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ABSTRACT. In this paper, we study the energy decay rate for the one-dimensional linear

thermoelastic system of Timoshenko type. This system models the transverse vibration of a thick

beam, taking into account the heat conduction given by Green and Naghdi’s theory [6, 7]. First,

we establish a polynomial energy decay rate in the case of unequal speeds. Second, when the wave

speeds are equal, an exponetial type decay is obtained (similar to the result obtained by [20] for

other boundary conditions). Our proof is based on the frequency domain approach introduced in

[15].
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1. INTRODUCTION

In 1921, Timoshenko [28] introduced the following system:

(1.1)

{

ρ1utt = κ1(ux − ϕ)x in (0, L) × IR+

ρ2ϕtt = κ2ϕxx + κ1(ux − ϕ) in (0, L) × IR+,

to describe the transverse vibration of a thick beam, where t denotes the time variable,

x is the space variable along the beam of length L, in its equilibrium configuration, u

is the transverse displacement of the beam, and ϕ is the rotation angle of the filament

of the beam. The coefficients ρ1, ρ2, κ1 and κ2 are positive constants and denote,

respectively, the density (the mass per unit length), the polar moment of inertia of a

cross section, the shear modulus and Young’s modulus of elasticity times the moment

of inertia of a cross section.

During the last few years, an important amount of research has been devoted

to the issue of the stabilization of system (1.1) and search the minimum dissipation

by which solutions of (1.1) decay uniformly to the stable state. To achieve this goal,
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several types of dissipative mechanisms have been introduced and several stability

results have been obtained. We mention some of these results.

In the case of a one feedback acting only on the rotation angle, the rate of decay

depends on the constants ρ1, ρ2, κ1 and κ2. Precisely, if κ1

ρ1

= κ2

ρ2

, the results show

that we obtain similar decay rates as in the presence of two controls. We quote in

this regard [1, 2, 4, 8, 9, 18, 22, 23, 24, 27]. However, if κ1

ρ1

6= κ2

ρ2

, a situation which is

more interesting from the physics point of view, then it has been shown that (1.1) is

not exponentially stable even for exponentially decaying relaxation functions.

For Timoshenko systems coupled with the heat equation, we mention the pioneer

work of Rivera and Racke [21], where they considered the following system:

(1.2)



















ρ1ϕtt − σ(ϕx, ψ)x = 0, in (0, L) × R
+

ρ2ψtt − bψxx +K (ϕx + ψ) + γθx = 0 in (0, L) × R
+

ρ3θt − κθxx + γψtx = 0 in (0, L) × R
+,

for θ denoting the temperature difference. Under appropriate conditions of σ, ρi, b,K, γ,

they established well posedness and exponential decay results for the linearized system

with several boundary conditions. They also proved a non exponential stability result

for the case of different wave speeds. In addition, the nonlinear case was discussed

and an exponential decay was established.

In the above system, the heat flux is given by Fourier’s law. Using the new theory

developed by Green and Naghdi [6, 7], Messaoudi and Said-Houari [20] considered a

Timoshenko-type system of the form

(1.3)


















































ρ1ϕtt −K(ϕx + ψ)x = 0, in (0, 1) × R
+

ρ2ψtt − bψxx +K(ϕx + ψ) + βθx = 0, in (0, 1) × R
+

ρ3θtt − δθxx + γψttx − κθtxx = 0, in (0, 1) × R
+

ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1, ψ(·, 0) = ψ0, on (0, 1)

ψt(·, 0) = ψ1, θ(·, 0) = θ0, θt(·, 0) = θ1, on (0, 1)

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = θx(0, t) = θx(1, t) = 0, on R
+

they proved an exponential decay in the case of equal-speed propagation. This sys-

tem models the transverse vibration of a thick beam, taking in account the heat

conduction given by Green and Naghdi’s theory where the dissipation is given by the

heat conduction, of type III. This result was later established for system (1.3), in the

presence of a viscoelastic damping of the form
∫∞

0
g(s)ψxx(x, t − s)ds acting in the

second equation by Messaoudi and Said-Houari [19]. Recently Ma et al. [16] proved

the exponential stability of (1.3) using the semigroup method.
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In this paper, we study the stability of the following system

(1.4)



















































