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ABSTRACT. In this paper, we establish some new criteria for the oscillation of the second-order

nonlinear neutral dynamic equations with distributed deviating arguments of the form

(

r(t)
∣

∣y∆(t)
∣

∣

γ−1

y∆(t)
)∆

+

∫ b

a

f(t, x(θ(t, ξ)))∆ξ = 0

on a time scale T, where y(t) := x(t) + p(t)x(τ(t)), γ ≥ 1 is a constant, r(t), p(t) are rd-continuous

functions on T, and f : T×R → R is continuous. The results obtained are illustrated with a number

of examples.

AMS (MOS) Subject Classification. 34C10, 34K11, 39A10, 39A99

1. INTRODUCTION

In this paper, we are concerned with the oscillatory behavior of solutions of the

second order nonlinear neutral dynamic equation

(1.1)
(

r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t)

)∆

+

∫ b

a

f(t, x(θ(t, ξ)))∆ξ = 0

on a time scale T, where γ ≥ 1 is a constant, and

(1.2) y(t) := x(t) + p(t)x(τ(t)), t ∈ T.

Throughout this paper, we will assume, without further mention, that the following

conditions hold:

(C1) r : T → (0,∞) is a real valued rd-continuous function with r∆(t) ≥ 0, and

p : T → [0, 1) is a increasing real valued rd-continuous function;

(C2) τ : T → T is a real valued rd-continuous function such that τ(t) ≤ t, and

limt→∞ τ(t) = ∞;
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290 E. TUNÇ AND J. R. GRAEF

(C3) θ(t, ξ) : T × [a, b]T → T is a real valued rd-continuous function such that

θ(t, ξ) is decreasing with respect to ξ, and θ(t, ξ) → ∞ as t → ∞, where [a, b]T =

{t ∈ T : a ≤ t ≤ b}
(C4) f(t, u) : T × R → R is a continuous function such that uf(t, u) > 0 for all

u 6= 0 and there exists a positive rd-continuous function q(t) defined on T such that

|f(t, u)| ≥ q(t)
∣

∣uβ
∣

∣, where 0 < β < 1 is the quotient of odd positive integers.

We shall also consider the two cases

(1.3)

∫

∞

t0

∆t

r1/γ(t)
= ∞

and

(1.4)

∫

∞

t0

∆t

r1/γ(t)
< ∞.

Since we are interested in the oscillatory and asymptotic behavior of solutions near

infinity, we assume that sup T = ∞, and define the time scale interval [t0,∞)T

by [t0,∞)T := [t0,∞) ∩ T. By a solution of (1.1), we mean a nontrivial real-

valued function x(t) which has the properties y ∈ C1
rd([tx,∞)T, R) and r

∣

∣y∆
∣

∣

γ−1
y∆ ∈

C1
rd([tx,∞)T, R) for tx ≥ t0 and satisfies equation (1.1) on [tx,∞)T. Our attention is

restricted to those solutions of (1.1) which exist on the half-line [tx,∞)T and satisfy

sup {|x(t)| : t ∈ [t1,∞)T} > 0 for any t1 ∈ [tx,∞)T. A solution x(t) of (1.1) is said

to be oscillatory if it is neither eventually positive nor eventually negative, and it is

called nonoscillatory otherwise. Eq. (1.1) is said to be oscillatory if all its solutions

are oscillatory. The basic concepts and notation from the time scale calculus will be

used (see Bohner and Peterson [9]).

In recent years there has been an increasing interest in studying the oscillation

of solutions of various dynamic equations on time scales, and we refer the reader to

Saker [3], Bohner et al. [8], Hassan [11], Han et al. [14], Sahiner [15], Erbe et al. [17],

Chen [19], Agarwal et al. [20], Sun et al. [22] and the references contained therein.

Regarding neutral dynamic equations, Saker [1] considered the second-order quasi-

linear neutral functional dynamic equation

(1.5)
(

p(t)
(

[y(t) + r(t)y(τ(t))]∆
)γ)∆

+ f(t, y(δ(t))) = 0

and established several sufficient conditions for oscillation of (1.5) for the case γ is a

ratio of odd positive integers and when (1.3) or (1.4) holds.

