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ABSTRACT. In this paper the authors establish some new comparison theorems and Philos-type

criteria for oscillation of solutions to the odd order neutral mixed type differential equation

(x(t) + ax(t − τ1) + bx(t + τ2))
(n) + p(t)xα(t − σ1) + q(t)xβ(t + σ2) = 0, t ≥ t0,

where n ≥ 3 is an odd integer, α ≥ 1 and β ≥ 1, are ratio of odd positive integers. Examples are

provided to illustrate the main results.
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1. PRELIMINARIES

This paper is concerned with the oscillation and asymptotic behavior of solutions

of odd order nonlinear neutral mixed type differential equation of the form

(1.1) (x(t) + ax(t− τ1) + bx(t + τ2))
(n) + p(t)xα(t− σ1) + q(t)xβ(t + σ2) = 0, t ≥ t0,

where n ≥ 3 is an odd integer, α ≥ 1 and β ≥ 1 are the ratios of odd positive integers,

p(t) and q(t) are continuous and positive functions for all t ≥ t0, and a, b, τ1, τ2, σ1, σ2

are non-negative constants. We set z(t) = x(t)+ax(t−τ1)+ bx(t+ τ2). By a solution

of equation (1.1), we mean a function x(t) ∈ C([Tx,∞), R), Tx ≥ t0, which has the

property z(t) ∈ Cn([Tx,∞), R) and satisfies equation (1.1) on [Tx,∞). We consider

only those solutions x(t) of equation (1.1) which satisfy sup {|x(t)| : t ≥ T} > 0 for

all T ≥ Tx. We assume that equation (1.1) possesses such a solution. A solution

of equation (1.1) is called oscillatory if it has infinitely large zeros in [Tx,∞) and

otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be almost oscillatory

if all its solutions are either oscillatory or convergent to zero asymptotically.
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Recently, there have been a lot of interest in studying the oscillatory and as-

ymptotic behavior of solutions of neutral type differential equations, see for example

[2, 3, 4, 5, 6, 11, 13, 18, 21, 22, 23, 24].

Very recently, there are some results regarding the oscillatory properties of neutral

differential equations with mixed arguments, see the papers [7, 8, 10, 14, 26, 27]. In

[8], the author has obtained some oscillation theorems for the odd order neutral

differential equation

(1.2)
(

x(t) + p1x(t − τ1) + p2x(t + τ2)
)(n)

= q1x(t − σ1) + q2x(t + σ2), t ≥ t0,

where n ≥ 1 is odd.

Grace [10] and Yan [27] obtained several sufficient conditions for the oscillation

of all solutions of higher order neutral functional differential equation of the form

(1.3)
(

x(t) + cx(t − h) + Cx(t + H)
)(n)

+ qx(t − g) + Qx(t + G) = 0, t ≥ t0,

where q and Q are nonnegative real constants.

In [20], Li and Thandapani considered the following odd order neutral differential

equation

(1.4) (x(t) + p(t)x(τ(t)))(n) + q(t)x(σ(t)) + v(t)x(η(t)) = 0

and obtained some oscillation results for the equation (1.4). Clearly the equations

(1.3) and (1.4) are special cases of equation (1.1).

The purpose of this paper is to study the oscillatory and asymptotic behavior of

solutions of equation (1.1) so our results generalize and extends some of the results

obtained in [8, 10, 20, 27].

2. OSCILLATION RESULTS

In this section, we present some new oscillation criteria for the equation (1.1).

We begin with the following definition.

Definition 2.1. Consider the sets D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥

s ≥ t0}. Assume that H ∈ C(D, R) satisfies the following assumptions:

(A1) H(t, t) = 0, t ≥ t0; H(t, s) > 0, (t, s) ∈ D0;

(A2) H has a non-positive continuous partial derivative with respect to the second

variable in D0.

Then the function H has the property P .

Lemma 2.2 ([16, 17], Kiguradze’s lemma). Let f ∈ Cn([t0,∞), R) and its derivatives

up to order (n− 1) are of constant sign in [t0,∞). If f (n) is of constant sign and not
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identically zero on a sub-ray of [t0,∞), then there exist m ∈ Z and t1 ∈ [t0,∞) such

that 0 ≤ m ≤ n − 1, and (−1)n+mff (n) ≥ 0,

ff (j) > 0 for j = 0, 1, . . . , m − 1 when m ≥ 1

and

(−1)m+jff (j) > 0 for j = m, m + 1, . . . , n − 1 when m ≤ n − 1

hold on [t1,∞).

