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ABSTRACT. In this paper we construct a measure preserving transformation to the space ([0, 1),

B), B being the Borel σ-algebra, from an abstract measurable space (Ω,F), which yields a particular

sequence of partitions, called a system of partitions. This function transforms an arbitrary measure

µ on Ω to the Lebesgue measure on [0, 1). This transformation generalizes some results which have

been obtained for [0, 1) to the abstract space Ω. As an example, in the investigation of convergence

of random Riemann sums to the Lebesgue integral, the underlying measure space is taken to be

([0, 1),B, m) where m is the Lebesgue measure on [0, 1). In this paper we consider, instead of [0, 1),

the abstract space Ω, substitute B with the σ-algebra F generated by the given system of partitions

and m with an arbitrary atomless probability measure.
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1. PRELIMINARIES

The Idea of random Riemann sums comes from the concept of first return integral

[1, 2]. The concept of random Riemann sums is considered in [7, 5, 3, 4, 6]. We present

a somehow modified definition of it as follows. Denote the interval [0, 1) by I0 and let

I0 be equipped with the Borel σ-algebra B. Let m be the Lebesgue measure on B.

Let P0 be a finite partition of I0 by intervals of positive length. We note that

any collection of disjoint non-empty intervals can be ordered naturally in terms of the

natural order of real numbers. Let this order too be denoted by <. Let Ji, 1 ≤ i ≤ n,

be the intervals constituting P0 s.t. J1 < J2 < · · · < Jn. Corresponding to P0, there

is a unique finite sequence xi, 0 ≤ i ≤ n, of elements of I0 s.t. 0 = x0 < x1 < · · · <

xn = 1 and s.t. xi−1 and xi are the end points of Ji, for 1 ≤ i ≤ n. In what follows

P0 is fixed unless otherwise stated.
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For an arbitrary nonempty set S if P1 and P2 are partitions of S, we say P2 is

a refinement of P1 and write P1 � P2 if each element of P1 is a union of elements

of P2. In this article partitions of I0 in the position that I0 is assumed, i.e. when

it is the range space of transformations, are as defined above. Hence if P1 and

P2, are partitions of I0, then P1 � P2 if and only if the sequence corresponding

to P1 is a subsequence of that corresponding to P2. The norm of P0 w.r.t. m is

‖P0‖ := max{m(Ji) : 1 ≤ i ≤ n}. For each i, 1 ≤ i ≤ n, let ti ∈ Ji be a random

variable with uniform distribution in Ji and let ti’s be independent.

Definition 1.1. Let f : I0 −→ R be a Lebesgue integrable function. The random

Riemann sum of f w.r.t. P0 is defined to be the r.v.

SP0(f) =

n∑

i=1

f(ti)m(Ji).

In [5] is defined the random Riemann sums for a fixed and non-random sequence

of partitions {∆n}n≥1 of I0 such that ∆n � ∆n+1, n ≥ 1 and ‖∆n‖ −→ 0 and is

proved that such a sequence of random Riemann sums tends to
∫

I0
fdm, a.s. There

is also presented a probability space which yields the desired random elements.

In [3] some results are proved for I0 in terms of arbitrary but non-random, not

necessarily being refined, sequences of partitions for which again the corresponding

sequence of norms w.r.t. the Lebesgue measure m tends to zero.

Let, henceforth, subintervals of I0 be of positive length and of the form [x, y). The

interested reader may easily verify that in [3], instead of taking partitions of I0 to be

in terms of subintervals, they can be taken to consist each of finite (or even countable)

disjoint unions of subintervals. In fact if I is an interval and U is a union of finite

disjoint intervals s.t. m(I) = m(U), the measure spaces I and U with Borel σ-algebras

and Lebesgue measures are measure theoretically isomorphic in natural ways. Thus a

somewhat generalized formulation of Proposition 2.1 of [3] is the following Theorem.

Theorem 1.2. For any ǫ > 0, and any sequence of partitions Pn, n ≥ 1, of I0 whose

elements are finite unions of disjoint intervals, if limn−→∞ ‖Pn‖ = 0, then

P

(
|SPn

(f) −

∫

I0

fdm| > ǫ

)
−→ 0.

In [7] the sequence of partitions of I0 based on which the random Riemann sums

are defined is randomized and the results of [3] are generalized for such sequences of

partitions.

In this article results of [5] and [3] are generalized, from the space (I0,B, m) to

a general probability space (Ω,F , µ), under some reasonable and rather weak and

general conditions.
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Definition 1.3. Let (Ω,F , µ) be a probability space. Call for a partition P of Ω

consisting of elements of F , supI∈P µ(I) the norm of P, w.r.t. µ and denote it by

|P|µ.