ρ1ϕtt −K(ϕx + ψ)x = 0, in (0, 1) × R
+

ρ2ψtt − bψxx +K(ϕx + ψ) + βθx = 0, in (0, 1) × R
+

ρ3θtt − δθxx + γψttx − κθtxx = 0, in (0, 1) × R
+

ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1, ψ(·, 0) = ψ0, on (0, 1)

ψt(·, 0) = ψ1, θ(·, 0) = θ0, θt(·, 0) = θ1 on (0, 1)

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = θ(0, t) = θ(1, t) = 0 on R
+

In order to exhibit the dissipative nature of the above system, we introduce the new

variables

φ = ϕt, Ψ = ψt

and using the following notation (φ′, φ′, θ′) := (φx, φx, θx), then we obtain:

(1.5)







































ρ1φtt −K(φ′ + Ψ)′ = 0,

ρ2Ψtt − bΨ′′ +K(φ′ + Ψ) + βθ′t = 0,

ρ3θtt − δθ′′ + γΨ′
t − κθ′′t = 0,

φ(·, 0) = φ0, φt(·, 0) = φ1,Ψ(·, 0) = Ψ0,

Ψt(·, 0) = Ψ1, θ(·, 0) = θ0, θt(. · 0) = θ1

φ(0, t) = φ(1, t) = Ψ(0, t) = Ψ(1, t) = θ(0, t) = θ(1, t) = 0.

This paper is organized as follows. Well-posedness of the problem is analyzed in

section 2. Sections 3 and 4 are devoted to polynomial and exponential decay rate of

the system energy, respectively.

2. EXISTENCE AND UNIQUENESS

In this section, we prove the existence of the solution of (1.5). We define the

energy space H associated to problem (1.5)

(2.1) H =
(

H1
0 (0, 1)

)3 ×
(

L2 (0, 1)
)3
.

The space H is equipped with the inner product which induces the energy norm

(2.2) ‖z‖2
H := γρ1 ‖u‖2 +γρ2 ‖v‖2 +γb ‖Ψ′‖2

+γK ‖φ′ + Ψ‖2
+βρ3 ‖w‖2 +βδ ‖θ′‖2

,

for all z = (φ,Ψ, θ, u, v, w) ∈ H, and ‖·‖ is the L2(0, 1) norm.

Next, we define the linear operator A by

(2.3) Az =























u

v

w
K
ρ1

(φ′ + Ψ)′

b
ρ2

Ψ′′ − K
ρ2

(φ′ + Ψ) − β

ρ2

w′

( b
ρ3

θ + κ
ρ3

w)′′ − γ

ρ3

v′























,
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with domain

D (A) =

{

(φ,Ψ, θ, u, v, w) ∈ H : (φ,Ψ) ∈ (H2(0.1))2,

(u, v, w) ∈ (H1
0 (0.1))3 and (δθ + κw) ∈ H2(0.1)

}

.

Now, let u = φt, v = Ψt, and w = θt. Then we can formulate the system (1.5) as an

evolution equation of the form

zt = Az, z(0) = z0 ∈ H,

where z = (φ,Ψ, θ, u, v, w).

Proposition 1. A generates a C0-semigroup eAt of contractions in H, and 0 ∈ ρ (A).

Proof. First, we prove that A is a maximal dissipative operator on the energy space

H, and the conclusion will follow by Lummer-Phillips theorem (see [25]).

a- ∀ z ∈ D (A), it is easy to see that

(2.4) Re(Az, z)H = −βκ ‖w′‖2
,

which implies that A is a dissipative linear operator on H.

b- Let F = (f1, f2, f3, f4, f5, f6) ∈ H.

(2.5) Find z ∈ D (A) , such that Az = F,

which implies that

(2.6)







































u = f1, v = f2, w = f3,
K

ρ1
(φp + Ψ)

p
= f4,

b

ρ2
Ψpp − K

ρ2
(φp + Ψ) − β

ρ2
wp = f5,

(

δ

ρ3
θ +

κ

ρ3

)pp

− γ

ρ3
vp = f6.

