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ABSTRACT. The purpose of this work is to develop a Monotone Method for the anti-periodic
boundary value problem with 0 < q < 1 on J = [0, T ],

cDqu(t) = f(t, u(t)) + g(t, u(t)),

u(0) = −u(T ),

where f(t, u) is increasing in u and g(t, u) is decreasing in u.

We will define coupled lower and upper solutions v0(t) and w0(t). Next we will construct two
sequences {vn(t)}, {wn(t)} which converge uniformly and monotonically to coupled minimal and
maximal solutions ρ and r, respectively; i.e. ρ and r satisfy the system

cDqρ(t) = f(t, ρ(t)) + g(t, r(t)), ρ(0) = −r(T ),
cDqr(t) = f(t, r(t)) + g(t, ρ(t)), r(0) = −ρ(T ).

Our iterates are solutions of initial value problems.

AMS (MOS) Subject Classification. 26A33, 34A08, 34B15

1. INTRODUCTION

The study of fractional differential equations has become a popular subject in

recent years because they frequently represent more appropriate models than their

counterpart with integer derivatives, see [3, 4, 6, 12, 13] for more information. A useful

technique for solving ordinary differential equations is the study on the existence of

solutions by using upper and lower solutions, which is well established in [5]. These

methods have now been applied to fractional differential equations, see the book [6]

and the papers [1, 2, 7, 8, 9, 10, 11, 14, 15, 16] for recent work.

In this paper we recall a comparison theorem from [6] for a Caputo fractional

differential equation of order q, 0 < q < 1, with initial condition. We will define and

use coupled lower and upper solutions combined with a generalized monotone method
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of initial value problems to prove the existence of coupled minimal and maximal anti-

periodic solutions. This monotone method was first introduced in [17] for ordinary

differential equations with anti-periodic boundary conditions. The monotone itera-

tive techniques presented in [5] for boundary value problems, where the iterates are

solutions of linear equations with boundary conditions, do not apply for anti-periodic

boundary conditions. Another advantage of our method is that it does not require

the Mittag-Leffler function in our computations. The result developed provides nat-

ural sequences which converge uniformly and monotonically to coupled minimal and

maximal solutions of the anti-periodic boundary value problem.

2. PRELIMINARIES

In this section we state the definitions and results concerning the Caputo deriv-

ative of fractional order that are required to prove our main result.

Consider the initial value problem of the form

(2.1)
cDqu(t) = f(t, u(t)),

u(0) = u0.

Here, cDqu(t) is the Caputo derivative of order n−1 < q ≤ n for t ∈ [a, b], where

n is a positive integer, which is defined in [3, 4, 6, 13] as

cDqu(t) =
1

Γ(n− q)

∫ t

a

(t− s)n−q−1u(n)(s)ds.

Throughout this work we will consider the Caputo derivative of order q, where

0 < q < 1.

We recall the following definitions.

Definition 2.1. Let 0 < q < 1 and p = 1 − q. If G is an open set in R, then we

denote by Cp ([a, b], G) the function space

Cp ([a, b], G) =
{
u ∈ C ((a, b], G)

∣∣(t− a)pu(t) ∈ C ([a, b], G)
}
.

Remark 2.2. In [4] it is shown that if 0 < q < 1, G is an open set of R, and

f : (a, b] × G → R is such that for any u ∈ G, f ∈ Cp, then u satisfies (2.1) if and

only if it satisfies the Volterra fractional integral equation

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

a

(t− s)q−1f(s, u(s))ds.

In particular, this relationship is true if f : [a, b]×G→ R is continuous.

Definition 2.3. The two parameter Mittag-Leffler function is defined as

Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β)
,
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and the one parameter Mittag-Leffler function is defined as

Eα(t) = Eα,1(t).

Remark 2.4. E1(t) = et.

In [6], it was shown that the solution to (2.1) for f(t, u(t)) = Mu(t) + f(t) where

M is a real number and f ∈ C ([0, T ],R), i.e. a non homogeneous linear fractional

differential equation, is given by

(2.3) u(t) = u0Eq (Mtq) +

∫ t

0

(t− s)q−1Eq,q (M(t− s)q) f(s)ds t ∈ [0, T ],

where Eq(t) and Eq,q(t) are the one parameter and two parameter Mittag-Leffler

functions, respectively.

