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ABSTRACT. This paper is concerned with the following third-order boundary value problem with
integral boundary conditions
u”(t) + f(t,u(t),w'(t)) =0, t €[0,1],
{ w(0) =0, u'(0) = [ g1 ()u/ ()dt, ' (1) = [ ga(t) (t)d,
where f € C([0,1] x [0, +00) x [0,400), [0,400)) and g; € C([0,1],[0,400)), i = 1,2. The existence
of monotone positive solution to the above problem is obtained when f is superlinear or sublinear.

The main tool used is the Guo-Krasnoselskii fixed point theorem.

AMS (MOS) Subject Classification. 34B10.

1. INTRODUCTION

Third-order differential equations arise from a variety of different areas of applied
mathematics and physics, for example, in the deflection of a curved beam having a
constant or varying cross section, a three-layer beam, electromagnetic waves or gravity
driven flows and so on [8].

Recently, third-order two-point or multi-point boundary value problems (BVPs
for short) have attracted a lot of attention, see [1, 4, 6, 7, 10, 11, 14, 15, 16, 17,
18, 19, 21, 22, 23, 25, 26, 27, 28] and the references therein. It is known that BVPs
with integral boundary conditions cover multi-point BVPs as special cases. Although
there are many excellent works on third-order two-point or multi-point BVPs; a little
work has been done for third-order BVPs with integral boundary conditions [2, 3, 12,
13, 20, 24]. Especially, in 2010, Sun and Li [20] employed the Guo-Krasnoselskii fixed
point theorem to study the existence and nonexistence of monotone positive solution

for the following third-order BVP with integral boundary conditions

{ W(t) + f(tult),w'(t) =0, t € 0,1],

(1.1) w(0) =0, ' (0) =0, /(1) = fol g(t)u'(t)dt.
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Among the boundary conditions in (1.1), only the slope of the tangent of the solution
u(t) at the point (1,u(1)) is related to the area under the curve of the product of
u'(t) and some function from ¢ = 0 to t = 1. A natural question is that whether we
can obtain similar results when the slope of the tangent of the solution wu(t) at the
point (0,u(0)) is also related to the area under the curve of the product of v'(¢) and
some function from ¢t = 0 to t = 1. To answer this question, in this paper, we are
concerned with the following third-order BVP with integral boundary conditions
12) { "'<>+f<tu<> <>>—o te[ou 1
u(0) =0, u'( fo g/ (t)dt, u' (1) = [ g2(t)u/(t)dt

Throughout this paper, we always assume f € C([0,1] x [0, +00) x [0, +00), [0, +00)),
g; € C([0,1], [0,400)) (i = 1,2). Existence results of at least one monotone positive
solution for the BVP (1.2) are established whenf is superlinear or sublinear. Here,

a solution u of the BVP (1.2) is said to be monotone, if «/(t) > 0 for t € [0,1]. Our

main tool is the following Guo-Krasnoselskii fixed point theorem [9].

Theorem 1.1. Let E be a Banach space and K be a cone in E. Assume that ()
and Qy are bounded open subsets of E such that § € Q,Q1 C Qq, and let T :
KN (Q\Q) — K be a completely continuous operator such that either

(1) |[Tu|| < ||u|| forue KNOQy and ||Tu|| > ||u|| for u e K NOQy, or
(2) |Tu|| > ||u|| for u e KNOQy and ||Tu|| < ||u|| for u e K NOQ,.
Then T has a fized point in K N (Qy \ ).

2. PRELIMINARIES
For convenience, we denote

- (1— /O 1 gl(r)dr) /0 rga(r)dr — (1— /0 1 gg(r)dr> /0 () + /0 ().

