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ABSTRACT. Let q, a, b, p and T be real numbers such that q ≥ 0, a > 0, 0 < b < a, p > 0, and

0 < T , D = (0, a), Ω = D × (0, T ]. This article studies the following degenerate parabolic initial

boundary value problem:

xqut − uxx = δ(x − b)(1 − u(x, t))−p in Ω,

u(x, 0) = 0 on D̄, u(0, t) = 0 = u(a, t) for 0 < t ≤ T,

where δ(x) is the Dirac delta function. The growth rate of the solution u as u → 1− is established.
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1. INTRODUCTION

Let q, a, b, p and T be real numbers such that q ≥ 0, a > 0, 0 < b < a, p > 0,

and 0 < T , D = (0, a), Ω = D × (0, T ]. Let Lqu = xqut − uxx. This article studies

the following degenerate parabolic initial boundary value problem:

(1.1) Lqu = δ(x − b)(1 − u(x, t))−p in Ω,

(1.2) u(x, 0) = 0 on D̄, u(0, t) = 0 = u(a, t) for 0 < t ≤ T,

where δ(x) is the Dirac delta function. These types of problems are motivated by

applications in which the ignition of a combustible medium is accomplished through

the use of either a heated wire or a pair of small electrodes to supply a large amount

of energy to a very confined area. In particularly, when q = 0, it can be used to

describe the temperature distribution on a rod with a concentrated nonlinear source

at point b (cf. [6]). When q = 1, it may be used to describe the temperature u of the

channel flow of a fluid with temperature dependent viscosity in the boundary layer
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(cf. [4, 5]). For the case q = 0, Deng and Roberts [12] studied the corresponding

nonlinear Volterra equation at the site b in a finite domain (0, a):

u(b, t) = a2

∫ t

0

G(b, t; b, τ)(1 − u(b, τ))−p dτ,

where G(x, t; ξ, τ) denotes the Green’s function corresponding to the problem (1.1)–

(1.2). They showed that there is a a∗ such that for a ≤ a∗, the solution u(b, t) of the

integral equation exists for all time and is uniformly bounded away from 1. When

a > a∗, there exists a finite time T such that limt→T u(b, t) = 1, and limt→T ut(b, t) =

∞.

Chan and Jiang [6] investigated the solution u(x, t) of the problem (1.1)–(1.2).

They showed that the problem has a unique continuous solution which satisfies (1.1)–

(1.2), and uxx(x, t) ≥ 0 for x ∈ (0, b) and x ∈ (b, a). Also, ut(b, t) = ∞ for any

t > 0.

For q = 0, the study of the problems when the singularity of the right-hand

side of the equation (1.1) is replaced by (1 − u(x, t))−p was initiated in 1975 by

Kawarada [17], and since then, it has attracted much attention (cf. [5, 11]). Chan

and Tragoonsirisak [9], and Chan and Treeyaprasert [10] studied the existence and

quenching of the solution of a parabolic problem with a concentrated nonlinear source

in an infinite strip and on a semi-infinite interval respectively. Chan [2], and Chan

and Tragoonsirisak [8] investigated the quenching behavior of the solution in the

multi-dimensional cases.

The rate of change of the solution when max{u(x, t) : x ∈ D̄} → 1− as t → T

were studies by Deng and Levine [13]. For q ≥ 0, Yuen [20] studied the rate of change

of the solution. When the right-hand side of the equation (1.1) is replaced by up(x, t),

the rate of change of the solution as u(x, t) → ∞ was studied by Fila and Hulshof

[14], Guo [15], and Guo, Sasayama and Wang [16].

In this paper, a solution of the problem (1.1)–(1.2) is a continuous function

which satisfies (1.1)–(1.2). The solution is said to quench if there is a T such that

max{u(x, t) : x ∈ D̄} → 1− as t → T .

2. MAIN RESULTS

In this section, we consider the problem (1.1)–(1.2) for the case when q > 0. The

Green’s function G(x, t; ξ, τ) corresponding to the problem (1.1) is determined by the

following system:

LqG = δ(x − ξ)δ(t − τ),
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with G(x, t; ξ, τ) = 0 for t < τ , and G(0, t; ξ, τ) = 0 = G(a, t; ξ, τ). By Chan and

Chan [3], we have

G(x, t; ξ, τ) =
∞
∑

n=1

φn(x)φn(ξ)e−λn(t−τ),

where λn (n = 1, 2, . . . ) are the eigenvalues of the problem

φ′′ + λxqφ = 0, φ(0) = 0 = φ(a),

and their corresponding eigenfunctions are given by

φn(x) = (q + 2)1/2x1/2
J 1

q+2

(

2λ
1/2
n

q+2
x(q+2)/2

)

∣

∣

∣

∣

J1+ 1
q+2

(

2λ
1/2
2

q+2

)
∣

∣

∣

∣

where J1/(q+2) is the Bessel function of the first kind of order 1/(q+2). The eigenvalues

satisfies 0 < λ1 < λ2 < · · · < λn < λn+1 < · · · , λn ≈ O(n2), and the set {φn(x)} is a

maximal orthonormal set with the weight function xq (cf. [18, p. 506]).