Definition 1.4. For a probability space (Ω,F , µ) a sequence {∆n}n≥1 of partitions

of Ω is called a system of partitions if:

1. for each n ≥ 1, ∆n is a countable collection of elements of F ;

2. the collection
⋃

n≥1 ∆n of subsets of Ω generates F ;

3. limn−→∞ |∆n|µ = 0.

Call a system of partitions decreasing if for each n ≥ 1, ∆n+1 is a refinement of ∆n.

Henceforth ∆n, n ≥ 1, denotes a system of partitions of Ω.

Definition 1.5. For ω ∈ Ω, n ≥ 1, let In(ω) be the unique element of ∆n containing

ω. Call the sequence In(ω), n ≥ 1, the ω-tower in the system.

Proposition 1.6. {ω} ∈ F if and only if
⋂

n≥1 In(ω) = {ω}.

Definition 1.7. If P1 and P2 are arbitrary partitions of a nonempty set S, call the

partition {
I1

⋂
I2 : I1 ∈ P1, I2 ∈ P2

}
,

the summation of P1 and P2 and denote it by P1 g P2.

Proposition 1.8. Let ∆
(c)
1 = ∆1, ∆n+1

(c) = ∆n
(c)

g ∆n+1, n ≥ 1. The sequence

∆n
(c), n ≥ 1, of partitions constitutes a decreasing system of partitions for (Ω,F , µ).

For ω ∈ Ω, n ≥ 1, let In
(c) be the unique element of ∆n

(c) containing ω. For ω ∈

Ω,
⋂

n≥1 In(ω) =
⋂

n≥1 I
(c)
n (ω).

Definition 1.9. Call ∆n
(c), n ≥ 1, the decreasing system corresponding to ∆n, n ≥ 1.

Proposition 1.10. Let ∆n, n ≥ 1, be a system of partitions for (Ω,F , µ). For each

ω ∈ Ω, let {ω} ∈ F . The condition |∆n|µ −→ 0 is equivalent to µ being diffuse, i.e.

having no atoms.

Remark 1.11. Euclidean spaces and more generally, locally compact second count-

able Hausdorff topological spaces and hence complete separable, i.e. Polish, metric

spaces, with Borel σ-algebras and diffuse probability measures, when they admit such

measures, yield decreasing systems of partitions which generate the Borel σ-algebra.

In the sequel we assume (Ω,F , µ) is a fixed probability space for which µ is

atomless and there exists a decreasing system ∆n, n ≥ 1 of partitions. Although to

some stage we can proceed on a more general basis as described above, for the sake

of simplicity and clarity we assume, in what follows, finite partitions for Ω instead of
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countable ones. Further we assume partitions have elements with positive, instead of

nonnegative measures.

Let P be a (finite) partition of Ω consisting of measurable sets A1, A2, . . . , Ak

(such that for each i, 1 ≤ i ≤ k, µ(Ai) > 0). For each i, 1 ≤ i ≤ k, let zi be a random

element of Ai ∈ P, chosen according to the probability law µi(·) = µ(·)
µ(Ai)

and let zi’s

be independent.

There are randomization mechanisms, i.e. probability spaces which yield the re-

quired random elements. In all cases in this article, appropriate randomization mech-

anisms exist[7, 5]. Suppose f : (Ω,F , µ) −→ (R,BR) is an integrable function where

BR is the Borel σ-algebra in R.

Definition 1.12. The random Riemann-Stieltjes sum of f w.r.t. P is defined to be

S ′
P(f) =

∑

1≤i≤k

f(zi)µ(Ai).

Note that when Ω = I0, F = B, and µ = mA, then S ′
P(f) = SP(f).

2. MAIN RESULTS

We prove the following theorem which generalizes the main result of [5].

Theorem 2.1. There exists a probability space which yields the corresponding random

Riemann-Stieltjes sums S ′
∆n

(f), and based on which such a sequence converges almost

surly to
∫
Ω

fdµ.

The proof as will be seen provides us with tools to establish further results, in par-

ticular to extend results in [3], such as Proposition2.1., whose generalized formulation

is the following theorem.

Theorem 2.2. Let {∆n}n≥1 be a system of partitions of (Ω,F , µ). Then for each

ǫ > 0,

P (|S ′

∆n

(f) −

∫

Ω

fdµ| > ǫ) −→ 0.