Let (φ∗,Ψ∗) ∈ (H1
0 (0, 1))

2
and using the above system (2.6) we obtain:

K

∫ 1

0

(φ′ + Ψ)(φ
′

∗ + Ψ∗)dx+ b

∫ 1

0

Ψ′Ψ
′

∗dx

= ρ1

∫ 1

0

f4φ∗dx− ρ2

∫ 1

0

f5Ψ∗dx− β

∫ 1

0

f3Ψ∗dx.(2.7)

Let us denote by

(2.8)

{

a((φ,Ψ) , (φ∗,Ψ∗)) = K
∫ 1

0
(φ′ + Ψ)(φ

′

∗ + Ψ∗)dx+ b
∫ 1

0
Ψ′Ψ

′

∗dx

L((φ∗,Ψ∗)) = ρ1

∫ 1

0
f4φ∗dx− ρ2

∫ 1

0
f5Ψ∗dx− β

∫ 1

0
f3Ψ∗dx.

Then (2.7) is equivalent to

(2.9) a((φ,Ψ) , (φ∗,Ψ∗)) = L((φ∗,Ψ∗)).



FREQUENCY DOMAIN APPROACH 19

Applying Lax-Milgram’s theorem we conclude that there exists a unique solution

(φ, ψ) ∈ (H1
0 (0, 1))

2
.

Using (2.6)2 and (2.6)3 we have

φpp =
ρ1

K
f4 − Ψp ∈ L2 (0, 1) ,(2.10)

Ψpp −KΨ =
1

b

(

ρ2f5 + βf p

3 +Kφp
)

∈ L2 (0, 1) ,(2.11)

subject to the boundary conditions

(2.12) φ (0) = φ (1) = Ψ (0) = Ψ (1) = 0.

Using the classical elliptic theory [11] we obtain that

(φ,Ψ) ∈
(

H1
0 (0, 1) ∩H2 (0, 1)

)2
.

Now, rewrite (2.6)4 as:

(2.13)

{

(δθ + κw)pp = ρ3f6 + γvp ∈ L2(0, 1)

θ(0) = θ(1) = w(0) = w(1) = 0.

Using again the classical elliptic theory, we deduce that (2.13) admits a unique solu-

tion:

(2.14) (δθ + κw) ∈ H1
0 (0, 1) ∩H2 (0, 1) ,

which implies that θ ∈ H1
0 (0, 1). Using Lumer-Phillips theorem [25] we conclude that

A generates a C0-semigroup eAt of contractions in H.

3. LACK OF EXPONENTIAL STABILITY AND POLYNOMIAL

STABILITY IF K
ρ1

6= b
ρ2

In this section, we will prove the lack of exponential decay and the polynomial

decay rate of the solutions of (1.5). Following the method introduced in [15] we will

obtain the polynomial energy decay rate (3.16).

3.1. Lack of exponential stability. To prove the lack of exponential stability in

the case of K
ρ1

6= b
ρ2

, we use the following result.

Theorem 1 (see [14] and [26]). Let eAt be a C0 semigroup of contractions in H.

Then eAt is exponentially stable if and only if,

(3.1) iR ⊂ ρ (A) ,

and

(3.2)
∥

∥(λnI −A)−1
∥

∥

L(H)
≤ C, for every λn ∈ iR

Our result in this subsection is stated in the following theorem
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Theorem 2. If κ
ρ1

6= b
ρ2

, then the semigroup corresponding to system (1.5) is not

exponentially stable.

Proof. For λn ∈ ρ (A) and Fn = (0, 0, 0, f4, 0, 0)T ∈ H, we consider

(3.3) λnzn −Azn = Fn,

where zn = (φn,Ψn, θn, un, vn, wn). To prove our result we need to show that ‖zn‖H
is unbounded.

Using (2.3), then (3.3) will be written as

λ2
nφn − K

ρ1

(

φp

n + Ψn

)p
= f4,(3.4)

λ2
nΨn − b

ρ2
Ψpp

n +
K

ρ2

(

φp

n + Ψn

)

+
λµβ

ρ2
θp

n = 0,(3.5)

λ2
nθn −

(

δ

ρ3
+
κ

ρ3

)

θ′′n +
λnγ

ρ3
Ψp

n = 0.(3.6)

Differentiating (3.5) and using (3.4), we get

bφpppp

n − λ2
n

[

ρ2 +
bρ1

κ

]

φpp

n +
λ2

nρ1

K

(

ρ2λ
2
n +K

)

φn + λβθpp

n = −bρ1

K
f pp

4(3.7)

λ2
nρ3θn − (δ + λnκ) θ

′′
n + λn

λ2
nρ1γ

K
φn − λnγφ

pp

n =
λnρ1γ

K
f4.(3.8)

Let us take

(3.9) f4 (x) =
1

πn
− cos (πn)

πn
+ sin (πnx) .