Lemma 2.3 ([1, Lemma 2.2.3]). Let f be a function as in Lemma 2.1. If limt→∞ f(t) 6=

0, then for every λ ∈ (0, 1), there exists tλ ∈ [t1,∞) such that

|f | ≥
λ

(n − 1)!
tn−1|f (n−1)|

holds on [tλ,∞).

Lemma 2.4 ([21]). Let f be a function as in Lemma 2.1. If

f (n−1)(t)f (n)(t) ≤ 0,

then for any constant θ ∈ (0, 1) and sufficiently large t, there exists a constant M > 0,

satisfying

|f ′(θt)| ≥ Mtn−2|f (n−1)(t)|.

Lemma 2.5. If x is a positive solution of (1.1), then the corresponding function

z(t) = x(t) + ax(t − τ1) + bx(t + τ2) satisfies

(2.1) z(t) > 0, z(n−1)(t) > 0, z(n)(t) ≤ 0

eventually.

Due to Lemma 2.1, the proof of the above lemma is simple and so is omitted.

Lemma 2.6 ([19, Lemma 2.6]). Assume that α ∈ (0,∞) and c ≥ 0 and d ≥ 0. Then

cα + dα ≥ (c + d)α if 0 < α < 1

and

(2.2) cα + dα ≥
1

2α−1
(c + d)α if α ≥ 1.

Lemma 2.7 ([25]). Assume that for large t

q(s) 6= 0 for all s ∈ [t, t∗],

where t∗ satisfies σ(t∗) = t. Then

x′ (t) + q (t) [x (σ (t))]α = 0, t ≥ t0,

has an eventually positive solution if and only if the corresponding inequality

x′ (t) + q (t) [x (σ (t))]α ≤ 0, t ≥ t0,
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has an eventually positive solution.

In [9, 12, 18, 25], the authors investigated the oscillatory behavior of the following

equation

(2.3) x′ (t) + q (t) [x (σ (t))]α = 0, t ≥ t0,

where q ∈ C([t0,∞), R+), σ ∈ C([t0,∞), R), σ(t) < t, limt→∞ σ(t) = ∞ and α ∈

(0,∞) is a ratio of odd positive integers.

Let α ∈ (0, 1). Then it is shown that every solution of the sublinear equation

(2.3) oscillates if and only if

(2.4)

∞
∫

t0

q(s)ds = ∞.

Let α = 1. Then equation (2.3) reduces to the linear delay differential equation

(2.5) x′(t) + q(t)x(σ(t)) = 0, t ≥ t0,

and it is shown that every solution of equation (2.5) oscillates if

(2.6) lim inf
t→∞

t
∫

σ(t)

q(s)ds >
1

e
.

Let α ∈ (1,∞) and σ(t) = t − σ. Then equation (2.3) reduces to

(2.7) x′ (t) + q (t) xα(t − σ) = 0, t ≥ t0,

for which the following results was obtained: If there exists λ ∈ (σ−1 ln α,∞) such

that

(2.8) lim inf
t→∞

q(t) exp(−eλt) > 0,

then every solution of equation (2.7) oscillates.

Next, we state and prove our main results. For the sake of convenience, let

R(t) = P (t) + Q(t),

P (t) = min {p(t), p(t − τ1), p(t + τ2)},

Q(t) = min {q(t), q(t− τ1), q(t + τ2)}.(2.9)

Theorem 2.8. Assume that

(H1)
∫

∞

t0
tn−1R(t)dt = ∞;

(H2) 1 ≤ α ≤ β.
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If the first order differential inequality

(2.10) w′(t) +
R(t)

4α−1(1 + aα + bα)α

(

λ

(n − 1)!
(t − σ1)

n−1

)α

wα(t − (σ1 − τ1)) ≤ 0,

has no positive solution for some 0 < λ < 1 and t ≥ t0. Then equation (1.1) is almost

oscillatory.

