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ABSTRACT. In our previous paper, we discussed the existence of solutions to mixed boundary

value problems of 2nd-order differential systems with a p-Laplacian, where we confined the p in the

interval [2,∞). Now we give result for the case p ∈ (1, 2), via the mountain pass theorem.
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1. INTRODUCTION

The variational method is now a powerful tool in the study of boundary value

problems of differential equations and systems [10–9]. In this paper, we research the

existence of the solutions to a mixed boundary value problem of ordinary differential

system with a p-Laplacian in the form

(1.1)

{

(φp(u
′))′ + ∇F (t, u) = 0,

u(0) = u′(1) = 0,

where φp(x) = |x|p−2x for x ∈ Rn with |x| = (
∑n

i=1 x
2
i )

1

2 and 1 < p < 2.

Throughout the paper, we assume that the following conditions hold.

(A1) F ∈ C([0, 1] × Rn), F (t, ·) is strictly convex, lower semi continuous and

continuously differentiable.
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(A2) For q = p/(p− 1), there are K,N,N0 and α ≥ 0 such that

(∇F (t, x), x) ≥ q(F (t, x) −N),

−N0 ≤ F (t, x) ≤ α|x|q +K.

(A3) There is r > 0 such that

inf
0≤t≤1
|x|=r

F (t, x) = C >
N

q
.

Let

(1.2) g(α) =
1

p

(

1 − p

2

)

q
4−3p

q−p α− p

q−p

and m = C − N
q
. Suppose without loss of generality that

α >

(

mq
1

q

rq

)p

.

The main result of this paper is

Theorem 1.1. Suppose 1 < p < 2 and assumptions (A1)–(A3)hold. Then BVP (1.1)

has at least one solution if K < g(α) and N0 <
(

1
αq

)
1

q

[g(α) −K].

Note, the expression of g(α) in (1.2) implies that K,N0 may be arbitrary large if

α→ 0. On the other hand, if K = N0 = 0, then α may be arbitrary large.

In order to prove the above theorem, we first make transform

(1.3) u1 = u, u2 = −λφp(u
′),

where λ =
(

1
αq

)
1

q

> 0. Denote (u1, u2) by w. Then BVP (1.1) becomes

(1.4)

{

Jẇ + ∇G(t, w) = 0,

u1(0) = u2(1) = 0,

where
w = (u1, u2) = (u11, . . . , u1n; u21, . . . , u2n),

G(t, w) =
1

qλ
1

q

|u2|q + λF (t, u1),

J =

(

0 −In
In 0

)

with In being the identity matrix in Rn.

Hence, we have ∇G : [0, 1] ×R2n → R2n given by

∇G(t, w) =

(

1

λ
1

q

φq(u2), λ∇F (t, u1)

)

.
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And under the assumptions (A1) − (A3), it holds that

(1.5)

G(t, w) ≤ λα|u1|q +
1

λq−1q
|u2|q + λK

= β (|u1|q + |u2|q) +

(

1

αq

)
1

q

K

≤ β|w|q + c,

with β = α
1

p/q
1

q , c =
(

1
αq

)
1

q

K, and

(1.6)

(∇G(t, w), w) = (λ∇F (t, u1), u1) + (λ−
1

qφq(u2), u2)

≥ λq[F (t, u1) −N ] + λ−
1

q |u2|q

= qG(t, w) − λqN.

From the strict convexity of F respect to u, we can easily obtain the strict con-

vexity of G respect to w. Therefore, we can define the Fenchel transform G∗(t, ·) of

G(t, ·) by

G∗(t, v̇) = sup
w∈R2n

[(v̇, w) −G(t, w)],

where v̇ denotes a vector in R2n. The strict convexity of G(t, w) in w implies the

same property of G∗(t, v̇) in v̇. Therefore, the following three relations are equivalent,

G(t, w) +G∗(t, v̇) = (v̇, w),

v̇ = ∇G(t, w),

w = ∇G∗(t, v̇).