Taking into account the boundary conditions in (1.5), one can assume that

(3.10) φn(x) = An sin(nπx), and θn(x) = Dn sin(nπx),

then (3.7)–(3.8) will be written as

(3.11)


















(λ4
n

ρ1ρ2

bK
+ λ2

n

(ρ1

b
+ (

ρ2

b
+
ρ1

K
) (πn)2

)

+ (πn)4)An − λnβ (πn)2

b
Dn =

(πn)2
ρ1

K
,

λnγ
(

λ2
n

ρ1

K
+ (πn)2

)

An +
[

λ2
nρ3 + (πn)2 (δ + κλn)

]

Dn = λn

ρ1γ

K
.

Now, we choose λn solution of

(3.12) λ4
n

ρ1ρ2

bK
+ λ2

n

(ρ2

b
+
ρ1

K

)

(πn)2 + (πn)4 = 0,

since K
ρ1

6= b
ρ2

, we obtain

(3.13) λ2
n = − (πn)2 K

ρ1

,

as a solution of (3.12).
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Using the value of λn in (3.11), we obtain

(3.14)



















An = −bρ1

K2
+

(δρ1 −Kρ3) − iκ
√
Kρ1 (πn)

(δρ1 −Kρ3)
2 +Kρ1κ2 (πn)2ρ1βγ

Dn =
γρ1

√
Kρ1

(

κ
√
Kρ1 (πn) + i (δρ1 −Kρ3)

2)

(δρ1 −Kρ3)
2 +Kρ1κ2 (πn)2

as n→ ∞, we get

(3.15) An → −bρ1

K2
and Dn → 0.

Finally we have

‖zn‖H ≥ γρ1 ‖un‖2 = γρ1 ‖λnφn‖2 = γ (πn)2
K ‖An sin(nπx)‖2 → ∞,

which yields the conclusion.

3.2. Polynomial Stability. In this subsection we will prove the polynomial decay

of the solutions of system (1.5) using the method introduced in [15]. Our main result

in this subsection is stated as follow:

Theorem 3. If κ
ρ1

6= b
ρ2

, then, for all positive m ∈ N∗, there exists a constant Cm ≻ 0

such that:

(3.16) ∀ U0 ∈ D(Am), ∀t > 0,
∥

∥etAU0

∥

∥ ≤ Cm

(

ln t

t

)m
j

ln t ‖U0‖D(Am) .

Proof. Following Liu and Rao in [15], the following conditions are necessary and

sufficient for the polynomial energy decay rate (3.16).

(3.17) iR ⊂ ρ (A) ,

and

(3.18) sup
|α|≥1

∥

∥(iαI −A)−1
∥

∥

α8
≺ +∞

First, we will check the condition (3.17). To do this, let b 6= 0 be a real number and

let z ∈ D (A), with

(3.19) Az = ibz

Taking the inner product with z in H, we deduce that

wp = 0,

using Poincare’s inequality we obtain

w = 0.
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Now, (3.19) is equivalent to

(3.20)











































u = ibφ

v = ibΨ

w = ibθ
K
ρ1

(φ′ + Ψ)′ = ibu
b
ρ2

Ψ′′ − K
ρ2

(φ′ + Ψ) − β

ρ2

w′ = ibv

( b
ρ3

θ + κ
ρ3

w)′′ − γ

ρ3

v′ = ibw

From (3.20)3 and the fact that b 6= 0, we deduce that θ = 0, and then from the last

equation in (3.20) we obtain vp = 0. Using Poincare’s inequality, we have v = 0.

Using (3.20)2 then we have Ψ = 0.

From (3.20)5 and applying again Poincare’s inequality, we obtain φ = 0, and from

(3.201 we get u = 0. Hence z = 0, which implies that iR ⊂ ρ (A).