Motivated by work of Saker [1], Candan [4] studied the oscillatory behavior of

the equation

(1.6)
(

r(t)
(

[y(t) + p(t)y(τ(t))]∆
)γ)∆

+

∫ d

c

f(t, y(θ(t, ξ)))∆ξ = 0

for the case γ is a ratio of odd positive integers and when (1.3) is satisfied.
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Very recently, Thandapani and Piramanantham [5] considered the second order

nonlinear neutral delay dynamic equation

(1.7)
(

r(t)
(

[y(t) + p(t)y(t − τ)]∆
)γ)∆

+ q(t)yβ(t − δ) = 0

and presented some criteria for the oscillation of solutions of equation (1.7) under the

assumptions (1.3) and (1.4).

Additional oscillation results for second and higher order neutral dynamic equa-

tions can be found in Saker and O’Regan [2], Thandapani and Piramanantham [6],

Li and Thandapani [7], Grace et al. [12], Zhang and Wang [13], Erbe et al. [16], Chen

[18], Yang and Xu [21], and the references therein.

Motivated by these papers, here we wish to determine oscillation criteria for

the second-order nonlinear dynamic equation (1.1). Our results when (1.3) holds are

sufficient for oscillation of all solutions of (1.1) and when (1.4) holds our results ensure

that all solutions either oscillate or converge to zero. Some examples are considered

to illustrate the main results.

2. SOME LEMMAS

In this section, we give two lemmas and an theorem, which will play an important

role in the proof of our main results. Throughout this paper, we let

ϕ+(t) := max {ϕ(t), 0} , ϕ−(t) := max {−ϕ(t), 0} ,

and

δ(t) = θ(t, b), Q(t) = (b − a)q(t)(1 − p(θ(t, a)))β.

Theorem 2.1 (Mean Value Theorem on time scale, see [10], [23]). If f is a continuous

function on [a, b] and is ∆-differentiable on [a, b), then there exist ξ, η ∈ [a, b) such

that

f∆(η)(b − a) ≤ f(b) − f(a) ≤ f∆(ξ)(b − a).

Lemma 2.2. Assume that conditions (C1)–(C4) and (1.3) are satisfied, and let x(t)

be an eventually positive solution of (1.1). Then there exists a t1 ∈ [t0,∞)T such that

(2.1)

y(t) > 0, y∆(t) > 0, y∆∆(t) < 0,
(

r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t)

)∆

< 0, for t ∈ [t1,∞)T.

Proof. Since x(t) is an eventually positive solution of (1.1), then there exists a t1 ∈
[t0,∞)T such that x(t) > 0, x(τ(t)) > 0 and x(θ(t, ξ)) > 0 for all t ∈ [t1,∞)T and

ξ ∈ [a, b]T. Thus, by (1.2), we have y(t) ≥ x(t) > 0 for all t ≥ t1. In view of (1.1)

and (C4), we find

(2.2)
(

r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t)

)∆

+

∫ b

a

q(t)xβ(θ(t, ξ))∆ξ ≤ 0, for t ≥ t1,
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which implies that r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t) is decreasing on [t1,∞)T and is eventually of

one sign. Hence, y∆(t) is eventually of one sign, i.e., y∆(t) is either eventually positive

or eventually negative. We claim that

(2.3) y∆(t) > 0 for t ∈ [t1,∞)T.

Assume not, there exists a t2 ∈ [t1,∞)T such that y∆(t2) ≤ 0. From this and the

decreasing nature of r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t), there is a t3 ≥ t2 such that

r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t) ≤ r(t3)

∣

∣y∆(t3)
∣

∣

γ−1
y∆(t3) := c < 0 for t ≥ t3,

and so

y∆(t) ≤ −(−c)1/γ 1

r1/γ(t)
for t ≥ t3.

This implies by (1.3) that

y(t) ≤ y(t3) − (−c)1/γ

∫ t

t3

∆s

r1/γ(s)
→ −∞ as t → ∞,

which contradicts the fact that y(t) > 0 for all t ≥ t1. Hence, (2.3) holds. Now, (2.2)

and (2.3) imply

(2.4)
(

r(t)
(

y∆(t)
)γ)∆

+

∫ b

a

q(t)xβ(θ(t, ξ))∆ξ ≤ 0 for t ≥ t1.

Thus, r(t)(y∆)γ(t) is decreasing on [t1,∞)T. Now, we want to show that

(2.5) y∆∆(t) < 0 for t ≥ t1.

Assume the contrary, that is,

(2.6) y∆∆(t) ≥ 0 for t ≥ t1.

Then, y∆(t) is nondecreasing and

(2.7) y∆(t) ≤ y∆(σ(t)) for t ≥ t1

which implies by (C1) and (2.3) that

(2.8) r(σ(t))(y∆(t))γ ≤ r(σ(t))(y∆(σ(t)))γ.