Furthermore, from (1.5) and (1.6), we have

(1.7)

G∗(t, v̇) ≥ sup
u∈R2n

[(v̇, w) − β|w|q − c]

= (qβφq(w), w) − β|w|q − c

= β(q − 1)|w|q − c

=
1

p

(

1

βq

)p−1

|v̇|p − c.

Since v̇ = β∇(|w|q) = βqφq(w) and then

w = φp

(

v̇

βq

)

=

(

1

βq

)p−1

φp(v̇).
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At the same time, the relation

(∇G∗(t, v̇), v̇) = (u, v̇)

= (u,∇G(t, w))

≥ q(G(t, w) − λN)

= q[(w, v̇) −G∗(t, v̇)] − qλN

= q(∇G∗(t, v̇), v̇) − q(G∗ + λN)

results in

(1.8) (∇G∗(t, v̇), v̇) ≤ p(G∗ + λN).

From assumptions (A2) and (A3), we can deduce other relations.

At first, it is easy to prove that there is R > r such that

(1.9) inf
0≤t≤1
|w|=R

G(t, w) ≥ c > λN.

For each (t, w) ∈ [0, 1] ×R2n with |w| = R, let f(s) = G(t, sw). Then

f ′(s) = (∇G(t, sw), w) (s ≥ 1)

=
1

s
(∇G(t, sw), sw)

≥ q

s
[G(t, sw) − λN ]

=
q

s
f(s) − λqN

s

and it follows that

(s−qf(s))′ ≥ −λqNs−q−1

and then for s ≥ 1,
f(s) ≥ f(1)sq + λN(1 − sq)

= (f(1) − λN)sq + λN,

i.e.,

G(t, sw) ≥ (G(t, w) − λN)sq + λN.

when |w| ≥ R, we have |w|/R ≥ 1. Let w0 = R
|w|
w. Then w = |w|

R
w0 = sw0.

Consequently, s ≥ 1 and from (1.9), it holds that

G(t, w) ≥ (G(t, w0) − λN)

( |w|
R

)q

+ λN

≥ (c− λN)

(

1

R

)q

|w|q + λN.

Let c0 = (c − λN)/Rq. The continuity of G implies that there is N0 > 0 such

that

(1.10) G(t, w) ≥ c0|w|q −N0
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for all w ∈ R2n.

Then we have

(1.11) G∗(t, v̇) ≤
(

1

c0q

)p−1
1

p
|v̇|p +N0.

Since inequality (1.2) implies

α >

(

mq
1

q

Rq

)p

,

we can get β > c0. So inequalities (1.7) and (1.11) do not conflict with each other.

2. PRELIMINARIES

Let I ⊆ R be an interval and k,m, n integers with k ≤ mn. Suppose F : I ×
R(m+1)n → Rn andBC : (C(I))mn → Rk are functions. Then F

(

t, u(t), . . . , u(m)(t)
)

=

0 is a group of differential equations andBC
(

u, u′, . . . , u(m−1)
)

= 0 is that of boundary

conditions if for any s ∈ I. BC
(

u, u′, . . . , u(m−1)
)

6= BC
(

u(s), u′(s), . . . , u(m−1)(s)
)

.

In this case

(2.1)

{

F
(

t, u, u′, . . . , u(m)
)

= 0,

BC
(

u, u′, . . . , u(m−1)
)

= 0

is a boundary value problem (BVP, for short).

Definition 2.1. If there is a w ∈ (Cm(I))n such that BC
(

w,w′, . . . , w(m−1)
)

= 0

and

F
(

t, w(t), w′(t), . . . , w(m)(t)
)

= 0, for all t ∈ I,

then w is called a classical solution to BVP (2.1) while

v ∈ {x ∈ (cm−1(I))n : x(m)(t) exists for a.e. t ∈ I}

such that BC
(

v, v′, . . . , v(m−1)
)

= 0 and

F
(

t, v(t), v′(t), . . . , v(m)(t)
)

= 0, a.e. t ∈ I,

v is called a strong solution to BVP (2.1).