Now, suppose that the condition (3.18) is false. Then there exist a sequence

αn ∈ R and a sequence zn = (φn,Ψn, θn, un, vn, wn) ∈ D (A) such that

(3.21) ‖zn‖H = 1,

(3.22) lim
n→+∞

αn = 0,

(3.23) lim
n→+∞

α8
n ‖(iαnI −A) zn‖H = 0,

i.e. in L2 (0, 1), we have the following convergence:

α8
n

[

iαnun − K

ρ1

(

φp

n + Ψn

)p

]

−→ 0,(3.24)

α8
n

[

iαnvn − 1

ρ2

(

bΨpp

n −K
(

φp

n + Ψn

)

− βwp

n

)

]

−→ 0,(3.25)

α8
n

[

(iαnφn − un)p + iαnΨn − vn

]

−→ 0,(3.26)

α8
n

[

(iαnΨn − vn)p
]

−→ 0,(3.27)

α8
n

[

iαnwn − 1

ρ3

(

δθpp

n − γvp

n + κwpp

n

)

]

−→ 0,(3.28)

α8
n

[

(iαnθn − wn)p
]

−→ 0.(3.29)

Our goal is to derive a contradiction with (3.21). For clarity, we divide the proof into

several steps.

Step 1. Taking the inner product of α8
n (iαnI −A) zn with zn in H, we get:

(3.30) Re
(

α8
n 〈(iαI −A) zn, zn〉H

)

= −βκ
∥

∥α4
nw

p

n

∥

∥

2
,

from (3.23) and (3.30), we have

(3.31)
∥

∥α4
nw

p

n

∥

∥ −→ 0,



FREQUENCY DOMAIN APPROACH 23

applying Poincare’s inequality, we get

(3.32)
∥

∥α4
nwn

∥

∥ −→ 0.

Step 2. Using triangular inequality, we obtain that

(3.33)
∥

∥α5
nθ

p

n

∥

∥ ≤
∥

∥α4
n (iαnθn − wn)p

∥

∥+
∥

∥α4
nw

p

n

∥

∥

From (3.29) and (3.31), we have

(3.34)
∥

∥α5
nθ

p

n

∥

∥ −→ 0.

Step 3. Multiplying (3.25) by 1
α9

n
, we obtain that

(3.35) ivn − 1

ρ2

(

b
Ψpp

n

αn

− K

αn

(

φp

n + Ψn

)

− β

αn

wp

n

)

−→ 0.

Now, from (3.21) and (3.31) and using again the triangular inequality, we deduce that

(3.36)

(∥

∥

∥

∥

Ψpp

n

αn

∥

∥

∥

∥

)

n∈N

is uniformly bounded.

Multiplying (3.28) by 1
α9

n
and using (3.27), we get

(3.37) iwn − 1

ρ3
(

1

αn

(δθn + κwn)′′ − iγΨ′
n) −→ 0,

using the triangular inequality and the fact that ‖zn‖H = 1, we deduce that

(3.38)

(

‖ 1

αn

[δθn + κwn]pp ‖
)

n∈N

is uniformly bounded.

Step 3. Taking the inner product of (3.37) with α2
nΨp

n in L2(0, 1), we obtain

(3.39)

〈

iα2
nwn − αn

ρ3

(

[δθ + κw]pp − iαnγΨ
p

n

)

,Ψp

n

〉

= i
〈

α2
nwn,Ψ

p

n

〉

+
1

ρ3

〈

α2
n [δθn + κwn]

p
,
Ψpp

n

αn

〉

+
iγ

ρ3
‖αnΨp

n‖2

− 1

ρ3

[

αn [δθn + κwn]p Ψn

p
]1

0
−→ 0.

To estimate the boundary term in (3.39), we proceed as follow

(3.40)

∣

∣

∣
αn [δθn + κwn]p Ψn

p

(x)
∣

∣

∣
� C

[

‖Ψp

n

α
1

2

n

‖2 + ‖Ψp

n‖‖
Ψpp

n

αn

‖
] 1

2

[

‖α
3

2

n (δθn + κwn)p ‖2 + ‖α4
n (δθn + κwn)p ‖‖(δθn + κwn)pp

αn

‖
]

1

2

now, using (3.31), (3.34), (3.36) and (3.38), we obtain

(3.41)
∣

∣

∣
αn [δθn + κwn]p Ψn

p

(x)
∣

∣

∣
−→ 0.

Then using (3.41) into (3.40) we get

(3.42) ‖αnΨp

n‖ −→ 0,
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applying the triangular inequality, we have

(3.43) ‖vp

n‖ � ‖vp

n − iαnΨn‖ + ‖iαnΨn‖,

then (3.42) implies that

(3.44) ‖vp

n‖ −→ 0, and ‖vn‖ −→ 0.