Proof. Assume that x is a nonoscillatory solution of equation (1.1), which does not

tend to zero asymptotically. Without loss of generality we may assume that x is a

positive solution of equation (1.1), which does not tend to zero asymptotically. Let

(2.11) z(t) = x(t) + ax(t − τ1) + bx(t + τ2), t ≥ t1 ≥ t0.

Then z(t) > 0 and it follows from equation (1.1) that

(2.12) z(n)(t) = −p(t)xα(t − σ1) − q(t)xβ(t + σ2) ≤ 0, t ≥ t1.

Moreover

(2.13) aαz(n)(t − τ1) + aαp(t − τ1)x
α(t − τ1 − σ1) + aαq(t − τ1)x

β(t − τ1 + σ2) = 0,

and

(2.14) bαz(n)(t + τ2) + bαp(t + τ2)x
α(t + τ2 − σ1) + bαq(t + τ2)x

β(t + τ2 + σ2) = 0.

Combining (2.12), (2.13), (2.14) and using Lemma 2.5, (2.9) and (H2), we obtain for

t ≥ t1,

(

z(n−1)(t) + aαz(n−1)(t − τ1) + bαz(n−1)(t + τ2)
)′

+P (t)
1

4α−1
zα(t − σ1) + Q(t)

1

4α−1
zα(t + σ2) ≤ 0, t ≥ t1.(2.15)

Next, we claim that z′(t) > 0 eventually. If not, then we have z(t) > 0 and z′(t) ≤ 0

for all t ≥ t1. Thus limt→∞ z(t) = M ≥ 0, and then limt→∞ z(k)(t) = 0 for k =

1, 2, x, . . . , n − 1. Integrating (2.15) from t to ∞ for a total of (n − 1) times and

integrating the resulting inequality from t1(t1 is large enough) to ∞, we obtain
∫

∞

t1

(s − t1)
n−1

(n − 1)!4α−1
(P (s)zα(s − σ1) + Q(s)zα(s + σ2)) ds < ∞.

Then for s ≥ T ≥ 2t1, and since z(t) is bounded, we have from the last inequality

∞
∫

T

sn−1(P (s) + Q(s))ds < ∞.

This contradicts (H1). Hence we have z′(t) > 0 and z(t−σ1) ≤ z(t+σ2). Then, from

(2.9) and (2.15), we obtain

(2.16) z(n)(t) + aαz(n)(t − τ1) + bαz(n)(t + τ2) +
R(t)

4α−1
zα(t − σ1) ≤ 0, t ≥ t1.
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By the Lemma 2.2 and Lemma 2.4, we obtain

z(t) ≥
λ

(n − 1)!
tn−1z(n−1)(t) for every λ ∈ (0, 1), t ≥ t1.

Thus, it follows from (2.16) that

(

z(n−1)(t) + aαz(n−1)(t − τ1) + bαz(n−1)(t + τ2)
)′

+
R(t)

4α−1

(

λ

(n − 1)!
(t − σ1)

n−1z(n−1)(t − σ1)

)α

≤ 0, t ≥ t1.(2.17)

Then, setting z(n−1)(t) = y(t) > 0 is a decreasing solution of equation

(y(t) + aαy(t − τ1) + bαy(t + τ2))
′

+
R(t)

4α−1

(

λ

(n − 1)!
(t − σ1)

n−1

)α

yα(t − σ1) ≤ 0, t ≥ t1.(2.18)

We denote

w(t) = y(t) + aαy(t − τ1) + bαy(t + τ2) ≤ (1 + aα + bα)y(t− τ1), t ≥ t1.

Substituting this into (2.18), we obtain that w is a positive solution of (2.10), a

contradiction. This completes the proof.

Theorem 2.9. Assume that (H1) holds and

(H3) 1 ≤ β ≤ α.

If the first order differential inequality

(2.19) w′(t) +
R(t)

4β−1(1 + aβ + bβ)β

(

λ

(n − 1)!
(t − σ1)

n−1

)β

wβ(t − (σ1 − τ1)) ≤ 0,

has no positive solution for some λ ∈ (0, 1) and t ≥ t0. Then equation (1.1) is almost

oscillatory.

Proof. The proof is similar to that of Theorem 2.1 and hence the details are omitted.