Lemma 2.1. Let p# 1. Then for any o € C|0,1], the BVP

—u"(t) = U(t) telo, 1]
(21) { u(0) =0, u/( fo g1(t)d/(t)dt, (1) = fol g2(t)u/(t)dt

has a unique solution
u(t) = OlGl(t, s)a(s)ds+2(1t7iu) /0 1 /0 Gl s)
« [(1— /0 1g1(7’)dr> () — <1 _ /0 1 gg(r)dr) gl(T)} dro(s)ds
o] [

22)  x [ /0 o ()drga(r) + (1— /0 17’92(7’)(17’) gl(f)} dro(s)ds, t € [0,1],
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where

and

Proof. Let u be a solution of the BVP (2.1). Then, we may suppose that
1
u(t) = / Gi(t,s)o(s)ds + At* + Bt + C, te€[0,1].
0

By the boundary conditions in (2.1), we have

=g ] [ e
< {(1— /0 lgl(r)dr> o(7) — <1— /O 1g2(r)dr> gl(T)} dro(s)ds,
B:ﬁ/olfolczz(f,s)

« [ /0 s (F)drga(r) + (1 - /0 1 rgg(r)dr> 91(7)} dro(s)ds,
C=0.

Therefore, the BVP (2.1) has a unique solution

u(t) = /0 e s)a(s)ds—l—Q(ltiilu) /0 1 /0 Ga(rs)
« {(1— /O 1g1(r)dr) g(r) — (1— /O 1gg(r)dr) 91(7)} dro(s)ds

« [ /O s (F)drga(r) + (1 _ /O lrgg(r)dr) 91(7)} dro(s)ds, t € [0,1].

Lemma 2.2 ([23]). For any (t,s) € [0,1] x [0, 1],

2

%(1 —5)s < Gi(ts) < 5 (1—s)s.

N —

Lemma 2.3 ([5]). For any (t,s) € [0,1] x [0, 1],

0 < Gayt,s) <(1—s)s.
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In the remainder of this paper, we always assume that o € (0,1), § = 0‘72 and the

following two conditions are satisfied:
(H1) g1(r) < ga2(r), v € [0,1];
(H2) folrgg dr+f0 g1(r)dr <1+f0 go(r ) < 1.

Lemma 2.4. If 0 € C[0,1] and o(t) > 0 fort € [0, 1], then the unique solution u of
the BVP (2.1) satisfies
(1) u(t) 2 0, t €10,1];
(2) W'(t) =0, t €10,1] and tﬂ[linl]u(t) > B lull, where |[u]] = max {|[ul , [[u'[[}-
€la,
Proof. By (H2), we can obtain that

(2.3) /0 gi(r)dr <1,

1
(2.4) / rga(r)dr <1 and pu <1.
0

In view of (2.3) and (H1), we have

(2.5) (1 _ /0 lgl(r)dr> g(7) — <1 - /0 1 g2(r)dr) () =0, Tel01]

From (2.2), we get

u’(t):/ong(t,s) ds+—/ / Gl 5)
« [(1—/01 ()dr) o(7) <1—/0 ()dr) 91(7)} dro(s)ds
o [

(26)  x l /0 s (F)drga(r) + (1— /0 lrgg(r)dr) 91(7)} dro(s)ds, t € [0,1].

It follows from (2.2), (2.6), (2.4) and (2.5) that u(t) > 0 and «/(t) > 0 for t € [0, 1].

On the one hand, in view of (2.2) and Lemma 2.2, we have

||u||oog/01(1—s)sa ds+—/ / Gl )
« {(1— /0 e )dr) o(7) — (1— /0 A )dr) 91(7)} dro(s)ds
%/01/01@(7,5)

(2.7) x { /0 lrgl(r)drgg(T) + (1 - /0 lrgg(r)dr) 91(7)} dro(s)ds.
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On the other hand, by (2.6) and Lemma 2.3, we have

||u/]|oo§/01(1—s)sa ds+—/ / G, 5)
« [(1-/01 (r )m«) J(7) — <1—/0 S )dr) gl(T)} dro(s)ds
ol [

(2.8) « l /0 s (F)drga(7) + (1 _ /0 17’92(7“)0[7“) gl(T)} dro(s)ds.

