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ABSTRACT. We are interested in the existence of non-trivial solutions for second order boundary

value problem: (E) y′′ + f(t, y) = 0, 0 < t < 1, subject to multi-point boundary condition at t = 1

and Robin boundary condition at t = 0. Our results extend similar results of Sun and Liu [12], Sun

[11] Li and Sun [8] and Guezane-Lakoud and Kelaiaia [2] for the three point problem.
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1. Introduction

We consider second order nonlinear differential equation

(1.1) y′′ + f(t, y) = 0, 0 < t < 1,

subject to the multi-point boundary condition

(1.2) cos θy(0) = sin θy′(0), θ ∈
[
−π

2
,
π

2

]
,

(1.3) y(1) =

m∑

i=1

βiy(ηi) +

m∑

i=1

γiy
′(ηi),

where βi, γi ∈ R and 0 < η1, < · · · < ηm < 1. Condition (1.2) is sometimes referred

to as the Robin boundary condition at t = 0 because the choices of θ = 0 and

θ = π
2

correspond to Dirichlet and Neumann conditions, i.e., y(0) = 0 and y′(0) = 0,

respectively. Condition (1.3) is often known as the m-point boundary condition, see

Kwong and Wong [6] for a discussion concerning Robin boundary condition.
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Many existence results have been proved for the three point problem, m = 1 in

(1.3) by Gupta [3], Sun and Liu [12], Sun [11], Li and Sun [8] and Kwong and Wong

[7].

In [12], Sun and Liu studied the three point problem, equation (1.1) subject to

(1.4) y′(0) = 0, y(1) = βy(η),

where 0 < η < 1 and β 6= 1. It is assumed that f(t, y) ∈ C([0, 1], R, R) and satisfies

(1.5) |f(t, y)| ≤ k(t)|y| + h(t),

where k, h ∈ L1(0, 1) are non-negative functions. They obtained the following result.

Proposition 1.1. Suppose that f(t, 0) 6≡ 0 in [0, 1] and satisfies (1.5). If k(t) satisfies

(1.6)

(
1 +

∣∣∣∣
1

1 − β

∣∣∣∣

)∫
1

0

(1 − s)k(s)ds +

∣∣∣∣
β

1 − β

∣∣∣∣
∫ η

0

(η − s)k(s)ds < 1,

then the boundary value problem (1.1), (1.4) has a non-trivial solution.

Subsequent to [12], Sun [11] considered equation (1.1) subject to the following

three point boundary condition:

(1.7) y′(0) = 0, y(1) = γy′(η),

and proved

Proposition 1.2. Suppose that f(t, y) satisfies the same assumptions as in Proposi-

tion 1.1. If k(t) satisfies

(1.8) 2

∫
1

0

(1 − s)k(s)ds +
|γ|

|1 − γ|

∫ η

0

k(s)ds < 1,

then the boundary value problem (1.1), (1.7) has a non-trivial solution.

Further to [12], Li and Sun [8] studied equation (1.1) subject to the following

three point boundary condition

(1.9) ay(0) = by′(0), y(1) = βu(η).

and obtained

Proposition 1.3. Suppose that f(t, y) satisfies the same assumptions as in Proposi-

tion 1.1. If k(t) satisfies

(1.10)

{
1 +

1

|ρ|(|b| + |a|)
}∫

1

0

(1 − s)k(s)ds +
|β|(|b| + |a|)

|ρ|

∫ η

0

(η − s)k(s)ds < 1,

where ρ = a(1− βη) + b(1− β) 6= 0, then the boundary value problem (1.1), (1.9) has

a non-trivial solution.
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Let a = 0, b = 1, ρ = 1 − β, (1.10) becomes (1.6), so Proposition 1.3 includes

Proposition 1.1 as a special case.

Very recently, Guezane-Lakoud and Kelaiaia [2] consider the following boundary

condition for the three point problem

(1.11) y(0) = αy′(0), y(1) = γy′(η),

and proved the following result.

Proposition 1.4. Assume that f(t, y) satisfies condition (1.5) as in Proposition 1.1

and that k(t) satisfies

(1.12)

(
1 +

|1 + α|
|1 + α − γ|

)∫
1

0

(1 − s)k(s)ds +
|γ(1 + α)|
|1 + α − γ|

∫ η

0

k(s)ds < 1,

Then the boundary value problem (1.1), (1.11) has a non-trivial solution.

Let α → ∞, then condition (1.11) reduces to (1.7) and (1.12) implies (1.8), so

Proposition 1.4 includes Proposition 1.2 as a special case.