By using the Green’s function G(x, t; ξ, τ), the solution u(x, t) of the problem

(1.1)–(1.2) is given as

u(x, t) =
2

a

∫ t

0

∞
∑

n=1

φn(x)φn(b)e−λn(t−τ)(1 − u(b, τ))−pdτ,

for 0 < t. The solution u(x, t) can be shown to be unique, continuous, increasing with

respect to t in Ω. Furthermore, u(x, t) satisfies the problem (1.1)–(1.2). Also there

is a positive real number a∗ such that for a > a∗, the solution u(x, t) quenches in a

finite T , and b is the only quenching point (cf. [6]). Chan and Tian [7] shows that

there is a positive constant k such that |φn(x)| ≤ kx−q/4 for x ∈ D.

Theorem 2.1. If the solution u(x, t) of the problem (1.1) quenches in a finite time

T at x = b ∈ D, then there exist two positive numbers C1 and C2 such that lim
t→T

(1 −

u(b, t))(T − t)−1/(p+1) = C1, and lim
t→T

(1 − u(b, t))(T − t)−1/(p+1) = C2.

Proof. Firstly, let us determine a lower bound of (1 − u(x, t)) when t is close to T .

Since u(b, t) → 1 as t → T and u(x, t) is continuous, we have

2

a

∫ T

0

∞
∑

n=1

(φn(b))
2 e−λn(T−τ)(1 − u(b, τ))−pdτ = 1.
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By a direct computation, we have

1 − u(b, t) =
2

a

∞
∑

n=1

(φn(b))2

(
∫ T

0

e−λn(T−τ)(1 − u(b, τ))−pdτ

−

∫ t

0

e−λn(t−τ)(1 − u(b, τ))−pdτ

)

=
2

a

∞
∑

n=1

(φn(b))2

[
∫ t

0

(

e−λn(T−τ) − e−λn(t−τ)
)

(1 − u(b, τ))−pdτ

+

∫ T

t

e−λn(T−τ)(1 − u(b, τ))−pdτ

]

≥
2

a

∞
∑

n=1

(φn(b))2 (1 − u(b, t))−p

[
∫ t

0

(

e−λn(T−τ) − e−λn(t−τ)
)

dτ

+

∫ T

t

e−λn(T−τ)dτ

]

=
2

a

∞
∑

n=1

(φn(b))2 (1 − u(b, t))−p

[

1

λn

(

e−λnt − e−λnT
)

]

.

It follows from the Mean Value Theorem that there is a η satisfying t < η < T , such

that e−λnt − e−λnT = λne
−λnη(T − t). Then we obtain

1 − u(b, t) ≥

(

2

a

∞
∑

n=1

(φn(b))2 e−λnT

)

(T − t)(1 − u(b, t))−p.

Since |φn(b)| ≤ kb−q/4 for some constant k > 0, the series
∑

∞

n=1 (φn(b))2 e−λnT con-

verges. Thus, there is K1 > 0 such that

(2.1) (1 − u(b, t))p+1 ≥ K1(T − t)

for any 0 < t < T . This gives lim
t→T

(1 − u(b, t))(T − t)−1/(p+1) = C1, for some positive

constant C1.

For the upper bound, we consider

1 − u(b, t) =
2

a

∞
∑

n=1

(φn(b))2

(
∫ T

0

e−λn(T−τ)(1 − u(b, τ))−pdτ

−

∫ t

0

e−λn(t−τ)(1 − u(b, τ))−pdτ

)

=
2

a

∞
∑

n=1

(φn(b))2

[
∫ t

0

(

e−λn(T−τ) − e−λn(t−τ)
)

(1 − u(b, τ))−pdτ

+

∫ T

t

e−λn(T−τ)(1 − u(b, τ))−pdτ

]

.
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It follows from the Mean Value Theorem that there is a ρ satisfying t < ρ < T such

that
∫ t

0

(

e−λn(T−τ) − e−λn(t−τ)
)

(1 − u(b, τ))−pdτ

= −λne−λnρ(T − t)

∫ t

0

(1 − u(b, τ))−pdτ.

On the other hand, by use of the inequality (2.1), we have

(2.2)

∫ T

t

e−λn(T−τ)(1 − u(b, τ))−pdτ ≤ K
−p/(p+1)
1

∫ T

t

e−λn(T−τ)(T − τ)−p/(p+1)dτ.