Step 4. Taking the inner product (3.25) with
vn

α7
n

in L2(0, 1) and using (3.24), we get

(3.45) i‖αnvn‖2 +
b

ρ2

〈

αnΨp

n, v
′
n

〉

+
K

ρ2

〈

αnφ
p

n + αnΨn, vn

〉

+
β

ρ2

〈

αnw
p

n, vn

〉

−→ 0.

But from (3.26) and (3.27), we have

(3.46) iαnφ
′
n − u′n −→ 0,

then (3.45) becomes

(3.47) i‖αnvn‖2 +

〈

b

ρ2
αnΨp

n − iK

ρ2
un, v

′
n

〉

+
K

ρ2
〈αnΨn, vn〉 +

β

ρ2

〈

αnw
p

n, vn

〉

−→ 0.

Using (3.31), (3.42), (3.44), and taking into account that ‖zn‖H = 1, we obtain

(3.48) ‖αnvn‖ −→ 0,

from (3.27) and (3.48), we get

(3.49) ‖α2
nΨn‖ −→ 0.

Now, from (3.25) and (3.48), we obtain

(3.50)
(

‖Ψpp

n‖
)

n∈N
is uniformly bounded.

Step 5. Taking the inner product of (3.25) with
φp

n

α8
n

in L2(0, 1), we deduce that

(3.51)

〈

iαnvn, φ
p

n

〉

− b

ρ2

〈

Ψpp

n, φ
p

n

〉

− K

ρ2

〈

φp

n + Ψn, φ
p

n

〉

+
β

ρ2

〈

wp

n, φ
p

n

〉

= i
〈

αnvn, φ
p

n

〉

+
b

ρ2

〈

αnΨp

n,
φpp

n

αn

〉

− b

ρ2

[

Ψp

nφn

p
]1

0

+
K

ρ2
‖φp

n‖2 +
K

ρ2

〈

Ψn, φ
p

n

〉

+
β

ρ2

〈

wp

n, φ
p

n

〉

−→ 0.

.

However, from (3.24) and (3.42), we have

(3.52)

(

‖φ
pp

n

αn

‖
)

n∈N

is uniformly bounded.

Now, the estimation of the boundary term in (3.51) is given by

(3.53)
∣

∣

∣

(

Ψp

nφn

p
)

(x)
∣

∣

∣
� 2

[

‖φ
p

n

α
1

2

n

‖2 + ‖φp

n‖‖
φpp

n

αn

‖
]

1

2
[

‖α
1

2

nΨp

n‖2 + ‖αnΨp

n‖‖Ψpp

n‖
]

1

2

.
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Then from (3.42), (3.50) and (3.52), we have

(3.54)
∣

∣

(

Ψp

nφ
p

n

)

(x)
∣

∣ −→ 0,

using (3.42), (3.48), (3.51), (3.52), and (3.53), we deduce that

(3.55) ‖φ′
n‖ −→ 0, and ‖φ′

n + Ψn‖ −→ 0.

Step 6. From (3.26) and (3.27), we get

(3.56) (iα2
nφn − αnun)′ −→ 0,

by Poincare’s inequality, we deduce

(3.57) iα2
nφn − αnun −→ 0.

Using (3.24) and (3.57), we obtain

(3.58) iα2
nφn − i

K

ρ1

(

φp

n + Ψn

)p −→ 0.

Taking the inner product of (3.58) with φn in L2(0, 1), we have

(3.59) i‖αnφn‖2 + i
K

ρ1

〈(

φp

n + Ψn

)

, φp

n

〉

−→ 0,

From (3.55) and (3.59), we have

(3.60) ‖αnφn‖ −→ 0.

Step 7. Finally from (3.57), we have

(3.61) iαnφn − un −→ 0.

Taking the inner product of (3.61) with un in L2(0, 1), we get

(3.62) i 〈αnφn, un〉 − ‖un‖2 −→ 0.

By using (3.60) and (3.62), we obtain

(3.63) ‖un‖ −→ 0.

Now, using (3.32), (3.34), (3.42), (3.44), (3.55) and (3.63), we deduce that

(3.64) ‖zn‖ −→ 0.

Hence, we obtain the contradiction with (3.18).
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4. EXPONENTIAL DECAY RATE IF K
ρ1

= b
ρ2

In this section, we will prove the exponential stability of the system (1.5) in the

case of the same speed of propagation K
ρ1

= b
ρ2

. Our method of proof is based on [10]

and [26] instead of using the multipliers techniques as in [20].