We are seeking to construct a transformation, which will be denoted by X0, from

the space (Ω,F , µ) to the space (I0,B, m) which enable us to deduce natural analogs

of the results already obtained concerning the convergence of the sequence of random

Riemann sums for the case where the space is (I0,B, m) for the sequence of random

Riemann-Stieltjes sums for the general space (Ω,F , µ) with the assumed properties.

3. CHARACTERIZATION

We proceed by presenting some preliminary results. Recall that I0 = [0, 1), all

subintervals of I0 are assumed to be with possitive length and of the form [x, y). ∆n,

n ≥ 1, is a decreasing system of partitions for (Ω,F , µ).
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Proposition 3.1. There is a sequence {∆′
n}n≥1 of partitions of I0, consisting of

intervals, for which letting
⋃

n≥1 ∆n = ∆ and
⋃

n≥1 ∆′
n = ∆′, we have a one to one

correspondence σ : ∆ −→ ∆′ s.t. for any I ∈ ∆, we have µ(I) = m(σ(I)) and for any

I, J ∈ ∆, if J ⊆ I, then σ(J) ⊆ σ(I).

Corollary 3.2. In terms of the notations of Proposition 3.1, it follows that

limn−→∞ ‖∆′
n‖ = 0. Hence ∆′ generates B and {∆′

n}n≥1 is a decreasing system of

partitions for (I0,B, m).

Definition 3.3. Call σ as given in Proposition 3.1, a canonical mapping from ∆ to

∆′. A sequence In ∈ ∆n, n ≥ 1, is called a tower in ∆, if In+1 ⊆ In, n ≥ 1. A tower

in ∆′ and in general is defined similarly.

Remark 3.4. If I ′
n, n ≥ 1 is a tower in ∆′, then

⋂
n≥1 I ′

n is either empty or a singleton.

It is easy to see that the collection of towers in ∆′ which reduce to the empty set

is countable, and hence so is the collection of corresponding towers in ∆ under the

correspondence σ. Let N consist of the intersection of such towers of ∆. It follows

that N is measurable and µ(N) = 0.

Proposition 3.5. Let Ω̂ = Ω − N , and denote for n ≥ 1, the restriction of F , µ,

and ∆n, to Ω̂, respectively, by F̂ , µ̂, and ∆̂n. The collection ∆̂ =
⋃

n≥1 ∆̂n generates

F̂ and the sequence ∆̂n, n ≥ 1, constitutes a decreasing system of partitions for the

space (Ω̂, F̂ , µ̂).

Proof. The truth of the first part follows in view of Definition 1.4(2). The truth of

the second part is easy to see.

Remark 3.6. In view of Propositions 3.1 and 3.5, let τ ′ be the tower in ∆′ corre-

sponding to the tower τ in ∆ under σ and τ̂ be the tower in ∆̂ corresponding to the

tower τ in ∆ when restricted to Ω̂. It is now clear that if
⋂

I∈τ ′ I = ∅, then
⋂

I∈bτ I = ∅,

whereas
⋂

I∈τ I may be empty or a non-empty subset of N . We denote by σ̂ the one

to one correspondence from ∆̂ to ∆′ which is naturally defined based on σ.

Let ω ∈ Ω̂, and τ̂ (ω) be the ω-tower in ∆̂. The tower in ∆′ corresponding

to τ̂(ω) under σ̂, reduces to a singleton, which we denote by X̂(ω). In this way a

transformation X̂ : Ω̂ −→ I0 is defined.

Proposition 3.7. The transformation X̂ : Ω̂ −→ I0 as defined above has the following

properties:

1. X̂ yields a natural one to one correspondence between ∆̂n and ∆′
n for each n

and between the collection of towers of ∆̂ and those of ∆′;

2. X̂ is F̂-B measurable and in fact X̂−1(B) = F̂ ;

3. X̂ transforms the measure µ̂ on Ω̂ to the Lebesgue measure on I0.
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Proof. The truth of (1) is obvious. For (2) we note that X̂−1(I) = σ̂−1(I) for I ∈ ∆′.

∆̂ generates F̂ and ∆′ generates B. To see the truth of (3) we observe that

m(I) = µ̂(σ̂−1(I)) = µ̂(X̂−1(I)),

for I ∈ ∆′. Since σ̂−1(∆′) = ∆̂ and ∆′ and ∆̂ are semi-rings generating B and F̂ ,

respectively, it follows that m(B) = µ̂(X̂−1(B)) for B ∈ B.

Remark 3.8. It is worth noting that X̂ as defined above may not be onto. In fact the

case may be such that direct images of elements of F̂ under X̂ be non-Borel subsets

of I0.