Consider now the non homogeneous linear problem with anti-periodic boundary

conditions,

(2.4)
cDqu(t) = Mu(t) + f(t),

u(0) = −u(T ).

We begin by stating the solution of (2.1) given by (2.3).

Setting t = T , and u(0) = −u(T ) = u0, we get

u(T ) = u0Eq (MT q) +

∫ T

0

(T − s)q−1Eq,q (M(T − s)q) f(s)ds.

Hence, u(0) = −u(T ) = u0 implies that

u0 = −u0Eq (MT q)−
∫ T

0

(T − s)q−1Eq,q (M(T − s)q) f(s)ds,

and consequently,

u0 (1 + Eq (MT q)) = −
∫ T

0

(T − s)q−1Eq,q (M(T − s)q) f(s)ds.

Thus,

u0 = − 1

1 + Eq (MT q)

∫ T

0

(T − s)q−1Eq,q (M(T − s)q) f(s)ds,

and the solution to the linear boundary value problem (2.4) is given by

(2.5)
u(t) = − Eq (MT q)

1 + Eq (MT q)

∫
T

0
(T − s)q−1Eq,q (M(T − s)q) f(s)ds

+

∫
t

0
(t− s)q−1Eq,q (M(t− s)q) f(s)ds t ∈ [0, T ].

We show numerical results for two linear anti-periodic boundary value problems

of the form (2.4), with q = 1
2

and using the representation found in (2.5).

We approximate the solution by using

E 1
2
(t) = et

2

erfc(−t),
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where

erfc(t) =
2√
π

∫ ∞
t

e−s
2

ds,

Using this expression for E 1
2
(t), we can derive

E 1
2
, 1
2
(t) =

1√
π

+ tet
2

erfc(−t).

Example 2.5. If q = 1
2
, M = 1

2
and f(t) = t2, we obtain on the interval [0, 2π] the

following graph.

Figure 1. u(0) = −u(2π) = −15.9419

Example 2.6. Solution for q = 1
2
, M = 1

2
and h(t) = et on [0, 2π].

Figure 2. u(0) = −u(2π) = −103.818

Now we are ready to state some comparison results relative to initial value prob-

lems with the Caputo derivative.

Lemma 2.7. Let m(t) ∈ C1([0, T ],R). If there exists t1 ∈ [0, T ] such that m(t1) = 0

and m(t) ≤ 0 on [0, t1], then it follows that

cDqm(t1) ≥ 0.

Proof. Let t1 ∈ [0, T ], then using the relation between the Caputo derivative and

Riemann-Liouville derivative given by

cDqu(t) = Dq

[
u(s)−

n−1∑
k=0

u(k)(a)

k!
(s− a)k

]
(t),



MONOTONE METHOD. ANTI-PERIODIC BOUNDARY VALUE PROBLEM 483

where Dq denotes the Riemann-Liouville derivative, we have that

cDqm(t1) = Dqm(t1)−
m(0)

Γ(1− q)
t−q ≥ Dqm(t1).

Since this lemma was proven in [2] for the Riemann-Liouville derivative, we have

that Dqm(t1) ≥ 0 implies cDqm(t1) ≥ 0, and the proof is complete.

Remark 2.8. In [6] they proved the above result by assuming that m(t) is Hölder

continuous of order λ > q. Although the proof is correct, it is not useful in the

monotone method or any iterative method because we will not be able to prove that

each of those iterates are Hölder continuous of order λ > q.

The above result will allow us to prove the following comparison theorem.

Theorem 2.9. Let J = [0, T ], f ∈ C[J × R,R], v, w ∈ C1[J,R], and for t ∈ J the

following inequalities hold true,

(2.6)
cDqv(t) ≤ f(t, v(t)), v(0) ≤ u0,
cDqw(t) ≥ f(t, w(t)), w(0) ≥ u0.

Suppose further that f(t, u) satisfies the following Lipschitz condition,

(2.7) f (t, x)− f (t, y) ≤ L(x− y), for x ≥ y and L > 0,

then v(0) ≤ w(0) implies that

v(t) ≤ w(t), for 0 ≤ t ≤ T.

Proof. Assume first without loss of generality that one of the inequalities in (2.6) is

strict, say cDqv(t) < f(t, v(t)), and v0 < w0 where v(0) = v0 and w(0) = w0. We will

show that v(t) < w(t) for t ∈ J .