Theorem 4. If κ
ρ1

= b
ρ2

, then the C0-semigroup etA is exponentially stable, i.e. there

exist constant M and α > 0 independent of z0 such that

(4.1)
∥

∥etAz0
∥

∥

H
≤Me−αt

∥

∥z0
∥

∥

H
, t > 0.

Proof. Following the results in [10] and in [26], the following two conditions

(4.2) iR ⊂ ρ (A) ,

(4.3) sup
α∈R

∥

∥(iαI −A)−1
∥

∥ ≺ +∞,

are necessary and sufficient for the exponential stability.

The condition (4.2) was already verified in the last section. Now, assume that

the condition (4.3) is false. Then there is a real sequence (αn)n∈N
and a sequence

(zn)n∈N
∈ D (A), such that

(4.4) ‖zn‖H = 1,

(4.5) αn → +∞,

(4.6) lim
n→+∞

‖(iαnI −A) zn‖H = 0,

i.e. in L2 (0, 1), we have the following convergence:
[

iαnun − K

ρ1

(

φp

n + Ψn

)p

]

−→ 0(4.7)

[

iαnvn − 1

ρ2

(

bΨpp

n −K
(

φp

n + Ψn

)

− βwp

n

)

]

−→ 0(4.8)

[

(iαnφn − un)p + iαnΨn − vn

]

−→ 0(4.9)
[

(iαnΨn − vn)p
]

−→ 0(4.10)
[

iαnwn − 1

ρ3

(

δθpp

n − γvp

n + κwpp

n

)

]

−→ 0(4.11)

[

(iαnθn − wn)p
]

−→ 0.(4.12)

In the following, we will check the condition (4.3) by finding a contradiction with

(4.4). Our proof is divided into several steps.

Step 1. Taking the inner product of (iαnI −A) zn with zn in H, we get:

Re 〈(iαnI −A) zn, zn〉H = −βκ ‖w′
n‖

2
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Using (4.6), we deduce that

(4.13) ‖w′
n‖ −→ 0 and ‖wn‖ −→ 0.

Using the triangular inequality, we get

‖αnθ
′
n‖ ≤

∥

∥(iαnθn − wn)p
∥

∥+ ‖w′
n‖ .

From (4.12) and (4.13), we deduce that

(4.14)
∥

∥αnθ
p

n

∥

∥ −→ 0.

Step 2. Multiplying (4.8) by 1
αn

, we obtain

ivn − 1

ρ2

(

b
Ψpp

n

αn

− K

αn

(

φp

n + Ψn

)

− β

αn

wp

n

)

−→ 0,

now, using (4.13) and ‖zn‖H = 1, then we deduce that

(4.15)

(∥

∥

∥

∥

Ψpp

n

αn

∥

∥

∥

∥

)

n∈N

is uniformly bounded.

Using (4.10) and multiplying (4.11) by 1
αn

, we obtain

iwn − 1

ρ3

((

δ

αn

θn +
κ

αn

wn

)′′

− iγΨ′
n

)

→ 0.

Applying the triangular inequality and ‖zn‖H = 1, ∀ n � 0, we deduce that

(4.16)

(

‖ 1

αn

[δθn + κwn]pp ‖
)

n∈N

is uniformly bounded.

Replacing v′n by iαnΨ′
n in (4.11), and then taking the inner product of the obtained

equation with Ψp
n

αn
in L2(0.1), we get

i
〈

wn,Ψ
p

n

〉

+
1

ρ3

〈

δθp

n + κwp

n,
Ψ

′′

n

αn

〉

+
iγ

ρ3

∥

∥

∥

∥

Ψp

n

αn

∥

∥

∥

∥

2

− 1

ρ3

∣

∣

∣

∣

∣

(

(

δθp

n + κwp

n

)

· Ψ
′

n

αn

)

(x)

∣

∣

∣

∣

∣

x=1

x=0

→ 0,

using (4.13), (4.14), (4.15), (4.16), and the triangular inequality, we obtain

(4.17)

∣

∣

∣

∣

∣

(

(δθp

n + κwp

n) ·
Ψ

′

n

αn

)

(x)

∣

∣

∣

∣

∣

x=1

x=0

→ 0.