Corollary 2.10. Assume that condition (H1) holds, α = 1 and σ1 − τ1 > 0. If

(2.20) lim inf
t→∞

∫ t

t−(σ1−τ1)

R(s)(s − σ1)
n−1ds >

(1 + a + b)(n − 1)!

λe
,

then equation (1.1) is almost oscillatory.

Proof. According to Lemma 2.6 and condition (2.6), the condition (2.20) guarantees

that (2.10) with α = 1 has no positive solution. Hence by Theorem 2.1, equation

(1.1) is almost oscillatory. This completes the proof.
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Corollary 2.11. Assume that condition (H1) holds, σ1 − τ1 > 0 and α ∈ (0, 1). If

(2.21)

∫

∞

t0

R(s)(s − σ1)
α(n−1)ds = ∞, t ≥ t0,

then equation (1.1) is almost oscillatory.

Proof. According to Lemma 2.6 and condition (2.4), the condition (2.21) guarantees

that (2.10) with α < 1 has no positive solution. Hence by Theorem 2.1, equation

(1.1) is almost oscillatory. This completes the proof.

Corollary 2.12. Assume that condition (H1) holds, σ1 − τ1 > 0 and α ∈ (1,∞). If

there exists µ ∈ ((σ1 − τ1)
−1 ln α,∞) such that

(2.22) lim inf
t→∞

R(t)

(

(t − σ1)
n−1

(n − 1)!

)α

exp(−eµt) > 0,

then equation (1.1) is almost oscillatory.

Proof. According to Lemma 2.6 and condition (2.8), the condition (2.22) guarantees

that (2.10) with α > 1 has no positive solution. Hence by Theorem 2.1, equation

(1.1) is almost oscillatory. This completes the proof.

Corollary 2.13. Assume that condition (H1) holds, σ1 − τ1 > 0 and β = 1. If

(2.23) lim inf
t→∞

∫ t

t−(σ1−τ1)

R(s)(s − σ1)
n−1ds >

(1 + a + b)(n − 1)!

λe
,

then equation (1.1) is almost oscillatory.

Proof. According to Lemma 2.6 and condition (2.6), the condition (2.23) guarantees

that (2.19) with β = 1 has no positive solution. Hence by Theorem 2.2, equation

(1.1) is almost oscillatory. This completes the proof.

Corollary 2.14. Assume that condition (H1) holds, σ1 − τ1 > 0 and β ∈ (0, 1). If

(2.24)

∫

∞

t0

R(s)(s − σ1)
β(n−1)ds = ∞, t ≥ t0,

then equation (1.1) is almost oscillatory.

Proof. According to Lemma 2.6 and condition (2.4), the condition (2.24) guarantees

that (2.19) with β < 1 has no positive solution. Hence by Theorem 2.2, equation

(1.1) is almost oscillatory. This completes the proof.

Corollary 2.15. Assume that condition (H1) holds, σ1 − τ1 > 0 and β ∈ (1,∞). If

there exists ν ∈ ((σ1 − τ1)
−1 ln β,∞) such that

(2.25) lim inf
t→∞

R(t)

(

(t − σ1)
n−1

(n − 1)!

)β

exp(−eνt) > 0,

then equation (1.1) is almost oscillatory.
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Proof. According to Lemma 2.6 and condition (2.8), the condition (2.25) guarantees

that (2.19) with β > 1 has no positive solution. Hence by Theorem 2.2, equation

(1.1) is almost oscillatory. This completes the proof.

Next, we shall establish some Philos-type oscillation criteria for the oscillation of

equation (1.1).

Theorem 2.16. Assume that (H1), (H2) and σ1 ≤ τ1 hold. Further, assume that the

function H ∈ C(D, R) has the property P and there exist functions h ∈ C(D0, R) and

ρ ∈ C1([t0,∞), (0,∞)) such that

(2.26) −
∂

∂s
H(t, s) − H(t, s)

ρ′(s)

ρ(s)
= h(t, s), (t, s) ∈ D0.

If

(2.27) lim sup
t→∞

1

H(t, t0)

∫ t

t0

K1(t, s)ds = ∞,

for all constants M > 0 and L > 0, where

K1(t, s) :=

(

L

4

)α−1

H(t, s)ρ(s)R(s) − (1 + aα + bα)
ρ(s)h2(t, s)

4MH(t, s)(s − τ1)n−2
,

then equation (1.1) is almost oscillatory.