Suppose, to the contrary, that there exists t1 such that 0 < t1 ≤ T for which

v(t1) = w(t1), and v(t) ≤ w(t), , for t < t1.

Setting m(t) = v(t) − w(t) it follows that m(t1) = 0 and m(t) ≤ 0 for t < t1.

Then by Lemma 2.7 we have that cDqm(t1) ≥ 0. Thus

f (t1, v(t1)) >
cDv(t1) ≥ cDw(t1) ≥ f (t1, w(t1)) ,

which is a contradiction to the assumption v(t1) = w(t1). Therefore v(t) < w(t).

Now assume that the inequalities (2.6) are non strict. We will show that v(t) ≤
w(t).

Set wε(t) = w(t) + ελ(t), where ε > 0 and λ(t) = Eq[2Lt
q], where Eq is the

one parameter Mittag-Leffler function. This implies that wε(0) = w0 + ε > w0 and

wε(t) > w(t).
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Using (2.6) and the Lipschitz condition (2.7), we find that

cDqwε(t) = cDqw(t) + εcDqλ(t)

≥ f (t, w(t)) + 2εLλ(t)

≥ f (t, wε(t))− εLλ(t) + 2εLλ(t)

= f(t, wε(t)) + εLλ(t)

> f (t, wε(t)) , 0 < t ≤ T .

Here we have utilized the fact that λ(t) is the solution of the Initial Value Problem

cDqλ(t) = 2Lλ(t), λ(0) = 1 > 0.

Clearly there is no assumption on the growth of L > 0. Applying now the result

for strict inequalities to v(t), wε(t), we get that v(t) < wε(t) for t ∈ J , for every ε > 0

and consequently making ε→ 0, we get that v(t) ≤ w(t) for t ∈ J .

The following corollary will be useful in our main results.

Corollary 2.10. Let m ∈ C1[J,R] be such that

cDqm(t) ≤ Lm(t),

m(0) = m0.

Then we have from the previous theorem the estimate

m(t) ≤ m0Eq(Lt
q), for 0 ≤ t ≤ T and L > 0.

The result of the above corollary is still true even if L = 0, which we state

separately and prove it.

Corollary 2.11. Let cDqm(t) ≤ 0 on [0, T ]. Then m(t) ≤ 0, if m(0) ≤ 0.

Proof. By definition of cDqm(t) and by hypothesis,

cDqm(t) =
1

Γ(1− q)

∫ t

0

(t− s)−qm′(s)ds ≤ 0,

which implies that m′(t) ≤ 0, and consequently m(t) is decreasing, on [0, T ]. There-

fore, m(t) ≤ m(0) ≤ 0 on [0, T ].

Note that the above result may not be true for the Riemann-Liouville derivative.

We recall a comparison result similar to the one given in [6] for periodic boundary

conditions. As in Theorem 2.9, the proof does not require Hölder’s continuity.
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Theorem 2.12. Let J = [0, T ], F ∈ C[J×R,R], v, w ∈ C1[J,R], and for 0 < t ≤ T ,

cDqv(t) ≤ F (t, v(t)), v(0) ≤ −w(T ), and

cDqw(t) ≥ F (t, w(t)), w(0) ≥ −v(T ).

Suppose further that F (t, u(t)) is decreasing in u, then v(0) ≤ w(0) implies that

v(t) ≤ w(t), for 0 ≤ t ≤ T.

Proof. Suppose, to the contrary, that there exists t0 ∈ J such that

v(t0) = w(t0) + ε and v(t) ≤ w(t) + ε,

for 0 ≤ t ≤ t0 ≤ T , and let m(t) = v(t)− w(t)− ε.
If t0 ∈ (0, T ], then m(t0) = 0 and, consequently, m(t) ≤ 0 for 0 ≤ t ≤ t0. By

Lemma 2.7 we obtain that cDqm(t0) ≥ 0 and cDqv(t0) ≥ cDqw(t0). By hypothesis

we get that

F (t0, v(t0)) ≥ cDqv(t0) ≥ cDqw(t0) ≥ F (t0, w(t0))

But this is a contradiction to the hypothesis that F is decreasing in u because

we had assumed that v(t0) > w(t0).