Using the above estimates, we deduce that

(4.18) ‖Ψp

n‖ −→ 0.
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Step 3. Taking the inner product (4.7) with Ψp

n and (4.8) with φp

n + Ψn in L2(0.1),

and using the fact that K
ρ1

= b
ρ2

, we get

iαn

〈

un,Ψ
p

n

〉

+ iαn

〈

vn, φ
p

n + Ψn

〉

+
K

ρ2

∥

∥φp

n + Ψn

∥

∥

2

+
β

ρ2

〈

w′
n, φ

p

n + Ψn

〉

− K

ρ1

∣

∣((Ψ′
n) · (φp

n + Ψn))(x)
∣

∣

x=1

x=0

+
K

ρ1

(〈

φp

n + Ψn,Ψ
′′
n

〉

−
〈

Ψ′′
n, φ

p

n + Ψn

〉)

.(4.19)

Using (4.9), (4.10), and (4.19), we obtain

(4.20)

− ‖αnΨn‖2 − K

ρ1

[

Ψp

n(φp
n + Ψn)

]1

0
+
K

ρ2
‖φp

n + Ψn‖2

+
β

ρ2

〈

wp

n, φ
p

n + Ψn

〉

+
K

ρ1

(〈

φp

n + Ψn,Ψ
pp

n

〉

−
〈

Ψpp

n, φ
p

n + Ψn

〉)

−→ 0,

multiplying (4.20) with 1
α2

n
, we have

(4.21)

− ‖Ψn‖2 − K

ρ1

[

Ψp

n

αn

(φp
n + Ψn)

αn

]1

0

+
β

ρ2αn

〈

wp

n,
φp

n + Ψn

αn

〉

+
K

ρ2
‖φ

p

n + Ψn

αn

‖2 +
K

α2
nρ1

(〈

φp

n + Ψn,Ψ
pp

n

〉

−
〈

Ψpp

n, φ
p

n + Ψn

〉)

−→ 0.

Now, using the fact that ‖zn‖H = 1, ∀ n � 0 and multiplying (4.7) by αn, we deduce

that

(4.22)

(

‖
(

φp

n + Ψn

αn

)p

‖
)

n∈N

is uniformly bounded.

In addition, we apply the triangular inequality to estimate the boundary term in

(4.21), we get

(4.23)

∣

∣

∣

∣

∣

Ψp

n

αn

(

φp

n + Ψn

αn

)

(x)

∣

∣

∣

∣

∣

−→ 0.

Taking the real part of (4.21), using (4.13), (4.18) and (4.23), we deduce that

(4.24) ‖φ
p

n + Ψn

αn

‖ −→ 0.

Step 4. Taking the inner product of ivn −
1

αnρ2

(bΨpp

n −K (φp

n + Ψn) − βwp

n) with vn

in L2(0.1), we obtain

(4.25) i‖vn‖2 − b

ρ2

〈

Ψp

n,
vp

n

αn

〉

− K

ρ

〈

φp

n + Ψn

αn

, vn

〉

− β

ρ2

〈

wp

n,
vn

αn

〉

−→ 0.

Using (4.10) and (4.18), we have

(4.26) ‖ v
p

n

αn

‖ −→ 0.
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From (4.13), (4.18), (4.24), (4.25), and (4.26), we obtain

(4.27) ‖vn‖ −→ 0.,

applying again the triangular inequality, using (4.10), and (4.27), we deduce that

(4.28) ‖αnΨn‖ −→ 0.

Step 5. Taking the inner product of (4.7) with un in L2(0.1), we get

(4.29) i‖α
1

2

nun‖2 +
K

ρ1

〈

φp

n, u
p

n

〉

+
K

ρ1

〈

Ψn, u
p

n

〉

−→ 0,

replacing up

n by iαnφ
p

n in (4.29), we get

(4.30) i‖α
1

2

nun‖2 + i
K

ρ1
‖α

1

2

nφ
p

n‖2 − K

ρ1

〈

Ψp

n, un

〉

−→ 0.

From (4.18) and (4.30), we deduce that

(4.31) ‖un‖ −→ 0, and ‖φp

n‖ −→ 0,

By Poincare’s inequality, we get

(4.32) ‖Ψn‖ −→ 0.

Using the triangular inequality and (4.31), we obtain

(4.33) ‖φp

n + Ψn‖ −→ 0.

Finally from (4.13), (4.14), (4.18), (4.27), (4.31) and (4.33), we deduce that

(4.34) ‖zn‖ −→ 0.

Therefore we get the contradiction with (4.4).
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