Proof. Assume that x is a nonoscillatory solution of equation (1.1), which does not

tend to zero asymptotically. Without loss of generality we may assume that x is

a positive solution of equation (1.1), which does not tend to zero asymptotically.

Proceeding as in the proof of Theorem 2.1, we obtain (2.15) and z′(t) > 0 for all

t ≥ t1. Define

(2.28) w(t) = ρ(t)
z(n−1)(t)

z(t − τ1)
, t ≥ t1.

then w(t) > 0 and

(2.29) w′(t) = ρ′(t)
z(n−1)(t)

z(t − τ1)
+ ρ(t)

z(n)(t)z(t − τ1) − z(n−1)(t)z′(t − τ1)

z2(t − τ1)
, t ≥ t1.

It follows from Lemma 2.3 and Lemma 2.4 that there exists a constant M > 0, such

that

(2.30) z′(t − τ1) ≥ M(t − τ1)
n−2z(n−1)(t − τ1),

which in view of (2.28) and (2.29) yields

(2.31) w′(t) ≤
ρ′(t)

ρ(t)
w(t) + ρ(t)

z(n)(t)

z(t − τ1)
−

M(t − τ1)
n−2

ρ(t)
w2(t).

Define

(2.32) v(t) = ρ(t)
z(n−1)(t − τ1)

z(t − τ1)
, t ≥ t1,
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then v(t) > 0 and

(2.33) v′(t) ≤
ρ′(t)

ρ(t)
v(t) + ρ(t)

z(n)(t − τ1)

z(t − τ1)
−

M(t − τ1)
n−2

ρ(t)
v2(t).

Define

(2.34) u(t) = ρ(t)
z(n−1)(t + τ2)

z(t − τ1)
, t ≥ t1,

then u(t) > 0 and

(2.35) u′(t) ≤
ρ′(t)

ρ(t)
u(t) + ρ(t)

z(n)(t + τ2)

z(t − τ1)
−

M(t − τ1)
n−2

ρ(t)
u2(t).

In the view of (2.31), (2.33) and (2.35), we obtain

w′(t) + aαv′(t) + bαu′(t) ≤
ρ′(t)

ρ(t)
(w(t) + aαv(t) + bαu(t))

+
ρ(t)

z(t − τ1)

(

z(n)(t) + aαz(n)(t − τ1) + bαz(n)(t + τ2)
)

−
M(t − τ1)

n−2

ρ(t)

(

w2(t) + aαv2(t) + bαu2(t)
)

.(2.36)

From (2.16), (2.36) and z′(t) > 0, we obtain

w′(t) + aαv′(t) + bαu′(t) ≤
ρ′(t)

ρ(t)
(w(t) + aαv(t) + bαu(t))

−
ρ(t)

4α−1z(t − τ1)
R(t)zα(t − σ1)

−
M(t − τ1)

n−2

ρ(t)

(

w2(t) + aαv2(t) + bαu2(t)
)

.

Since z(t) ≥ L > 0, we have from the last inequality

w′(t) + aαv′(t) + bαu′(t) ≤
ρ′(t)

ρ(t)
(w(t) + aαv(t) + bαu(t))

−

(

L

4

)α−1

ρ(t)R(t) −
M(t − τ1)

n−2

ρ(t)

(

w2(t) + aαv2(t) + bαu2(t)
)

.(2.37)

Multiplying (2.37), with t replaced by s, by H(t, s) and integrating from T to t with

T ≥ t1, we have

∫ t

T

(

L

4

)α−1

H(t, s)ρ(s)R(s)ds ≤ −

t
∫

T

H(t, s) (w′(s) + aαv′(s) + bαu′(s)) ds

+

∫ t

T

H(t, s)
ρ′(s)

ρ(s)
(w(s) + aαv(s) + bαu(s)) ds

− M

∫ t

T

H(t, s)
(s − τ1)

n−2

ρ(s)
(w2(s) + aαv2(s) + bαu2(s))ds.
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It follows from the above inequality and (2.26) that
(

L

4

)α−1 ∫ t

T

H(t, s)ρ(s)R(s)ds ≤ H(t, T ) (w(T ) + aαv(T ) + bαu(T ))

−M

t
∫

T

H(t, s)
(s − τ1)

n−2

ρ(s)

((

w2(s) +
h(t, s)ρ(s)w(s)

MH(t, s)(s − τ1)n−2

)

+aα(v2(s) +
h(t, s)ρ(s)v(s)

MH(t, s)(s − τ1)n−2
) + bα

(

u2(s) +
h(t, s)ρ(s)w(s)

MH(t, s)(s − τ1)n−2

))

ds.