Now assume that t0 = 0, then we have that

−w(T ) ≥ v(0) = w(0) + ε ≥ −v(T ) + ε.

Thus, v(T ) ≥ w(T ) + ε and v(T ) > w(T ). Proceeding as in the previous part of

the proof, we get a contradiction and the proof is complete.

Two important cases of this theorem are the following, which are useful to develop

a monotone method for the Caputo fractional differential equation with anti-periodic

boundary conditions by using solutions of linear anti-periodic boundary value prob-

lems.

Corollary 2.13. Let m ∈ C1[J,R] be such that

cDqm(t) ≤ −Mm(t),

m(0) ≤ m(T ),

for 0 ≤ t ≤ T and M > 0. Then m(t) ≤ 0 for 0 ≤ t ≤ T .

Similarly, if

cDqm(t) ≥ −Mm(t),

m(0) ≥ m(T ),

for 0 ≤ t ≤ T and M > 0. Then m(t) ≥ 0 for 0 ≤ t ≤ T .

Remark 2.14. It is to be noted that in the proof of these equivalent results from [6],

we use Lemma 2.7 which does not require the Hölder’s continuity assumption.
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3. MAIN RESULTS

In this section we will develop a generalized monotone method for the nonlinear

anti-periodic boundary value problem (3.1), given below, by using coupled upper and

lower solutions and the corresponding initial value problem (2.1) where f does not

depend on u, and u(t) can be represented uniquely by

u(t) = u0 +
1

Γ(q)

t∫
0

(t− s)q−1f(s)ds.

For that purpose consider the nonlinear anti-periodic boundary value problem of

the form

(3.1)
cDqu(t) = f(t, u(t)) + g(t, u(t)),

u(0) = −u(T ),

where f, g ∈ C[J × R,R] and u ∈ C1[J × R].

If u ∈ C1[0, T ] satisfies the fractional differential equation

cDqu(t) = f(t, u(t)) + g(t, u(t)),

and u is such that u(0) = −u(T ) for t ∈ J , then u is an anti-periodic solution of

(3.1).

Throughout the rest of this paper, we will assume that f is increasing in u and

g is decreasing in u for t ∈ J .

Here below we provide the definition of coupled lower and upper solutions of

(3.1).

Definition 3.1. Let v0, w0 ∈ C1[J,R]. Then v0 and w0 are said to be coupled lower

and upper solutions for (3.1), respectively, if

(3.2)
cDqv0(t) ≤ f(t, v0(t)) + g(t, w0(t)), v0(0) ≤ −w0(T ),
cDqw0(t) ≥ f(t, w0(t)) + g(t, v0(t)), w0(0) ≥ −v0(T ).

We will develop the generalized monotone method for the anti-periodic boundary

value problem via the initial value problem approach; that is, a method introduced

first in [17] where the iterates are solutions to initial value problems. Observe that,

since the iterates are not solutions of linear boundary value problems of the form (2.5),

there is no need to compute the Mittag-Leffler function on each iterate. We obtain

natural sequences which converge uniformly and monotonically to coupled minimal

and maximal solutions of (3.1).

We will state the following theorem related to coupled lower and upper solutions

of the form (3.2).
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Theorem 3.2. Assume that

(A1) v0, w0 are coupled lower and upper solutions for (3.1) with v0(t) ≤ w0(t) in

J ; and

(A2) f, g ∈ C[J × R,R], where f (t, u(t)) is increasing in u and g (t, u(t)) is

decreasing in u.

If u is a solution of (3.1) such that v0(t) ≤ u(t) ≤ w0(t) in J , then the sequences

defined by

(3.3)
cDqvn+1(t) = f

(
t, vn(t)

)
+ g
(
t, wn(t)

)
,

vn+1(0) = −wn(T ),

and

(3.4)
cDqwn+1(t) = f

(
t, wn(t)

)
+ g
(
t, vn(t)

)
,

wn+1(0) = −vn(T ).

are such that

v0 ≤ v1 ≤ · · · ≤ vn ≤ vn+1 ≤ u ≤ wn+1 ≤ wn ≤ · · · ≤ w1 ≤ w0,

where vn(t) → ρ(t) and wn(t) → r(t) uniformly and monotonically in C1[J,R], and

ρ, r are coupled minimal and maximal solutions of (3.1), respectively; i.e., ρ and r

satisfy the coupled system

cDqρ(t) = f(t, ρ(t)) + g(t, r(t)),

ρ(0) = −r(T ) on J,

and

cDqr(t) = f(t, r(t)) + g(t, ρ(t)),

r(0) = −ρ(T ) on J,

with ρ ≤ u ≤ r.