Since r∆(t) ≥ 0, we have r(t) ≤ r(σ(t)). This and (2.8) give

r(t)(y∆(t))γ ≤ r(σ(t))(y∆(t))γ ≤ r(σ(t))(y∆(σ(t)))γ

or

r(t)(y∆(t))γ ≤ r(σ(t))(y∆(σ(t)))γ,

which contradicts the fact that r(t)(y∆(t))γ is decreasing on [t1,∞)T , hence (2.5)

holds. The proof is complete.



OSCILLATION RESULTS FOR SECOND ORDER NEUTRAL DYNAMIC EQUATIONS 293

Lemma 2.3. Suppose that the following conditions are satisfied:

(i) u ∈ C2
rd(I, R) where I = [T,∞)T ⊂ T for some T > 0;

(ii) u(t) > 0, u∆(t) > 0, u∆∆(t) ≤ 0 for t ≥ T .

Then, for each 0 < k < 1, there is a Tk ≥ T such that

(2.9) u(δ(t)) ≥ ku(t)
δ∗(t)

t
, for t ≥ Tk

where δ∗(t) = min {t, δ(t)}.

Proof. We consider the two following case: (i) δ(t) ≤ t; (ii) δ(t) ≥ t.

Case (i). Let δ(t) ≤ t. When δ(t) = t, (2.9) holds. Then, it suffices to consider

only those t for which δ(t) < t. Let T ≤ δ(t) < t. Then, for each t > T , there exists

a ξ1 ∈ [δ(t), t) such that

u(t) − u(δ(t)) ≤ u∆(ξ1)(t − δ(t)) ≤ u∆(δ(t))(t − δ(t))

by the Mean Value Theorem on time scales and the monotone properties of u∆. Since

u(t) > 0, we have

(2.10)
u(t)

u(δ(t))
≤ 1 +

u∆(δ(t))

u(δ(t))
(t − δ(t)) for t > δ(t) ≥ T.

Similarly, we have, for some ξ2 ∈ [T, δ(t)),

u(δ(t)) − u(T ) ≥ u∆(ξ2)(δ(t) − T ) ≥ u∆(δ(t))(δ(t) − T )

which gives

(2.11)
u(δ(t))

u∆(δ(t))
≥ δ(t) − T.

Let k ∈ (0, 1). Then for t ≥ T/(1 − k) = Tk ≥ T we have t − T ≥ kt and δ(t) − T ≥
kδ(t). Now, (2.11) implies

(2.12)
u(δ(t))

u∆(δ(t))
≥ kδ(t) for t ≥ Tk.

From (2.10) and (2.12), we obtain

u(t)

u(δ(t))
≤ 1 +

u∆(δ(t))

u(δ(t))
(t − δ(t))

≤ 1 +
t − δ(t)

kδ(t)

=
t + (k − 1)δ(t)

kδ(t)

≤ t

kδ(t)
=

t

kδ∗(t)
for t > δ(t) ≥ Tk ≥ T,

which is (2.9).
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Case (ii). Let δ(t) ≥ t. Since u∆(t) > 0, we have

u(δ(t)) ≥ u(t) ≥ ku(t) = ku(t)
δ∗(t)

t
, for t ≥ Tk

which is (2.9). This completes the proof of Lemma 2.3.

3. MAIN RESULTS

To prove our main results we will make use of the following form of the chain

rule on time scales. It is a simple consequence of the well-known Keller’s chain rule

(see Bohner and Peterson [9, Theorem 1.90]):

(3.1) (xγ(t))∆ = γx∆(t)

∫ 1

0

[(1 − h)x(t) + hxσ(t)]γ−1 dh.

Theorem 3.1. Let (1.3) holds. Suppose also that there exist positive rd-continuous

∆-differentiable functions α(t) and φ(t) such that for all constants L > 0 and a

positive number M

(3.2) lim sup
t→∞

∫ t

t0

(

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s)C2(s)

4βφ(s)α(s)M (γ−1)/γ

)

∆s = ∞,

where δ∗(s) is as in Lemma 2.3,

C(s) =
(

φ∆(s)
)

+
+ φ(s)

(

α∆(s)
)

+

ασ(s)
, K(s) = (Lσ(s))1−β r1/γ(s)α2(σ(s)).

Then, equation (1.1) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary that x is a nonoscillatory solution of equation (1.1).