Proposition 3.9. Define X0 : Ω −→ I0 to be

X0(ω) =





X̂(ω), if ω ∈ Ω̂,

0. if ω ∈ N .

Then X0 as a function from (Ω,F , µ) to (I0,B, m) is measurable and measure pre-

serving.

Corollary 3.10. Let I ∈ ∆, and I ′ be the element of ∆′ corresponding to I under σ.

The restriction of X0 to I as a function from (I,F |I ,
µ(·)
µ(I)

) to I ′
⋃
{0}, equipped with

the Borel σ-algebra, induces the measure
m(·)
m(I′)

, i.e. the normalization of the Lebesgue

measure, on I ′
⋃
{0}.

Proposition 3.11. Recall that f is a real integrable function on (Ω,F , µ). Let f̂ be

the restriction of f to Ω̂. There is a real integrable function g,

g : (I0,B, m) −→ (R,BR),

s.t. f̂ = goX̂ and hence

f(ω) = (goX0)(ω), µ − a.e.ω ∈ Ω,

and so ∫

Ω

fdµ =

∫

I0

gdm.

Proof. Consider the function f̂ : (Ω̂, F̂ , µ̂) −→ (I0,B, m). The existence of the func-

tion g s.t. f̂ = goX̂ follows from a well known result. The truth of the rest of the

assertion is clear.

Proposition 3.12. For each n ≥ 1, let I
(n)
i , 1 ≤ i ≤ kn, be a sequence listing all

distinct elements of ∆n. There is a probability space based on which, for n ≥ 1,

1 ≤ i ≤ kn, an element z
(n)
i of I

(n)
i can be chosen according to the probability law

µ(·)

µ(I
(n)
i

)
, s.t. for each fixed n, z

(n)
i ’s, 1 ≤ i ≤ kn, are independent. It then follows that

for each n and i, n ≥ 1, 1≤ i ≤ kn, the random variable x
(n)
i = X0(z

(n)
i ), n ≥ 1, is
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chosen according to the law
m(·)
m(I′)

, i.e. has uniform distribution in I ′(n)
i , and for each

n, x
(n)
i ’s 1 ≤ i ≤ kn, are independent.

Proof. See [5, 7].

4. PROOFS Of THE MAIN RESULTS

4.1. Proof of Theorem 2.1. In terms of the notations of Proposition 3.12, w.r.t.

the basic probability space, a.s.

S ′
∆n

(f) =

kn∑

i=1

f(z
(n)
i )µ(I

(n)
i ) =

kn∑

i=1

g(X0(z
(n)
i ))µ(I

(n)
i )

=
kn∑

i=1

g(x
(n)
i )m(I

′(n)
i ) = S∆′

n
(g),

for any n ≥ 1. In other words, for any n ≥ 1, the probabilistic behaviours of

the random sums
∑kn

i=1 f(z
(n)
i )µ(I

(n)
i ) and

∑kn

i=1 g(x
(n)
i )m(I

′(n)
i ), both of which are

generated by the same randomization mechanism, are the same. This in particular

proves the assertion of Theorem 2.1.

4.2. Proof of Theorem 2.2. In [3], in order to investigate the behaviour of the

sequence of random sums the sequence Pn, n ≥ 1, of partitions of I0 is taken to

consist each (expressing in a slightly modified manner) of disjoint subintervals of I0

(of positive length and of the form [x, y)). The author works with the normalization

of the Lebesgue measure on each such subinterval. As we stated earlier, partitions

can be taken to consist of finite (or even countable) disjoint unions of subintervals,

The results of [3] can be generalized to the case where we take (Ω,F , µ) instead of

(I0,B, m).

Let ∆n, n ≥ 1, be a system of partitions of Ω. Corresponding to ∆n, n ≥ 1,

define the sequence ∆n, n ≥ 1, as ∆1 = ∆1, ∆2 = ∆2 g ∆1, ∆n = ∆n g ∆n−1,

n ≥ 2. Then the sequence ∆n, n ≥ 1, is a decreasing system of partitions of Ω. If

∆′
n, n ≥ 1, is the sequence of partitions of I0 corresponding to ∆n, n ≥ 1, under σ,

then in natural ways, there is a sequence ∆
′

n, n ≥ 1, of partitions of I0 corresponding

to ∆n, n ≥ 1, s.t. for each n ≥ 1, each element of ∆
′

n, n ≥ 1, is a finite disjoint union

of elements of ∆′
n, n ≥ 1. In this way it is clear that natural analogs of results of [3],

in particular Theorem 2.2, and other similar results can be obtained for the general

case Ω instead of I0.
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