We shall show how the m-point boundary value problem (1.1), (1.2), (1.3) can be

treated like the three point problems (1.1), (1.4); (1.1), (1.7); (1.1), (1.9) and prove

extensions of Propositions 1.3 and 1.4. We first introduce a convenient notation

for the multi-point boundary condition at t = 1 in (1.3). Consider the set of m

interior points ηi, i = 1, 2, . . . , m as a m-vector and likewise for βi, γi, and y(ηi),

i = 1, 2, . . . , m. Now denote the scalar product of two vectors β = (β1, . . . , βm) and

y(η) = (y(η1), . . . , y(ηm)) by

(1.13) 〈β, y(η)〉 =

m∑

i=1

βiy(ηi).

Using the notation (1.13), we can rewrite the boundary conditions (1.2), (1.3) with

α = tan θ as

(1.14) y(0) = αy′(0), y(1) = 〈β, y(η)〉+ 〈γ, y′(η)〉.

Here we adopt the simpler Robin condition y(0) = αy′(0) in (1.14) instead of (1.2)

for ease of comparison with Propositions 1.3 and 1.4.

2. Main Results

In this section, we prove two theorems both generalize Propositions 1.3 and 1.4

for the three point problem. We first define for q(t) ∈ L1(0, 1), the integral operator

I[q](t) by

(2.1) I[q](t) =

∫ t

0

(t − s)q(s)ds.
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Lemma 2.1. Suppose △ = 1 + α(1 − β) − γ − 〈β, η〉 6= 0 where β =
∑m

i=1
βi,

γ =
m∑

i=1

γi, 〈γ, η〉 =
m∑

i=1

γiηi. Then the solution to the multi-point boundary value

problem y′′ + q(t) = 0 satisfying boundary condition (1.14) has a unique solution

represented by the fixed point of the operator A given by

(2.2) Ay(t) = −I[q](t) +
t + α

△ {I[q](1) − 〈β, I[q](η)〉 − 〈γ, I ′[q](η)〉} .

Proof. A solution y(t) of y′′ + q(t) = 0 can be written as

y(t) = −
∫ t

0

(t − s)q(s)ds + C1t + C2.

Now, y(0) = αy′(0) implies C2 = αC1. The multi-point boundary condition (1.14)

implies that y(t) satisfies

(2.3) y(t) = −I[q](t) +
t + α

△ {I[q](1) − 〈β, I[q](η)〉 − 〈γ, I ′[q](η)〉} ,

which is the fixed point of the operator A defined by (2.2).

Since q(t) ∈ L1(0, 1), the operator A defined by (2.2) is completely continu-

ous. We shall use the following Schauder Fixed Point Theorem, known as the Leray

Schauder Nonlinear Alternative:

Lemma 2.2 (Deimling [1]). Let X be a real Banach space and Ω a bounded open

subset of X with O ∈ Ω. Suppose that A : Ω → X is a completely continuous

operator. Then either there exists x ∈ ∂Ω such that Ax = λx, for some λ > 1, or

there exists a fixed point x̂ of A in Ω, i.e. Ax̂ = x̂.

For m-vectors β = (β1, . . . , βm), |β| = (|β1|, . . . , |βm|), denote β =
∑m

i=1
βi,

γ =
∑m

i=1
γi, |β̂| =

∑m
i=1

|βi| and |γ̂| =
∑m

i=1
γi for short. Note that |β| ≤ |β̂|,

|γ| ≤ |γ̂|. Let △ = 1 + α(1 − β) − γ − 〈β, η〉.

Theorem 2.1. Suppose that △ 6= 0 and f(t, y) ∈ C((0, 1) × R, R) satisfies (1.5)

almost everywhere in t with k(t), h(t) ∈ L1(0, 1). If k(t) satisfies

(2.4) Γ(k) =

(
1 +

∣∣∣∣
1 + α

△

∣∣∣∣

)
I[k](1) +

∣∣∣∣
1 + α

△

∣∣∣∣ {〈|β|, I[k](η)〉+ 〈|γ|, I ′(k)(η)〉} < 1,

then the boundary value problem (1.1), (1.14) has a non-trivial solution.

Note that by relaxing the requirement f(t, y) ∈ C([0, 1]×R, R) we allow f(t, y) =

q(t)g(y) with q(t) ∈ L1(0, 1) which can be singular at t = 0 or 1 or both.

Proof. Since f(t, 0) 6≡ 0 for t ∈ [0, 1], there exists an interval [σ, τ ] ⊆ [0, 1] such that

by (1.5) we have h(t) ≥ |f(t, 0)| ≥ min
σ≤t≤τ

|f(t, 0)| > 0, so we can define the positive

constant r = Γ(h)(1 − Γ(k))−1 > 0, where Γ(h) is defined similarly as in (2.4) for

k(t).
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Denote Br = {y ∈ C[0, 1] : ‖y‖ < r} and its boundary ∂Br = {y ∈ Br : ‖y‖ = r}.
Suppose that there exists y ∈ ∂Br such that Ay = λy for some λ > 1. Applying (1.5)

and (2.4) to the operator A given by (2.2), we have

λr = ‖Ay‖ ≤ Γ(k)‖y‖ + Γ(h) ≤ Γ(k)r + Γ(h) = r,

which contradicts the assumption that λ > 1. By Lemma 2.2, we conclude that A

has a fixed point ŷ ∈ C[0, 1], which is a solution to the boundary value problem (1.1),

(1.14) by Lemma 2.1. Since f(t, 0) 6≡ 0, ŷ cannot be the identically zero solution,

which incidentically also satisfies (1.1) and (1.14). This completes the proof of the

theorem.