It follows from (2.7) and (2.8) that

||u||§/01(1—3)30 ds+—/ / Gl )
« {(1—/01 (r )dr) o(7) — (1—/0 o )dr) gl(f)} dro(s)ds
+%/01/0102(7,s)
« [ /0 ror(r)droa(r) + (1 - /0 17“92(7’)(17’) gl(f)} dro(s)ds,

which together with Lemma 2.2 implies that

tg[liﬁ]u(t)ztg[lig]g{/ola—s)sa ds+—/ / Ga(7, 5)
« [(1—/0191(7“)0[7“) o(7) — (1—/0 ()dr) (r )] dro(s)ds
+%/01/01G2(7‘,s)
« [ /0 rar () drga(r) + (1— /0 17“92(7’)(17’) gl(f)} dTa(s)ds}

> B |ul| .

167

O

Let E = C'0,1] be equipped with the norm |lul| = max {||u|, ||«/[|. }. Then

F is a Banach space. If we denote

K = {u eEFE: u(t)>0, u(t) >0, tel01] and n[liri]u(t) >0 ||u||},
te|a,

then it is easy to see that K is a cone in E. Now, we define an operator T on K by

(Tu)(t):/0 Gl(t,s)f(s,u(s),u'(s))ds—I—h/o /0 Go(T, s)

<|(1- 1 n(r)ir) o)~ (1= [ 1 (r)ir) n()] s, 5 s
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X {/Olrgl(r)drgg(f) + (1 — /Olrgg(r)dr) gl(T)} dr f(s,u(s),u'(s))ds, t € [0,1].

Obviously, if u is a fixed point of 7', then u is a monotone nonnegative solution of the
BVP (1.2).

Lemma 2.5. T': K — K is completely continuous.

Proof. First, by Lemma 2.4, we know that T (K) C K.

Next, we assume that D C K is a bounded set. Then there exists a constant
M, > 0 such that ||u|| < M, for any u € D. Now, we will prove that T'(D) is relatively
compact in K. Suppose that {y},-, C T(D). Then there exist {zy},., C D such
that Tx, = yi. Let

My =sup{f(t,z,y): (t,z,y) € [0,1] x [0, My] x [0, M;]},

M, — ﬁ/ol /01@2(7,3) {(1 /Olgl(r)dr+2/01rgl(r)dr) ga(7)

4 <1+ /0 o(r)dr — 2 /0 1 rgg(r)dr) 91(7)} drds

= ﬁ/ol /01 Calm:9) Kl - /Olgl(r)dr + /01 rgl(r)dr) g5(7)
+ (/Olgz(r)dr — /01 7”92(7”)dr) 91(7)} drds.

Then for any k, by Lemma 2.2, we have

and

8] = (Ta) ()
[ Gt snsntsationds+ g5t [ [ Gt
<[ (1= [ 0 ) o) = (1= [ aatorir) ()] s, ). s
+ﬁ/01/ola2(7,s)
« l /0 rgr(r)drgn(r) + <1 - /0 lrgg(r)dr) 91(7)} A7 f (s, 2p(s), 2 () )ds

My (1
S 2(_+M3)7t€[071]7

6
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which implies that {y},-, is uniformly bounded. At the same time, for any k, in

view of Lemma 2.3, we have

()] = [(Ty)'(1)]

/G2tsf(s:ck()xk ))ds + //Gﬂs
<|(1-f 1g1<r>dr) n(r) - (1- / () 0(r) | s (). )
ol [

