ(t)q(t) > 0, t > t2.

Using the same type of reasoning as above and integrating (3.9) (n − 1) times from

t2 to t, we obtain

lim
t→∞

∫ t

t2

sn−2b−µ(s)q(s)ds < ∞,

a contradiction to (H9). Hence (1.3) holds. When l = n, it follows from Lemma 2.1

that

x(i)(t) > 0, for t > t2 (i = 0, 1, 2, . . . , n − 1).

Consequently, there exist c > 1 and t3 > t2 such that x(t) > ctn−1 for t > t3.

Integrating (3.9) from t3 + σ − τ to t, it yields,

x(n−1)(t) > x(n−1)(t3 + σ − τ) + c

∫ t

t3+σ−τ

b−µ(s)q(s)(s + σ − τ)(n−1)µ(s)ds

→ +∞

as t → ∞ due to (H10). Thus, if n is even and l = 0, then (1.3) holds, while if l = n,

then (1.4) holds. This means that (E1) has the Property B. This completes the proof

of the theorem.

Theorem 3.5. Let 0 6 p(t) 6 a < ∞ and µ+ = limt→∞ µ(t). For every ǫ > 0, let

ǫ < µ+, and l ∈ {1, 2, . . . , n − 2} with (l + n) even. If (H1), (H7) and

(H11)
∫ +∞

(t − σ)(n−1)(µ+
−ǫ)Q(t)dt = +∞

hold, then (E2) has the Property B.

Proof. Let y(t) be a proper nonoscillatory solution of (E2) on [t0, +∞). Without loss

of generality, we may assume that y(t) > 0, for t > t0. Proceeding as in Proposi-

tion 3.1, we get

z(n)(t) + a(µ+
−ǫ)z(n)(t − τ) − q(t)(y(t− σ))µ(t)

− q(t − τ)a(µ+
−ǫ)(y(t − τ − σ))µ(t−τ) = 0,

that is,

z(n)(t) + a(µ+
−ǫ)z(n)(t − τ) > Q(t)(z(t − σ))(µ+

−ǫ)(3.10)

for t > t4. It follows from Lemma 2.1 that there exists l ∈ {0, 1, 2, . . . , n} such

that (l + n) even and condition (2.1) holds. In view of (H2) and Proposition 3.1,

l /∈ {1, 2, . . . , n − 2}. Hence either l = n or n is even and l = 0. In the later case,

using (H7) as in the proof of Theorem 3.3, we can easily show that (1.3) holds. On

the other hand, if l = n, then by (2.1), there exist c > 1 and t5 > t4 such that
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z(t) > ctn−1, for t > t5. Therefore, by (2.1) for l = n and t > t6 > t5 + σ, inequality

(3.10) yields

[z(t) + a(µ+
−ǫ)z(t − τ)](n−1)

> [z(t6) + a(µ+
−ǫ)z(t6 − σ)](n−1)

+ c

∫ t

t6

(s − σ)(n−1)(µ∗
−ǫ)Q(s)ds

→ +∞ as t → ∞

due to (H11). Thus, if n is even and l = 0, then (1.3) holds, while if l = n, (1.4) holds.

Hence we conclude that (E2) has the Property B, and the theorem is proved.

Theorem 3.6. Let −∞ < −b 6 p(t) 6 0, b > 0 and µ+ = limt→∞ µ(t). If (H3),

(H6), and

(H12)
∫ +∞

σ
(t − σ)µ(t)(n−1)q(t)dt = +∞,

hold, n is even, and (H9) holds, then (E2) has the Property B. If (H4) and (H5) hold,

n is odd, τ < σ, and (H8) hold, then (E2) has the Property A.

Proof. Suppose that y(t) is a proper nonoscillatory solution of (E2) on [t0, +∞).

Without loss of generality, we may assume that y(t) > 0 for t > t0. Since z(t) is

monotonic, then z(t) > 0 or < 0, for t > t1. Let z(t) > 0, for t > t1 > t0. Then by

Lemma 2.1, there exists l ∈ {0, 1, 2, . . . , n} such that (l + n) even and (2.1) holds. In

view of (H6) and Proposition 3.2, l /∈ {1, 2, . . . , n−2}. Thus either l = n or l = 0 and

n is even. Proceeding as in Theorem 3.4, we get contradictions to (H9) and (H12).

Hence, (E2) has the Property B.

Let z(t) < 0, for t > t1. Setting x(t) = −z(t) > 0 and y(t− σ) = 1
b
(x(t + τ − σ))

for t > t2 > t1, (E2) yields

x(n)(t) + b−µ(t)q(t)(x(t + τ − σ))µ(t)
6 0, τ < σ.(3.11)

In view of our supposition, (H5) and Proposition 3.2, l /∈ {1, 2, . . . , n − 1}. Conse-

quently, l = 0 and n is odd. Integrating (3.11) n-times from t2 + τ − σ to t and

then using (2.1), we have a contradiction to (H8). This completes the proof of the

theorem.

Example 3.7. Consider

(y(t) + p(t)y(t− τ))
′′′

+ q(t)|y(t− σ)|µ(t)sgn y(t− σ) = 0,(3.12)

where t > max{τ, σ}. Let the function µ ∈ C(R+; (0, 1)) be nondecreasing, lim
t→∞

µ(t) =

1, lim supt→∞
(t − σ)µ(t)−1 = γ > 0, q ∈ Lloc(R+; R+) and for sufficiently large t

q(t) ≥
c

(t − σ)1+2µ(t)
, t > σ, c > 0.

Clearly for l = 2, (H8) holds. Then in order for (3.12) to have the Property A, it is

sufficient by Theorem 3.4 that c(1 + γ) > 2 for (H3).
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