In case of three point BVP (1.1), (1.9), if a = 0, b = 1, then we have Neumann

boundary condition at t = 0, i.e. it reduces to (1.1), (1.4), so Proposition 1.3 reduces

to Proposition 1.1 as mentioned before.

However, when a 6= 0, and βi = 0, γi = γ for all i − 1, 2, . . . , m, then ρ = a△,

with α = b/a. We can divide (1.10) by |a| and obtain

(
1 +

1

|△|
∣∣1 + |α|

∣∣
)

I[k](1) +
1

|△| |β|(1 + |α|)|I[k](η)| < 1.

Also, △ = 1 + α − γ and β = 0, so (2.4) becomes (1.10).

This shows that Theorem 2.1 also generalizes Proposition 1.4 from three-point

BVP’s to m-point BVP’s.

Next we modify the proof of Theorem 2.1 and prove a result which improves upon

Proposition 1.1 for the three point boundary value problem (1.1), (1.7). Recall that

the Green’s function for the two-point boundary value problem:

(2.5) y′′ + q(t) = 0, y′(0) = 0, y(1) = 0

is given by

(2.6) G(t, s) =





1 − s, 0 ≤ t ≤ s ≤ 1,

1 − t, 0 ≤ t ≤ s ≤ 1.

In other words, the unique solution to (2.5) can also be represented by

(2.7) y(t) =

∫
1

0

G(t, s)q(s)ds = G[q](t).

Note that the operator G[q] is defined for any q ∈ L1(0, 1) so G[k], G[h] are likewise

defined for k, h ∈ L1(0, 1). In fact, we have for t ∈ [0, 1] the following identify

(2.8) −G[q](t) = I[q](t) − I[q](1)
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for any q(t) ∈ C[0, 1]. Using this in (2.3), we observe that the operator A defined by

(2.2) can also be represented by

Ay(t) = G[q](t) +
(t + α)

△ {〈β, G[q](η)〉 − 〈γ, G′[q](η)〉}

+ I[q](1)

{
(1 − β)

△ (t + α) − 1

}
.(2.9)

We can now state and prove another result for the boundary value problem (1.1),

(1.14).

Theorem 2.2. Suppose that △ 6= 0 and f(t, y) satisfies (1.5) as in Proposition 1.1.

If k(t) satisfies

Λ[k] =

(
1 +

1

|△|
∣∣γ − β + 〈β, η〉

∣∣
)

I[k](1)

+
|1 + α|
|△| {〈|β|, G[k](η)〉+ |〈|γ|, G′[k](η)〉|} < 1,(2.10)

then the boundary value problem (1.1), (1.14) has a non-trivial solution.

Proof. We use the integral representation (2.9) for the operator A instead of (2.2) as

in Theorem 2.1. Since f(t, 0) 6≡ 0 in [0, 1], we can define R = Λ(h)
(
1 − Λ(k)

)−1

> 0.

Now we apply the Leray-Schauder nonlinear alternative in the same manner as in

Theorem 2.1 to BR = {y ∈ C[0, 1] : ‖y‖ < R} and obtain a fixed point ŷ ∈ BR

which is, by Lemma 2.1, a solution to the boundary value problem (1.1), (1.14). This

solution is non-trivial because f(t, 0) 6≡ 0. This proves Theorem 2.2.

If, in addition, βi = 0, i = 1, 2, . . . , m in (1.14), with △ = 1 + α − γ, then

condition (2.10) reduces to

(2.11)

(
1 +

|γ|
|1 + α − γ|

)
I[k](1) +

|(1 + α)γ|
|1 + α − γ|

∫ η

0

k(s)ds < 1.

Let α → ∞ in (2.11), we have

(2.12) I[k](1) + |γ|
∫ η

0

k(s)ds < 1,

showing that the BVP (1.1), (1.7) has a non-trivial solution. Clearly (2.12) is a

substantive improvement upon (1.8) in Proposition 1.2.