Once BVP (2.1) can be transformed into

(2.2)

{

u(m) = H
(

t, u, u′, . . . , u(m−1)
)

,

BC
(

u, u′, . . . , u(m−1)
)

= 0,

we have

Lemma 2.1. Suppose H ∈ C(I ×Rmn, Rn) and u is a strong solution to BVP (2.2).

Then u is also a classical solution to BVP (2.2).
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Proof. Since u is a strong solution to BVP (2.2), it holds that BC
(

u, u′, . . . , u(m−1)
)

=

0 and u(m)(t) exists for a.e. t ∈ I.

u(m)(t) = H
(

t, u(t), u′(t), . . . , u(m−1)(t)
)

, a.e. t ∈ I.

The continuity of H means the function Ĥ(t) = H(t, u(t), . . . , u(m−1)(t)) is continuous

on I and then u(m) ∈ C(I). So u is a classical solution to (2.2).

Let X = {w = (u1, u2) ∈W 1,p([0, 1], R2n) : u1(0) = u2(1) = 0} and construct a

functional in the form

(2.3) φ(w) =

∫ 1

0

[

1

2
(Jẇ, w) +G(t, w)

]

dt.

Then we have

(2.4) 〈φ′(w), v〉 =

∫ 1

0

(Jẇ + ∇G(t, w), v)dt

for all v ∈ X. From (1.5) and (1.6), we can easily show that

φ′(w) ∈ X∗.

We need the following lemma to prove Lemma 2.3.

Lemma 2.2 (10, p. 128). If u ∈ L1
loc[0, 1] satisfies

∫ 1

0

u(s)f(s)ds = 0, ∀f ∈ C∞
0 [0, 1].

Then u(t) = 0, a.e. t ∈ [0, 1].

Now based on Lemma 2.1 and Lemma 2.2, we have

Lemma 2.3. If there is a w ∈ X such that

〈φ′(w), v〉 = 0

holds for all v ∈ X, then w is a classical solution to BVP (1.4).

Let v = −Jw and Y = {x ∈W 1,p([0, 1], R2n) : x1(1) = x2(0) = 0}. Then

(2.5)

φ(w) = −1

2

∫ 1

0

(Jẇ, w)dt+

∫ 1

0

[(Jẇ, w) +G(t, w)]dt

= −1

2

∫ 1

0

(Jẇ, w)dt−
∫ 1

0

[(v̇, w) −G(t, w)]dt

= −
∫ 1

0

[

1

2
(Jv̇, v) +G∗(t, v̇)

]

dt

=: −ψ(v)

and ψ : Y → R is a differentiable real functional. Consequently,

(2.6) 〈ψ′(v), u〉 =

∫ 1

0

[(Jv̇, u) + (∇G∗(t, v̇), u̇)]dt,
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ψ′(v) ∈ Y ∗.

The proof of our result is based on the famous mountain pass lemma.

Lemma 2.4 (10, Theorem 4.10). Let X be a Banach space and ϕ ∈ C1(X,R) satisfy

(PS)-condition. Assume that there exist u0, u1 ∈ X and a bounded neighborhood Ω of

u0 such that u1 6∈ Ω̄ and

inf
v∈∂Ω

ϕ(v) > max{ϕ(u0), ϕ(u1)}.

Then there exists a critical point u of ϕ, i.e., ϕ′(u) = 0.

Throughout we define the norm in Y by

(2.7) ‖y‖ =

[
∫ 1

0

|ẏ(t)|pdt
]

1

p

, y ∈ Y.

We have

Lemma 2.5 (11, 6.2.18). A closed subspace of a reflexive Banach space is reflexive.

Then it follows that

Lemma 2.6. Space Y is a reflexive Banach space.

At the end of this section, we notice that

(2.8) 〈ψ′(v), u〉 =

∫ 1

0

(−Jv + ∇G∗(t, v̇), u̇)dt

and shall prove the following lemma.

Lemma 2.7. Given v ∈ Y , there is f ∈ Lq[0, 1] such that

(2.9) 〈ψ′(v), u〉 =

∫ 1

0

(f(t), u̇(t))dt.

Proof. Let lv(u) = 〈ψ′(v), u〉. Then lv ∈ Y ∗. Define

Lv(u) =

∫ 1

0

(−Jv + ∇G∗(t, v̇), u)dt, u ∈ Lp[0, 1].