Proof. By hypothesis, v0 ≤ u ≤ w0. We will show that v0 ≤ v1 ≤ u ≤ w1 ≤ w0.

It follows from (3.2) that

cDqv0(t) ≤ f(t, v0(t)) + g(t, w0(t)), v0(0) ≤ −w0(T ),

cDqw0(t) ≥ f(t, w0(t)) + g(t, v0(t)), w0(0) ≥ −v0(T ),

and by (3.3), we get that

cDqv1 = f(t, v0) + g(t, w0),

v1(0) = −w0(T ).

Therefore, v0(0) ≤ −w0(T ) = v1(0). If we let p = v0 − v1, then p(0) ≤ 0 and,

cDqp = cDqv0 − cDqv1
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≤ f (t, v0) + g (t, w0)− f (t, v0)− g (t, w0)

= 0.

Since cDqp ≤ 0 and p(0) ≤ 0, by an application of Corollary 2.11 we have that

p(t) ≤ 0 and, consequently, v0(t) ≤ v1(t) on J . By a similar argument we can show

that v1(t) ≤ u, u ≤ w1(t) and w1(t) ≤ w0(t). Thus, v0 ≤ v1 ≤ u ≤ w1 ≤ w0.

Now we will show that vk ≤ vk+1 for k ≥ 1.

Assume that

vk−1 ≤ vk ≤ u ≤ wk ≤ wk−1,

for k > 1.

Let p = vk − vk+1. Then

vk(0) = −wk−1(T ) ≤ −wk(T ) = vk+1(0),

so p(0) ≤ 0. By the increasing nature of f and the decreasing nature of g it follows

that

cDqp = cDqvk − cDqvk+1

= f (t, vk−1) + g (t, wk−1)− f (t, vk)− g (t, wk)

≤ 0.

Similarly, by Corollary 2.11 we have that p(t) ≤ 0 and consequently vk(t) ≤
vk+1(t).

By a similar argument we can show that wk+1 ≤ wk. Using the hypothesis that

v0(t) ≤ u(t) ≤ w0(t) on J , the above argument and induction we can show that

vk+1 ≤ u ≤ wk+1. Therefore for n > 0,

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ u ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0.

Now we have to show that the sequences converge uniformly. We will use the

Arzela-Ascoli Theorem by showing that the sequences are uniformly bounded and

equicontinuous.

First we show uniform boundedness. By hypothesis both v0(t) and w0(t) are

bounded on [0, T ], then there exists M > 0 such that for any t ∈ [0, T ], |v0(t)| ≤ M

and |w0(t)| ≤M . Since v0(t) ≤ vn(t) ≤ w0(t) for each n > 0, it follows that

0 ≤ vn(t)− v0(t) ≤ w0(t)− v0(t),

and consequently {vn(t)} is uniformly bounded. By a similar argument {wn(t)} is

also uniformly bounded.
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To prove that {vn(t)} is equicontinuous, let 0 ≤ t1 ≤ t2 ≤ T . Then for n > 0,

|vn(t1)− vn(t2)| =

=

∣∣∣∣∣−wn−1(T ) +
1

Γ(q)

∫ t1

0

(t1 − s)q−1 [f (s, vn−1(s)) + g (s, wn−1(s))] ds

+ wn−1(T )− 1

Γ(q)

∫ t2

0

(t2 − s)q−1 [f (s, vn−1(s)) + g (s, wn−1(s))] ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

Γ(q)

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1] [f (s, vn−1(s)) + g (s, wn−1(s))] ds

− 1

Γ(q)

∫ t2

t1

(t2 − s)q−1 [f (s, vn−1(s)) + g (t, wn−1(t))] ds

∣∣∣∣∣
≤ 1

Γ(q)

∫ t1

0

∣∣∣[(t1 − s)q−1 − (t2 − s)q−1] [f (s, vn−1(s)) + g (s, wn−1(s))]
∣∣∣ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1
∣∣∣[f (s, vn−1(s)) + g (t, wn−1(t))]