< o (Ydroa(r) + (-] 1 rau(r)ir ) ()| dr 5,05, 6

1
< M, (6+M4), te[O,l],

which shows that {y} },-, is also uniformly bounded. This indicates that {yj},, is
equicontinuous. It follows from Arzela-Ascoli theorem that {y;},-, has a convergent
subsequence in C[0,1]. Without loss of generality, we may assume that {yx},-,
converges in C[0,1]. By the uniform continuity of Gs(t,s), we know that for any
e > 0, there exists 4; > 0 such that for any 1,1ty € [0, 1] with [t; — ts| < 61, we have

|G2(t1, S) — Gg(tg, 8)‘ <

M = ﬁ/ol/olca(f,s)
« {(1— /0 lgl(r)dr) o(7) (1— /0 1 gg(r)dr) 91(7)} drds

and 0 = min{él, m} Then for any k and t1,ty € [0, 1] with |[t; — t2| < J, we

have

(1) — yi(t2)| = [(Tze)'(t1) — (Ti)' (£2)]

/ |(Ga(t1, 8) — Ga(ta, 8)| f(s,(s), 2. (s))ds

|t1_t2|/ / Ga(T, )
<[ (1- / ) () - (1- [ 192(7”)617”) (r)] dr s, (5) (9

1
S Mg/ |G2(t1, S) — Gg(tg, $)| dS + M2M5|t1 — t2|
0

£

S0LT D) s € [0,1].

Let

<e,
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which implies that {y; },, is equicontinuous. Again, by Arzela-Ascoli theorem, we
know that {y,},—, has a convergent subsequence in C[0,1]. Therefore, {yx},—, has
a convergent subsequence in C'[0,1]. Thus, we have shown that T is a compact

operator.

Finally, we prove that T is continuous. Suppose that u,,,u € K and ||u,, — u|| —
0 (m — o0). Then there exists Mg > 0 such that for any m, ||u,,|| < Ms. Let

M; =sup{f(t,z,y): (t,z,y) € [0,1] x [0, Msg] x [0, Mg]} .

Then for any m and t € [0, 1], in view of Lemma 2.2 and Lemma 2.3, we have

{Gl(t S 1_ / G2 T S

< ]\? {1+1% 01 [(1—/Olgl(r)dr+2/017’91(7")d7”) 92(7)
+ (1+ /0 " galr)dr — 2 /0 1 rgg(r)dr) gl(f)} ar b (

and

7’} 1—s)s, s€0,1]

t 1
{G2(t7 s) + q Ga(7, )

X K )gg( ) — (1—/0192(’/“)d7“) gl(T)} d7+ﬁ Ong(T,S)

< M; {1 + ﬁ 01 [(1 — /Olgl(r)dr—l—/olrgl(r)dr) 92(7)
* (/0192(7")‘“" - /017”92(7”)617”) 91(7)} dr} (1—s)s, sel01].

By applying Lebesgue Dominated Convergence theorem, we get

i (70,)0) = i { [ 6109065000ty s + 55— [ [ 6t

m—00 m—0o0

(- 1 (i) o) - (1- [ 1 ()0 ()| d 55, (9) s
o[ [

<[ g (r)drga(r) + (- 1 ran(r)dr ) ()| d s 3). (5 |
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-/ G (1, 5) (s, u(s). o (9)ds + ﬁ / 1 / ()
(- 1 (i) o) - (1- [ 1 ()i ) n()] o). 5
T

« [ /0 s (F)drga(r) + (1— /0 1 rgg(r)dr) gl(f)} dr f (s, u(s), u'(s))ds
(T, t e [0.1]

and
lim (Tu,,) (t) = lim {/1 Go(t, s) f(s,um(s),u, (s))ds + —/ / Go(T, s)
m—0o0 m—0o0 0

(- 1 n)ir) o) - (1 | 1 92<r>dr) gm] 07 (5, i ()t (5))ds
L o

</ ron(r)drga(r) + (-] 1 rau(r)ir ) (7). ono) 1, (5 |

:/Ong(t,s)f(s,u() ds+—/ / (7 5)

<|(1- 1gl<r>dr) i) - (1- / (i) 1 (5)| s ute) o (9
o[ [

N { / gy (r)drga(r) + (1 - 1 ng(r)dr) gm] dr £ (5, u(s), () ds
= (Tu)'(t), t € [0,1],

which shows that T is continuous. Therefore, T': K — K is completely continuous.
U

3. MAIN RESULTS

Define
fo = lim sup max UG x,y)j fo = liminf min It x,y)j
z+y—0t tel0,1] @ + Yy z+y—0t t€la,l] X —+ Y
f°° = limsup max M, foo = liminf min M
a+y—+oot€l0,]] T+ Y a+y—+ootefa,l] X + Y

Theorem 3.1. The BVP (1.2) has at least one monotone positive solution in the

case
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(1) f*=0 and fs = +o00 (superlinear);or
(ii) fo = +o0 and f* =0 (sublinear).