Obviously, Lv ∈ (Lp)∗ = Lq. According to the Riesz’s representation theorem, there

is f ∈ Lq[0, 1], such that

Lv(u) =

∫ 1

0

(f(t), u(t))dt.

The differential operator D : Y → Lp[0, 1] has the inverse D−1 : Lp[0, 1] given by

(D−1w)(t) =

(

−
∫ 1

t

w1(s)ds,

∫ t

0

w2(s)ds

)

.

So

(2.10) lv(u) = Lv(Du) =

∫ 1

0

(−Jv + ∇G∗(t, v̇), Du)dt =

∫ 1

0

(f(t), u̇(t))dt.
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3. PROOF OF THEOREM 1.1

Before the proof we first give some propositions.

Proposition 3.1. For v ∈ Y , it holds that

(3.1)

∫ 1

0

(Jv̇, v)dt ≥ −‖v‖2.

Proof. It follows from

|v1(t)| =

∣

∣

∣

∣

∫ 1

t

v̇1(s)ds

∣

∣

∣

∣

≤
∫ 1

0

|v̇1(s)|ds,

|v2(t)| =

∣

∣

∣

∣

∫ t

0

v̇2(s)ds

∣

∣

∣

∣

≤
∫ 1

0

|v̇2(s)|ds

that

‖v‖∞ = max
0≤t≤1

|v(t)| ≤
∫ 1

0

|v̇(s)|ds ≤ ‖v‖.

Then by Hölder inequality,
∫ 1

0

(Jv̇, v)dt ≥ −
∫ 1

0

|v̇(t)||v(t)|dt ≥ −‖v‖∞
∫ 1

0

|v̇(t)|dt > −‖v‖2.

Proposition 3.2. Under the assumption (A1)–(A3), the functional ψ defined in (2.5)

satisfies the (PS)-condition, i.e., every sequence (vn) in Y such that

ψ(vn) is bounded and ψ′(vn) → 0 as n→ ∞,

contains a convergent subsequence.

Proof. It is clear that
∫ 1

0
|vn(t)|2dt ≤ ‖vn‖2.

Applying (2.5), (2.6), (1.7) and Lemma 2.7, we have

(3.2)

ψ(vn) =

∫ 1

0

G∗(t, v̇n)dt− 1

2

∫ 1

0

(∇G∗(t, v̇n), v̇n)dt+
1

2
〈ψ′(vn), vn〉

≥
(

1 − p

2

)

∫ 1

0

G∗(t, v̇n)dt+
1

2

∫ 1

0

(fn(t), vn(t))dt

≥
(

1 − p

2

) 1

p

(

1

βq

)p−1

‖vn‖p −
(

1 − p

2

)

c− 1

2
‖fn‖ · ‖vn‖.

Hence, (vn) is bounded in Y . Because Y is a reflexive Banach space (see Lemma 2.5),

going if necessary to a sub-sequence, we assume vn ⇀ v in Y , which implies that

vn(t) → v(t) uniformly on [0, 1].

Using (2.9), we have
∫ 1

0

(−Jvn + ∇G∗(t, v̇n) − fn(t), u̇(t))dt = 0
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for all u ∈ Y , which implies
∫ 1

0

(−Jvn + ∇G∗(t, v̇n) − fn(t), w(t))dt = 0

for all w ∈ Lp[0, 1]. Then

−Jvn(t) + ∇G∗(t, v̇n(t)) = fn(t), a.e. t ∈ [0, 1]

and ‖fn‖Lq → 0 since ψ′(vn) → 0. By duality, we have

v̇n(t) = ∇G(t, Jvn(t) + fn(t)), a.e. t ∈ [0, 1].

Therefore,

v̇n → ∇G(·, Jv(·)) = v̇, in Lp[0, 1],

i.e., vn → v in Y .

Proof of Theorem 1.1.

Proof. We first prove that ψ defined in (2.5) has a critical point v in Y .

Obviously, Y is a real Banach space and ψ ∈ C1(Y,R).