Without loss of generality, we may assume that x is an eventually positive solution

of equation (1.1). Then there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ(t)) > 0 and

x(θ(t, ξ)) > 0 for all t ∈ [t1,∞)T and ξ ∈ [a, b]T. Following the same lines as in the

proof of Lemma 2.2, we conclude that (2.4) is satisfied. On the other hand, by (1.2)

and (2.1), we obtain

x(t) = y(t) − p(t)x(τ(t)) ≥ y(t) − p(t)y(τ(t)) ≥ (1 − p(t))y(t),

which implies that

(3.3) xβ(θ(t, ξ)) ≥ (1 − p(θ(t, ξ)))βyβ(θ(t, ξ)), for t ≥ t2 ≥ t1, ξ ∈ [a, b]T.

Multiplying both sides of (3.3) by q(t) and integrating from a to b, we find

(3.4)

∫ b

a

q(t)xβ(θ(t, ξ))∆ξ ≥
∫ b

a

q(t)(1 − p(θ(t, ξ)))βyβ(θ(t, ξ))∆ξ.

Substituting (3.4) into (2.4) gives

(3.5)
(

r(t)
(

y∆(t)
)γ)∆

+

∫ b

a

q(t)(1 − p(θ(t, ξ)))βyβ(θ(t, ξ))∆ξ ≤ 0 for t ≥ t2.
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Further, by (3.1) we have

(

yβ(t)
)∆

= βy∆(t)

∫ 1

0

[(1 − h)y(t) + hyσ(t)]β−1 dh

≥ β (yσ(t))β−1 y∆(t) > 0.(3.6)

Using (C1), (C3) and (3.6) in (3.5), we obtain
(

r(t)
(

y∆(t)
)γ)∆

+ (b − a)q(t)(1 − p(θ(t, a)))βyβ(θ(t, b)) ≤ 0, for t ≥ t2,

or

(3.7)
(

r(t)
(

y∆(t)
)γ)∆

+ Q(t)yβ(δ(t)) ≤ 0, for t ≥ t2.

Now define the function

(3.8) w(t) = α(t)
r(t)

(

y∆(t)
)γ

yβ(t)
for t ≥ t2.

Then w(t) > 0 and

w∆(t) =
(

r(t)
(

y∆(t)
)γ)∆ α(t)

yβ(t)
+
(

r(t)
(

y∆(t)
)γ)σ

[

α(t)

yβ(t)

]∆

≤ −α(t)Q(t)yβ(δ(t))

yβ(t)
+
(

r(t)
(

y∆(t)
)γ)σ

[

α∆(t)

yβ(σ(t))
− α(t)

(

yβ(t)
)∆

yβ(t)yβ(σ(t))

]

≤ −α(t)Q(t)yβ(δ(t))

yβ(t)
+

(

α∆(t)
)

+

ασ(t)
wσ(t) − α(t)

(

r(t)
(

y∆(t)
)γ)σ (

yβ(t)
)∆

yβ(t)yβ(σ(t))
.(3.9)

Using (3.6) in (3.9) , we get

w∆(t) ≤ −α(t)Q(t)yβ(δ(t))

yβ(t)
+

(

α∆(t)
)

+

ασ(t)
wσ(t)

− βα(t)
(

r(t)
(

y∆(t)
)γ)σ

(yσ(t))β−1 y∆(t)

yβ(t)yβ(σ(t))

= −α(t)Q(t)yβ(δ(t))

yβ(t)
+

(

α∆(t)
)

+

ασ(t)
wσ(t)

− βα(t)
(

r(t)
(

y∆(t)
)γ)σ (

r(t)
(

y∆(t)
)γ)1/γ

(yσ(t))β−1

r1/γ(t)yβ(t)yβ(σ(t))
.

By using the fact that r(t)
(

y∆(t)
)γ

is decreasing and y∆(t) > 0, the latter inequality

yields

w∆(t) ≤ −α(t)Q(t)yβ(δ(t))

yβ(t)
+

(

α∆(t)
)

+

ασ(t)
wσ(t)

−
βα(t)

(

r(1+γ)/γ(t)
(

y∆(t)
)γ+1

)σ

(yσ(t))β−1

r1/γ(t)y2β(σ(t))

= −α(t)Q(t)yβ(δ(t))

yβ(t)
+

(

α∆(t)
)

+

ασ(t)
wσ(t)
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− βα(t)r(1+γ)/γ(σ(t))
(

y∆(σ(t))
)2γ

(yσ(t))β−1

r1/γ(t)y2β(σ(t)) (y∆(σ(t)))γ−1 .(3.10)