Proof. First, we consider the superlinear case: f® =0 and f,, = +oo.

Now, since f° = 0, we may choose p; > 0 so that

(3.1) ft,z,y) <e(z+y), tel0,1], (z+y)el0,pl

where ¢; > 0 satisfies

(3.2) %, (é T M4) <1.
Let Q, = {u€ E: |ul| < 2}. Then for any u € K 196, in view of (3.1) and (3.2),
we have

:/Ong(t,s)f(s,u() ds+—/ / Gl 5)

. [(1—/01 i) astr) = (1= [ )ir ) n)]

X F(s,u(s),u ds+—/ / Ga(7, 5)

x Uol ror(r)drgs(r) + <1 —/ rga(r )dr) (T)} dr £ (s, u(s), o(s))ds

<o /1<1—s> (u(s) + /() d

G2 (1,s) [ 1— /0 r)dr + /01 Tgl(r)dr) g2(T)
+ ( /0 (F)dr — /0 rgg(r)dr) glm] dr (u(s) + () ds

<2e (g4 00) lul

(3.3) < ull, tel0,1].

By integrating the above inequality on [0, t], we get
(Tw)(@) < lull, te]0,1],
which together with (3.3) implies that

(3.4) |Tul| < flull, we KNo.

On the other hand, since f,, = 400, there exists ps > p; such that

(3.5) ftz,y) > (e +y), telal], (z+y) € lp,+00),



MONOTONE POSITIVE SOLUTION OF THIRD-ORDER BVP 173

where g9 > 0 satisfies

&2 /1
525 / / a7, 3) K —/1 r)dr —I—Q/Olrgl(r)dr) g2(7)
(3.6) <1+/0 (r)dr 2/0 (r)dr) (r )] drds > 1.

Let 2y = {u eb:|ul <& } Then for any u € K N0y, in view of (3.5) and (3.6),

we have

y 1):/01G1(1,s)f(s, ))ds + 5—— //G
X [(1 —/01 gl(r)dr) g2(T) — (1—/0 gg(r)dr) G )} dr f(s,u(s),u'(s))ds
+ﬁ/01/ola2(7,s)
« [ /0 rgr(r)drgn(r) + (1 - /0 lrgg(r)dr) (7 )} a7 f(s, u(s), u/(s))ds
> [ oseus o 5 [ [ o
x Kl— / () )92( ) - (1— / ()i ) (e >] dr (s, u(s), v/ (5))ds
R

Gg (1,8)
{ irga(r) + (1= [ raate)ir) 0| dr s, o))
z%/(l )5 (u(s) + /() ds
gt / /sz K -/ dr+2/01 gl(r)dr)gg(T)

( [ raatriar ) onn) | aruts) 45 s

= / (1= s)sds |ul
525 / / Go(T, 5) K —/ dr+2/01 gl(r)dr) g2(7)
<1+/0 J(r)dr 2/0 rgo (r)dr) A )} drds||u

> [l
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which implies that
(3.7) |Tul| > lull, ue K NoQs.

Therefore, it follows from (3.4), (3.7) and Theorem 1.1 that the operator T has one
fixed point u € K N (Q3\;), which is a monotone positive solution of the BVP (1.2).

Next, we consider the sublinear case: fy = 400 and f> = 0.