∣∣∣ds.
Since {vn(t)} and {wn(t)} are uniformly bounded and f (t, u(t)) and g (t, u(t))

are continuous on [0, T ], there exists M̄ independent of n such that

1

Γ(q)

∫ t1

0

∣∣∣[(t1 − s)q−1 − (t2 − s)q−1] [f (s, vn−1(s)) + g (s, wn−1(s))]
∣∣∣ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1
∣∣∣[f (s, vn−1(s)) + g (t, wn−1(t))]

∣∣∣ds
≤ M̄

Γ(q)

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]ds+
M̄

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

= − M̄

qΓ(q)
(t1 − s)q

∣∣∣t1
0

+
M̄

qΓ(q)
(t2 − s)q

∣∣∣t1
0
− M̄

qΓ(q)
(t2 − s)q

∣∣∣t2
t1

=
M̄

Γ(q + 1)
tq1 +

M̄

Γ(q + 1)
(t2 − t1)q −

M̄

Γ(q + 1)
tq2 +

M̄

Γ(q + 1)
(t2 − t1)q

≤ 2M̄

Γ(q + 1)
(t2 − t1)q =

2M̄

Γ(q + 1)
|t1 − t2|q.

Thus, for any ε > 0 there exists δ > 0 independent of n such that for each n,

|vn(t1)− vn(t2)| < ε,

provided that |t1 − t2| < δ.

Similarly we can prove that {wn(t)} is equicontinuous.

We have obtained that {vn(t)} and {wn(t)} are uniformly bounded and equicon-

tinuous on [0, T ]. Hence by the Arzela-Ascoli Theorem there exist subsequences

{vnk
(t)} and {wnk

(t)} which converge uniformly to ρ(t) and r(t), respectively. Since

the sequences are monotone, the entire sequences converge uniformly.
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We have shown that the sequences converge in C[0, T ]. In order to show that

they converge in C1[0, T ], observe that since each vn is constructed as follows

cDqvn = f(t, vn−1) + g(t, wn−1),

vn(0) = −wn−1(T ),

and we get that

vn(t) = −wn−1(T ) +
1

Γ(q)

t∫
0

(t− s)q−1[f(s, vn−1(s)) + g(s, wn−1(s))]ds.

Taking limits when n→∞, we obtain by the Lebesgue Dominated Convergence

theorem that

ρ(t) = −r(T ) +
1

Γ(q)

t∫
0

(t− s)q−1[f(s, ρ(s)) + g(s, r(s))]ds.

Hence vn(t)→ ρ(t) in C1[0, T ]. Furthermore, the above expression is equivalent to

cDqρ = f(t, ρ) + g(t, r) on J,

ρ(0) = −r(T ).

By a similar argument wn(t)→ r(t) in C1[0, T ] and it can be shown that

cDqr = f(t, r) + g(t, ρ) on J,

r(0) = −ρ(T ).

Since vn ≤ u ≤ wn on [0, T ] for all n, we get that ρ ≤ u ≤ r on [0, T ] which shows

that ρ and r are coupled minimal and maximal solutions of (3.1), respectively. This

completes the proof.

4. NUMERICAL RESULTS

In this section we present an example that illustrates the result from Theorem

3.2.

Example 4.1. Consider the following anti-periodic boundary value problem

(4.1)
cDqu = u4 − u2 on J = [0, T ], for any T > 0

u(0) = −u(T ).

The function h(u) = u4−u2 is increasing for u > 1√
2

and decreasing for u < − 1√
2
.

Then v0 ≡ −1 and w0 ≡ 1 are coupled lower and upper solutions that satisfy (3.2),

in fact

0 = cDqv0 ≤ v2
0 − v4

0 = 1− 1 = 0

−1 = v0(0) ≤ −w0(T ) = −1,
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and

0 = cDqw0 ≥ v2
0 − v4

0 = 1− 1 = 0

1 = w0(0) ≥ −v0(T ) = 1,

We construct the sequences according to Theorem 3.2 and obtain for all n > 0

that

v0 = v1 = v2 = · · · = vn = · · · = −1 and w0 = w1 = w2 = · · · = wn = · · · = 1.

Thus ρ = −1 and r = 1 are coupled minimal and maximal solutions of (4.1). Observe

that u ≡ 0 is a solution of (4.1), where v0 = ρ < u < r = w0.
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