Thus, from (3.8), (3.10) and Lemma 2.3, we obtain

w∆(t) ≤ −α(t)Q(t)

[

k
δ∗(t)

t

]β

+

(

α∆(t)
)

+

ασ(t)
wσ(t)

− βα(t)r(1−γ)/γ(σ(t)) (yσ(t))β−1

r1/γ(t)α2(σ(t)) (y∆(σ(t)))γ−1 w2(σ(t)).(3.11)

Since r(t)
(

y∆(t)
)γ

is positive and decreasing on [t1,∞)T, there exists a t2 ∈ [t1,∞)T

such that r(t)
(

y∆(t)
)γ ≤ 1

M
for some positive constant M and for t ∈ [t2,∞). Hence,

we have

(3.12)
1

(y∆(σ(t)))γ−1 ≥ (Mr(σ(t)))
(γ−1)/γ

.

From (2.1), one has

y(t) = y(t1) +

∫ t

t1

y∆(s)∆s ≤ y(t1) + y∆(t1)(t − t1) ≤ c + dt,

where c = y(t1)−t1y
∆(t1) and d = y∆(t1). By putting L = |c|+d and t2 ≥ max {t1, 1},

we find that

y(t) ≤ Lt for all t ≥ t2,

which gives

(3.13) (yσ(t))β−1 ≥ (Lσ(t))β−1 .

Using (3.12) and (3.13) in (3.11), we obtain

w∆(t) ≤ −α(t)Q(t)

[

k
δ∗(t)

t

]β

+

(

α∆(t)
)

+

ασ(t)
wσ(t)

− βα(t)M
(γ−1)/γ

(Lσ(t))β−1

r1/γ(t)α2(σ(t))
w2(σ(t)).(3.14)

Multiplying (3.14) by φ(s) and integration from t2 to t, we conclude that

∫ t

t2

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

∆s ≤ −
∫ t

t2

φ(s)w∆(s)∆s +

∫ t

t2

φ(s)

(

α∆(s)
)

+

ασ(s)
wσ(s)∆s

−
∫ t

t2

φ(s)
βα(s)M

(γ−1)/γ

K(s)
w2(σ(s))∆s.(3.15)

Using integration by parts, we obtain

−
∫ t

t2

φ(s)w∆(s)∆s = −φ(s)w(s) |tt2 +

∫ t

t2

φ∆(s)wσ(s)∆s

≤ φ(t2)w(t2) +

∫ t

t2

(

φ∆(s)
)

+
wσ(s)∆s.
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This and (3.15) lead to

∫ t

t2

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

∆s

≤ φ(t2)w(t2) +

∫ t

t2

[

(

φ∆(s)
)

+
+ φ(s)

(

α∆(s)
)

+

ασ(s)

]

wσ(s)∆s

−
∫ t

t2

φ(s)
βα(s)M

(γ−1)/γ

K(s)
w2(σ(s))∆s

= φ(t2)w(t2) +

∫ t

t2

K(s)C2(s)

4φ(s)βα(s)M (γ−1)/γ
∆s

−
∫ t

t2





√

φ(s)
βα(s)M (γ−1)/γ

K(s)
wσ(s) −

√

K(s)

4φ(s)βα(s)M (γ−1)/γ
C(s)





2

∆s.

Hence,

∫ t

t2

(

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s)C2(s)

4φ(s)βα(s)M (γ−1)/γ

)

∆s ≤ φ(t2)w(t2) < +∞,

which contradicts assumption (3.2). Therefore, Equation (1.1) is oscillatory.

Let D0 = {(t, s) ∈ T × T : t > s ≥ t0} and D = {(t, s) ∈ T × T : t ≥ s ≥ t0}. We

say that a function H ∈ Crd(D, R) belongs to a class P if it satisfies the following

conditions:

(i) H(t, t) = 0, t ≥ t0, H(t, s) > 0 on D0;

(ii) H has a nonpositive continuous ∆-partial derivative H∆s(t, s) on D0 with

respect to the second variable.

Theorem 3.2. Assume that (1.3) holds. Suppose further that there exist functions

α(t) ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈ Crd(D, R) such that H belongs to the class P,

(3.16) −H∆s(t, s) − H(t, s)
α∆(s)

ασ(s)
=

h(t, s)

ασ(s)
H1/2(t, s),

and, for all constants L > 0 and a positive number M , we have

(3.17)

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)α(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s) (h−(t, s))2

4βα(s)M (γ−1)/γ α2(σ(s))

]

∆s = ∞,

where δ∗(s), Q(s) and K(s) are as in Theorem 3.1. Then, equation (1.1) is oscillatory.