Since fy = 400, we may choose p3 > 0 so that

(3.8) ft,z,y) > es(z +y), telal], (z+y)e€]|0,ps),

where 3 > 0 satisfies

% /al(l — s)sds

+2<1&i) /:/0102(7,3) {(1—/Olgl(r)dr—i—Q/Olrgl(r)dr) g2(7)

(3.9) + <1+ /0 1gg(r)dr—2 /O 1 7’92(7“)0[7“) 91(7)} drds > 1.

Let O3 = {u € F: |lul| < 2}. Then for any u € K N9Qs, in view of (3.8) and (3.9),

we have

T = [ Gt o) ops + 5 [ [ )

1)

<[ (1= [ o) astn) - (1= [ e ) u(o)] s, o) atonas

1 1 1
+—//G2(T,s)
T—wuJo Jo
1

« l /0 rou(r)drga(7) + <1 - /0 lrgg(r)dr) 91(7)} dr (s, u(s), ' (s))ds

> [t oreus e g [ [ 6

— 1)

<[ (1= [ o) astn) - (1= [ e ) u(o)] arsts. o) atopas

+ﬁ/a1/01G2(7’5)
« [ /0 s (P draa(r) + (1 - /0 lrgg(r)dr) 91(7)} dr (s, u(s), u'(s))ds

> % (1 —3)s(u(s)+u'(s))ds

«

+ﬁ/ﬂl /OlGQ(T,S) [(1—/Olgl(r)dr+2/olrgl(r)dr) g(7)

4 (1+ /0 () — 2 /0 1 rgg(r)dr) gl(f)} dr (u(s) + /() ds
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g
>£

1
(1 — s)sds ||ul|

«

+ s €3 / / Ga(7, 5) [(1—/01511( )dr+2/01rgl( )dr)gg( )
+ <1+ /0 lgg(r)dr—2 /0 1 rgg(r)dr> gl(f)} drds |u]

> [l

which implies that
(3.10) | Tul| > ||u]|, we KnoQs.
Now, since f°° = 0, there exists py > 0 such that
(3.11) fay) <e(e+y), te€[0,1], (r+y) € [ps,+o0),
where ¢4 > 0 satisfies
(3.12) e, (é + M4) <1

Let M* = max{f (t,z,y): (t,z,y) € [0,1] x [0, ps] x [0, ps]}. Then by (3.11), we

have
(3.13) [ty <es(x+y)+ M, (t,z,y) € [0,1] x [0,400) x [0, +00).
Choose
(3.14) > ma; M
) X — .
P4 = P3, 254

Let Q4 = {u € E 1 ||ul]| < ps}. Then for any v € K N9y, in view of (3.12), (3.13)
and (3.14), we have

(Tu) (t) = /1 Ga(t, s)f(s,u(s),u'(s))ds + —/ / Gs(T, 5)

0

>{Q—AEWW)<> (1- [ stvar) ) s

x f(s,u(s),u d8+—/ / Go(T, s)
x{fmxw@m Q—Anmmﬁ ()] dr (). ()
< 0= s Fatats) (6 + 2T

%ﬂ/ol/ong(T,s) {(1—/Olgl(r)dr—i—/olrgl(r)dr) (7)

+ (/0192(7“)0[7“ — /01 rgg(r)dr) 91(7')] dr [e4(u(s) +u/(s)) + M*] ds
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§@mWM+Mﬂ{[ﬂ—@MS

" ﬁ/ol/olez(m) [(1—/Olgl(r)dr—i—/olrgl(r)dr) ga(7)
+ ( /0 ' ga(r)dr — /0 1rgg(r)dr) gl(T)} des}

(1
= @ lull + 317 (5 + M1 )

(3.15) < ul|, t €[0,1].

By integrating the above inequality on [0, t], we get
(Tw)(@) < lull, te]0,1],

which together with (3.15) implies that

(3.16) | Tu|| < ||lu|, uweKnNoQy.

Therefore, it follows from (3.10), (3.16) and Theorem 1.1 that the operator 7" has
one fixed point v € K N (4\Q3), which is a monotone positive solution of the BVP
(1.2). 0
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