By using the substitution s = T − τ , the integral on the right-hand side of the above

inequality becomes
∫ T−t

0

e−λnss−p/(p+1)ds = (p + 1)(T − t)−p/[2(p+1)] (λn)−1+p/[2(p+1)]

×e−(1/2)λn(T−t)M
(

− p
2(p+1)

,− p
2(p+1)

+ 1
2
, λn(T − t)

)

,

where M(k, m, z) is the Whittaker function (cf. [19]). The Whittaker function can

be rewritten in terms of confluent hypergeometric function as

M(k, m, z) = zm+ 1
2 e−

z
2 Φ

(

m − k +
1

2
, 2m + 1, z

)

,

where Φ(α, γ, z) is the confluent hypergeometric function. Note that the hypergeo-

metric function Φ has a Kummer series expansion

Φ(α, γ, z) = 1 +
α

γ
z +

α(α + 1)

γ(γ + 1)2!
z2 + · · · ,

which shows that this function is entire for any z. Then, we get

M

(

−
p

2(p + 1)
,−

p

2(p + 1)
+

1

2
, λn(T − t)

)

= [λn(T − t)]
1− p

2(p+1) e−(1/2)λn(T−t)Φ

(

1, 1 +
1

p + 1
, λn(T − t)

)

.

By putting the Whittaker function back into the estimation (2.2), we obtain

∫ T

t

e−λn(T−τ)(1 − u(b, τ))−pdτ

≤ K
−p/(p+1)
1 (p + 1)(T − t)1/(p+1)e−λn(T−t)Φ

(

1, 1 +
1

p + 1
, λn(T − t)

)

.

For 0 < t0 < T , since e−λn(T−t)Φ(1, 1 + 1/(p + 1), λn(T − t)) is continuous and is

decreasing on [0, T ], there is M > 0 such that for any t0 ≤ t1 ≤ t2 ≤ T , we have
∣

∣

∣

∣

e−λn(T−t1)Φ

(

1, 1 +
1

p + 1
, λn(T − t1)

)

− e−λn(T−t2)Φ

(

1, 1 +
1

p + 1
, λn(T − t2)

)
∣

∣

∣

∣

≤ M

∣

∣

∣

∣

e−λn(T−t0)Φ

(

1, 1 +
1

p + 1
, λn(T − t0)

)
∣

∣

∣

∣

.
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Thus, for any t0 ≤ t ≤ T , we get
∣

∣

∣

∣

e−λn(T−t)Φ

(

1, 1 +
1

p + 1
, λn(T − t)

)
∣

∣

∣

∣

≤ (M + 1)

∣

∣

∣

∣

e−λn(T−t0)Φ

(

1, 1 +
1

p + 1
, λn(T − t0)

)
∣

∣

∣

∣

.

Since λne−λn(T−t0)Φ(1, 1 + 1/(p + 1), λn(T − t0)) → 0 as n → ∞, there exists K2 > 0

such that

K
−p/(p+1)
1 (p + 1)λne−λn(T−t)Φ

(

1, 1 +
1

p + 1
, λn(T − t)

)

≤ K2.

This gives
∫ t

0

(

e−λn(T−τ) − e−λn(t−τ)
)

(1 − u(b, τ))−pdτ

+

∫ T

t

e−λn(T−τ)(1 − u(b, τ))−pdτ

≤ −λne−λnρ(T − t)

∫ t

0

(1 − u(b, τ))−pdτ

+K
−p/(p+1)
1 (p + 1)(T − t)1/(p+1)e−λn(T−t)Φ

(

1, 1 +
1

p + 1
, λn(T − t)

)

≤
K2

λn
(T − t)1/p+1.

Thus,

1 − u(b, t) ≤
2K2

a
(T − t)1/p+1

∞
∑

n=1

(φn(b))2 1

λn
.

Since
∑

∞

n=1 (φn(b))
2 1

λn
converges, we have 1 − u(b, t) ≤ K3(T − t)1/p+1 for some

K3 > 0. This shows that lim
t→T

(1 − u(b, t))(T − t)−1/(p+1) = C2.

When q = 0, the operator L0 in the problem (1.1) becomes L0u = ut −uxx which

is the heat operator, and its corresponding Green’s function on Ω is given as (cf. [1])

G(x, t; ξ, τ) =
2H(t− τ)

a

∞
∑

n=1

sin
nπx

a
sin

nπξ

a
e−(nπ

a )
2
(t−τ),

where H(t − τ) is the Heaviside function. The representation form of the solution

u(x, t) of the problem (1.1)–(1.2) is given as

u(x, t) =
2

a

∫ t

0

∞
∑

n=1

sin
nπx

a
sin

nπb

a
e−(nπ

a )
2
(t−τ)(1 − u(b, τ))−pdτ,

for 0 < t. The solution u(x, t) can be shown to be unique, continuous, increasing with

respect to time t in Ω. Furthermore, u(x, t) satisfies the problem (1.1)–(1.2). Also

there is a positive real number a∗, for a > a∗, the solution u(x, t) quenches in a finite T ,

and b is the only quenching point. Since | sin nπb
a
| ≤ 1, the series

∑

∞

n=1

(

sin nπb
a

)2 1

(nπ
a )

2

converges. It follows from a similar argument as in the proof of the Theorem 2.1 that

the quenching rate can be estimated to obtain the following result.
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Corollary 2.2. For q = 0, if the solution u(x, t) of the problem (1.1) quenches in

a finite time T at x = b, then there exist two positive numbers C3 and C4 such that

lim
t→T

(1 − u(b, t))(T − t)−1/(p+1) = C3, and lim
t→T

(1 − u(b, t))(T − t)−1/(p+1) = C4.
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