Proof. Suppose to the contrary that x is a nonoscillatory solution of equation (1.1).

Without loss of generality, we may assume that x is an eventually positive solution

of equation (1.1). Then there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ(t)) > 0

and x(θ(t, ξ)) > 0 for all t ∈ [t1,∞)T and ξ ∈ [a, b]T. Define the function w(t) by
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(3.8). Let α∆(t) be replaced by
(

α∆(t)
)

+
in (3.14). Proceeding as in the proof of

Theorem 3.1, we have, for t ≥ t2,

(3.18)

α(t)Q(t)

[

k
δ∗(t)

t

]β

≤ −w∆(t) +
α∆(t)

ασ(t)
wσ(t) − βα(t)M

(γ−1)/γ
(Lσ(t))β−1

r1/γ(t)α2(σ(t))
w2(σ(t)).

Multiplying both sides of (3.18) by H(t, s) and integrating from t2 to t, we obtain

∫ t

t2

H(t, s)α(s)Q(s)

[

k
δ∗(s)

s

]β

∆s ≤ −
∫ t

t2

H(t, s)w∆(s)∆s +

∫ t

t2

H(t, s)
α∆(s)

ασ(s)
wσ(s)∆s

−
∫ t

t2

H(t, s)
βα(s)M

(γ−1)/γ

K(s)
w2(σ(s))∆s.(3.19)

An integration by parts yields
∫ t

t2

H(t, s)w∆(s)∆ = H(t, s)w(s)|tt2 −
∫ t

t2

H∆s(t, s)wσ(s)∆s

= −H(t, t2)w(t2) −
∫ t

t2

H∆s(t, s)wσ(s)∆s.(3.20)

Now, in view of (3.16), (3.19) and (3.20), we see that

∫ t

t2

H(t, s)α(s)Q(s)

[

k
δ∗(s)

s

]β

∆s ≤ H(t, t2)w(t2)

+

∫ t

t2

[

H∆s(t, s) + H(t, s)
α∆(s)

ασ(s)

]

wσ(s)∆s −
∫ t

t2

H(t, s)
βα(s)M

(γ−1)/γ

K(s)
w2(σ(s))∆s

= H(t, t2)w(t2) −
∫ t

t2

h(t, s)

ασ(s)
H1/2(t, s)wσ(s)∆s −

∫ t

t2

H(t, s)
βα(s)M

(γ−1)/γ

K(s)
w2(σ(s))∆s

≤ H(t, t2)w(t2) +

∫ t

t2

h−(t, s)

ασ(s)
H1/2(t, s)wσ(s)∆s −

∫ t

t2

H(t, s)
βα(s)M

(γ−1)/γ

K(s)
w2(σ(s))∆s

= H(t, t2)w(t2) +

∫ t

t2

K(s) (h−(t, s))2

4βα(s)M (γ−1)/γ α2(σ(s))
∆s

−
∫ t

t2





√

H(t, s)
βα(s)M (γ−1)/γ

K(s)
w(σ(s)) − 1

ασ(s)

√

K(s)

4βα(s)M (γ−1)/γ
h−(t, s)





2

∆s,

so
∫ t

t2

[

H(t, s)α(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s) (h−(t, s))2

4βα(s)M (γ−1)/γ α2(σ(s))

]

∆s ≤ H(t, t2)w(t2)

or

1

H(t, t2)

∫ t

t2

[

H(t, s)α(s)Q(s)

[

k
τ∗(s)

s

]β

− K(s) (h−(t, s))2

4βα(s)M (γ−1)/γα2(σ(s))

]

∆s ≤ w(t2).

Taking lim sup as t → ∞ of both sides yields a contradiction to condition (3.17). This

completes the proof of Theorem 3.2.
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Theorem 3.3. Assume that (1.4) holds. Suppose also that there exist positive rd-

continuous ∆-differentiable functions α(t) and φ(t) such that (3.2) holds, and for

every constant d ≥ t0

(3.21)

∫

∞

d

1

r1/γ(s)

(
∫ s

d

Q(u)∆u

)1/γ

∆s = ∞,

where Q(s) is as in Theorem 3.1. Then every solution x(t) of equation (1.1) is either

oscillatory or tends to zero as t → ∞.

Proof. Suppose to the contrary that equation (1.1) has a nonoscillatory solution x(t).