3. Discussion

We give two examples involving k(t) ∈ L1(0, 1) where k(t) can be singular at

t = 0 or 1 or both where Propositions 1.1–1.4 stated for f(t, y) ∈ C([0, 1]×R, R) are

inapplicable. Examples 3.3 and 3.4 in [8] used f(t, y) which is singular at t = 0, so in

fact Proposition 1.3 is inapplicable.
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Example 3.1. Consider second order differential equation

(3.1) y′′ +
1

5

y sin y√
t(1 − t)

+ h(t) = 0, 0 < t < 1,

where h(t) ∈ L1(0, 1), subject to the boundary condition:

(3.2) y(0) =
1

2
y′(0), y(1) =

1

2
y′

(
1

4

)
.

Here, α = γ = 1

2
, β = 0 and η = 1

4
, so △ = 1 + α − γ = 1. To apply Theorem 2.1

for this three point problem, we need to verify condition (1.12) in Proposition 1.4. In

this case k(t) = 1

5
[t(1− t)]−1/2 so Proposition 1.4 does not apply. We compute I[k](1)

and I ′[k]
(

1

2

)
and find

I[k](1) =
1

5

∫
1

0

(1 − s)k(s)ds =
1

5

∫
1

0

√
1 − s

ds

s
=

π

10
,

and

I ′[k]

(
1

4

)
=

1

5

∫
1/3

0

s−1/2(1 − s)−1/2ds =
1

5
B

(
1

2
,
1

2

) (
1

4

)
,

where B(p, q)(t) =
∫ t

0
sp−1(1−s)q−1ds is the Beta Function. We know that B

(
1

2
, 1

2

)
(t) =

sin−1
√

t, so B
(

1

2
, 1

2

) (
1

4

)
= π

6
. Using this in (2.4) we find

(
1 +

3

2

)
I[k](1) +

3

4
I ′[k]

(
1

4

)
=

π

4
+

π

40
< 1.

Thus, we can conclude from Theorem 2.1 that the three problem (3.1), (3.2) has a

non-trivial solution.

The next example is a four-point boundary value problem again with coefficient

function singular at t = 1 but belong to L1(0, 1).

Example 3.2. Consider the second order nonlinear differential equation

(3.3) y′′ +
1

2
(1 − t)−1/2y sin y + et cos t/

√
t = 0,

where h(t) = et cos t/
√

t and k(t) = [2(1− t)]−1/2 ∈ L1(0, 1), subject to the four point

boundary condition

(3.4) y(0) =
1

3
y′(0), y(1) =

1

2
y

(
1

3

)
− 3y′

(
2

3

)
.

To apply Theorem 2.1, we wish to verify (2.4). Here η1 = 1

3
, η2 = 2

3
, α = 1

3
, β1 = 1

2
,

β2 = 0, γ1 = 0, γ2 = −3, so △ = 1 + α(1 − β1) − γ2 − β1η1 = 4 and

(3.5) Γ(k) =
4

3
I[k](1) +

1

6
I[k]

(
1

3

)
+ I ′[k]

(
2

3

)
.
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Note that I[k](1) = 1

3
, I[k]

(
1

3

)
≤

∫
1/3

0
(1 − s)k(s)ds = 1

3

(
1 − 2

3

√
2

3

)
, and I ′[k]

(
2

3

)
=

1 − 1/
√

3. Computing Γ(k) in (3.5), we find

Γ(k) =
4

9
+

1

18

[
1 −

(
2

3

)3/2
]

+

(
1 − 1√

3

)

= 0.44444 + 0.02532 + 0.42266 = 0.89242 < 1,

so (2.4) is satisfied. Hence the 4-pt boundary value problem (3.3), (3.4) has a non-

trivial solution.

We now close our discussion with a few remarks.

Remark 3.1. The requirement that △ 6= 0 in both Theorems 2.1 and 2.2 is known

as the non-resonance condition. This is equivalent to the statement that y′′(t) = 0,

0 ≤ t ≤ 1, has no non-trivial solutions satisfying multi-point boundary condition

(1.14). We refer the reader to papers by. Infante and Webb [5] and Ma [10] which

discussed 3-point boundary value problems in non-resonant cases.

Remark 3.2. Condition (1.12) in Proposition 1.4 is not optimal in the sense that for

the boundary condition (1.9), i.e. y(0) = αy′(0), y(1) = βy′(1

2
), it is easy to construct

examples so that (1.12)is not satisfied. Consider the simple equation y′′ + π2y = π2

which has

y(t) =
1

απ

(
1

1 − βπ
+ 1

)
sin πt +

(
1

1 − βπ

)
cos πt + 1

as a solution satisfying the three point boundary condition (1.9) for any α 6= 0,

βπ 6= 1.

Remark 3.3. We refer readers to recent papers by Han and Wu [4], Liu, Liu and Wu

[9] which dealt with sign-changing nonlinearities using the Krasnosel’skii Fixed Point

Theorem on cones and prove existence of positive solutions for multi-point boundary

value problems.
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