Using (1.7) and Proposition 3.1, one has

ψ(v) ≥ −1

2
‖v‖2 +

1

p

(

1

βq

)p−1

‖v‖p −
(

1

αq

)
1

q

K.

Take v0 = 0 and Ω = {v ∈ Y : ‖v‖ < r0}, where

r0 =

(

1

αqp−1

)
1

q−p

,

then for v ∈ ∂Ω,

ψ(v) ≥
(

1

αq

)
1

q

g(α) −
(

1

αq

)
1

q

K =: d > 0

and v0 ∈ intΩ, ψ(v0) ≤ N0 < d.

On the other hand, using (1.11) one gets

ψ(v) ≤ 1

2

∫ 1

0

(Jv̇, v)dt+

(

1

c0q

)p−1
1

p
‖v‖p +N0, v ∈ Y.

Let e ∈ Rn such that |e| = 1 and

(3.3) v = rv̄ = r
(

cos
π

2
t · e, sin

π

2
t · e
)

∈ Y

with r > 0. Then (Jv̇, v) = −π
2
r2 and ‖v1‖ = ‖rv̄‖ = r‖v̄‖ = r. It follows that

ψ(v) ≤ −π
4
r2 +

(

1

c0q

)p−1
1

p
rp +N0.

Clearly, we can choose r1 > r0 large enough such that

ψ(v1) = ψ(r1v̄) ≤ −π
4
r2
1 +

(

1

c0q

)p−1
1

p
rp
1 +N0 < 0 < d
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with v1 6∈ Ω̄. Then ψ has a critical point v = v(t) so that ψ′(v) = 0, i.e.,

0 =

∫ 1

0

[(Jv̇, y) + (∇G∗(t, v̇), ẏ)]dt

=

∫ 1

0

[−(Jv, ẏ) + (∇G∗(t, v̇), ẏ)]dt

=

∫ 1

0

(−Jv + ∇G∗(t, v̇), ẏ)dt

holds for all y ∈ Y , which implies

Jv = ∇G∗(t, v̇),

since all u̇ make Lp[0, 1].

Then by duality, one has

v̇ = ∇G(t, Jv)

and the relation v = −Jw yields

−Jẇ = ∇G(t, w),

i.e., w(t) = Jv(t) is a solution to BVP (1.4). Then

u(t) = u1(t)

is a solution to (1.1) with 1 < p < 2.

4. Example

Consider the following boundary value problem

(4.1)







































(

u′1
√

u′21 + u′22

)′

+

√

u2
1 + u2

2

6
u1 −

2u1

(u2
1 + u2

2 + 1)2
cos(

1

u2
1 + u2

2 + 1
+ t) = 0,

(

u′2
√

u′21 + u′22

)′

+

√

u2
1 + u2

2

6
u2 −

2u2

(u2
1 + u2

2 + 1)2
cos(

1

u2
1 + u2

2 + 1
+ t) = 0,

u1(0) = u2(0) = u′1(1) = u′2(1) = 0.

Let u = (u1, u2) and

F (t, u) =
1

18

(

√

u2
1 + u2

2

)3

+ sin

(

1

u2
1 + u2

2 + 1
+ t

)

.

Then BVP (4.1) becomes

(4.2)







(

φ 3

2

(u′)
)′

+ ∇F (t, u) = 0,

u(0) = u′(1) = 0.

Obviously, p = 3
2

and then q = 3. We have F ∈ C([0, 1] × R2, R).

−1 ≤ F (t, u) ≤ 1

18
|u|3 + 1,
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(∇F (t, u), u) ≥ 3

(

F (t, u) − 2

3

)

.

As K = N0 = 1, N = 2
3
, α = 1

18
, one has

g

(

1

18

)

=
2

3
· 1

4
· 3− 1

3 · 18 =
3
√

9 > 2,

and then

K = 1 < g

(

1

18

)

, N0 = 1 <
3
√

6

(

g

(

1

18

)

− 1

)

satisfy the conditions given in Theorem 1.1. Therefore, BVP (4.1) has at least a

classical solution.
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