Without loss of generality, we may assume that x(t) is an eventually positive solu-

tion of (1.1). Then there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ(t)) > 0 and

x(θ(t, ξ)) > 0 for all t ∈ [t1,∞)T and ξ ∈ [a, b]T. Proceeding as in the proof of

Theorem 3.1, we obtain

(3.22)
(

r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t)

)∆

+ Q(t)yβ(δ(t)) ≤ 0, for t ≥ t2

Then r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t) is decreasing on [t2,∞)T and is eventually of one sign.

Therefore, y∆(t) is eventually of one sign, i.e., there are the following cases for the

sign of y∆(t):

Case (I). y∆(t) is eventually positive;

Case (II). y∆(t) is eventually negative.

The proof of Case (I) is similar to that of Theorem 3.1 and hence is omitted.

We next assume that Case (II) holds. In this case, there exists t2 ≥ t1 such that

y∆(t) < 0 for t ∈ [t2,∞)T. This and the fact that y(t) > 0 imply

lim
t→∞

y(t) = η ≥ 0.

We assert that η = 0. If not, then y(t) ≥ η > 0, y(τ(t)) ≥ η > 0 and y(θ(t, ξ)) ≥ η > 0

for all t ∈ [t2,∞)T and ξ ∈ [a, b]T. Now, by (3.22), we have

(3.23)
(

r(t)
∣

∣y∆(t)
∣

∣

γ−1
y∆(t)

)∆

+ Q(t)ηβ ≤ 0 for t ≥ t2.

Since y∆(t) is eventually negative, (3.23) gives, for t ≥ t2,

(3.24) −
(

r(t)
(

−y∆(t)
)γ)∆ ≤ −Q(t)ηβ .

If we integrate (3.24) from t2 to t to obtain

y∆(t) ≤ − ηβ/γ

r1/γ(t)

(
∫ t

t2

Q(s)∆s

)1/γ

,

and we integrate again from t2 to t, we have

y(t) ≤ y(t2) − ηβ/γ

∫ t

t2

1

r1/γ(s)

(
∫ s

t2

Q(u)∆u

)1/γ

∆s.
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This implies by (3.21) that y(t) is eventually negative, which contradicts the fact

that y(t) ≥ x(t) > 0 on [t1,∞)T. Hence we conclude that limt→∞ y(t) = 0. Since

y(t) = x(t)+ p(t)x(τ(t)), then 0 < x(t) ≤ y(t). This implies that x(t) → 0 as t → ∞.

The proof of Theorem 3.3 is complete.

Theorem 3.4. Assume that (1.4) holds. Let α(t), h(t, s) and H(t, s) be defined

as in Theorem 3.2 such that (3.16) and (3.17) hold. Furthermore, assume that for

every constant d ≥ t0 (3.21) holds. Then every solution of equation (1.1) is either

oscillatory or tends to zero as t → ∞.

Proof. The proof is similar to that of the proof of Theorem 3.3 and therefore is

omitted.

Example 3.5. Consider the nonlinear neutral dynamic equation

(3.25)




(

t3 − 3t + 3
)

(

(

x(t) +

(

1 − 1

t

)

x(t − 1)

)∆
)3




∆

+

∫ 1

0

(

t2

k

)β

xβ(t − ξ)∆ξ = 0,

for t ∈ [1,∞)T, where γ = 3, 0 < β < 1 is the quotient of odd positive integers,

r(t) = t3 − 3t + 3, p(t) = 1 − 1
t
, θ(t, ξ) = t − ξ, δ(t) = t − 1, δ∗(t) = t − 1, α(t) = 1,

φ(t) = 1 and q(t) =
(

t2

k

)β

. Now,

∫

∞

t0

∆t

r1/γ(t)
=

∫

∞

t0

∆t

(t3 − 3t + 3)1/3
>

∫

∞

t0

∆t

(t3 + 3)1/3

≥
∫

∞

t0

∆t

(2t3 + 2)1/3
≥
∫

∞

t0

∆t

21/3 (2t3)1/3

=

∫

∞

t0

∆t

22/3t
= ∞,

and

lim sup
t→∞

∫ t

t0

(

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s)C2(s)

4φ(s)βα(s)M (γ−1)/γ

)

∆s

= lim sup
t→∞

∫ t

t0

(b − a)

(

s2

k

)β

(1 − p(s − a))β

[

k
s − b

s

]β

∆s

= lim sup
t→∞

∫ t

t0

(

s2

k

)β

(1 − s − 1

s
)β

[

k
s − 1

s

]β

∆s

= lim sup
t→∞

∫ t

t0

(s − 1)β∆s = ∞.