Now using completing the square, we obtain

∫ t

T

[

(

L

4

)α−1

H(t, s)ρ(s)R(s) − (1 + aα + bα)
ρ(s)h2(t, s)

4M(s − τ1)n−2H(t, s)

]

ds

≤ H(t, T )(w(T ) + aαv(T ) + bαu(T )) ≤ H(t, t0)(w(T ) + aαv(T ) + bαu(T )),

which yields

1

H(t, t0)

t
∫

T

[

(

L

4

)α−1

H(t, s)ρ(s)R(s) − (1 + aα + bα)
ρ(s)h2(t, s)

4M(s − τ1)n−2H(t, s)

]

ds < ∞.

This contradicts condition (2.27). The proof is complete.

Theorem 2.17. Assume that (H1), (H3), (2.26) and σ1 ≤ τ1 hold. If

(2.38) lim sup
t→∞

1

H(t, t0)

∫ t

t0

K2(t, s)ds = ∞,

for all constants M > 0 and L > 0, where

K2(t, s) :=

(

L

4

)β−1

H(t, s)ρ(s)R(s) − (1 + aβ + bβ)
ρ(s)h2(t, s)

4MH(t, s)(s − τ1)n−2
,

then equation (1.1) is almost oscillatory.

Proof. The proof is similar to that of Theorem 2.3 and hence the details are omitted.

Theorem 2.18. Assume that (H1), (H2) and τ1 ≤ σ1 hold. Further, assume that the

function H ∈ C(D, R) has the property P and there exist functions h ∈ C(D0, R) and

ρ ∈ C1([t0,∞), (0,∞)) such that (2.26) holds. If

(2.39) lim sup
t→∞

1

H(t, t0)

∫ t

t0

K3(t, s)ds = ∞,

for all constants M > 0 and L > 0, where

K3(t, s) :=

(

L

4

)α−1

H(t, s)ρ(s)R(s) − (1 + aα + bα)
ρ(s)h2(t, s)

4MH(t, s)(s − σ1)n−2
,

then equation (1.1) is almost oscillatory.
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Proof. The proof is similar to that of Theorem 2.3 by taking w(t) = ρ(t) z(n−1)(t)
z(t−σ1)

, v(t) =

ρ(t) z(n−1)(t−τ1)
z(t−σ1)

and u(t) = ρ(t) z(n−1)(t+τ2)
z(t−σ1)

, for t ≥ t1. Therefore the details are omitted.

Theorem 2.19. Assume that (H1), (H3) and τ1 ≤ σ1 hold. Further, assume that the

function H ∈ C(D, R) has the property P and there exist functions h ∈ C(D0, R) and

ρ ∈ C1([t0,∞), (0,∞)) such that (2.26) holds. If

(2.40) lim sup
t→∞

1

H(t, t0)

∫ t

t0

K4(t, s)ds = ∞,

for all constants M > 0 and L > 0, where

K4(t, s) :=

(

L

4

)β−1

H(t, s)ρ(s)R(s) − (1 + aβ + bβ)
ρ(s)h2(t, s)

4MH(t, s)(s − σ1)n−2
,

then equation (1.1) is almost oscillatory.

Proof. The proof is similar to that of Theorem 2.4 by taking w(t) = ρ(t) z(n−1)(t)
z(t−σ1)

, v(t) =

ρ(t) z(n−1)(t−τ1)
z(t−σ1)

, and u(t) = ρ(t) z(n−1)(t+τ2)
z(t−σ1)

, for t ≥ t1. Therefore the details are omitted.

Corollary 2.20. Let condition (2.27) in Theorem 2.3 be replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)R(s)ds = ∞,

lim sup
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)h2(t, s)

H(t, s)(s − τ1)n−2
ds < ∞.

Then equation (1.1) is almost oscillatory.
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