Therefore, by Theorem 3.1, equation (3.25) is oscillatory.
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Example 3.6. Consider the dynamic equation

(3.26)
(

t

(

x(t) +
t

t + 1
x(t − 1)

)∆
)∆

+

∫ 2

1

5
√

3t

(

1 +
5(Lσ(t))4/5

t

)

x1/5(3t − ξ)∆ξ = 0,

for t ∈ [1,∞)T, where γ = 1, β = 1/5, r(t) = t, p(t) = t
t+1

, θ(t, ξ) = 3t − ξ,

δ(t) = 3t − 2, δ∗(t) = t, α(t) = t, φ(t) = 1 and q(t) = 5
√

3t
(

1 + 5(Lσ(t))4/5

t

)

. Let

k = 1
45 . Now,

∫

∞

t0

∆t

r1/γ(t)
=

∫

∞

t0

∆t

t
= ∞

and

lim sup
t→∞

∫ t

t0

(

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s)C2(s)

4φ(s)βα(s)M (γ−1)/γ

)

∆s

= lim sup
t→∞

∫ t

t0

(

s
5
√

3s

(

1 +
5(Lσ(s))4/5

s

)

(1 − p(3s − 1))1/5(
1

45
)1/5 − 5(Lσ(s))4/5

4

)

∆s

= lim sup
t→∞

∫ t

t0

(

s
1

4
5
√

3s

(

1 +
5(Lσ(s))4/5

s

)

(
1

3s
)1/5 − 5(Lσ(s))4/5

4

)

∆s

= lim sup
t→∞

∫ t

t0

(

1

4

(

s + 5(Lσ(s))4/5
)

− 5(Lσ(s))4/5

4

)

∆s = lim sup
t→∞

∫ t

t0

s

4
∆s = ∞.

Therefore, by Theorem 3.1, equation (3.26) is oscillatory.

Example 3.7. Consider the equation

(3.27)
(

t2
(

x(t) +
t − 1

t + 2
x(t − 1)

)∆
)∆

+

∫ 2

1

(t+3)1/3 (t + σ(t))x1/3(t+
1

ξ
)∆ξ = 0, t ∈ [1,∞),

where γ = 1, β = 1/3, r(t) = t2, p(t) = t−1
t+2

, θ(t, ξ) = t + 1
ξ
, δ(t) = t + 1

2
, δ∗(t) = t,

α(t) = 1, φ(t) = 1 and q(t) = (t + 3)1/3 (t + σ(t)). Let k = 1/3. Now,
∫

∞

t0

∆t

r1/γ(t)
=

∫

∞

t0

∆t

t2
< ∞

and

lim sup
t→∞

∫ t

t0

(

α(s)φ(s)Q(s)

[

k
δ∗(s)

s

]β

− K(s)C2(s)

4φ(s)βα(s)M (γ−1)/γ

)

∆s

= lim sup
t→∞

∫ t

t0

(s + 3)1/3 (s + σ(s))

(

3

s + 3

)1/3
1
3
√

3
∆s

= lim sup
t→∞

∫ t

t0

(s + σ(s)) ∆s = lim sup
t→∞

∫ t

t0

(

s2
)∆

∆s

= lim sup
t→∞

s2 |tt0= lim sup
t→∞

(t2 − t20) = ∞.
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Thus, (1.4) and (3.2) hold. Moreover, for every constant d ≥ t0, we can find 0 < A < 1

and tA ≥ d such that t − d ≥ At for t ∈ [tA,∞). Now, we get

∫

∞

d

1

r1/γ(s)

(
∫ s

d

Q(u)∆u

)1/γ

∆s

=

∫

∞

d

1

s2

∫ s

d

(u + 3)1/3 (u + σ(u)) (1 − p(u + 1))1/3∆u∆s

=

∫

∞

d

1

s2

∫ s

d

(u + 3)1/3 (u + σ(u)) (1 − u

u + 3
)1/3∆u∆s

=

∫

∞

d

1

s2

∫ s

d

(u + 3)1/3 (u + σ(u))
3
√

3

(u + 3)1/3
∆u∆s

=

∫

∞

d

3
√

3(s2 − d2)

s2
∆s =

∫

∞

d

3
√

3(s − d)(s + d)

s2
∆s

≥ 2
3
√

3dA

∫

∞

tA

1

s
∆s = ∞

which implies that (3.21) holds. Hence Eq. (3.27) is oscillatory by Theorem 3.3.
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