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1. Introduction

Let ν be a positive constant and let

J(x) = x1/2−νJν−1/2(x), 0 ≤ x < ∞,

where

Jα(x) =
∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + α + 1)

(x

2

)α+2k

is the usual Bessel function of order α. For a given real function F belonging to

L1(0,∞), we define for u, v > 0

ρ(u, v) =

∫ ∞

0

F (t)J(ut)J(vt)t2νdt.

For A ≥ 1, then

(1.1) (TAh)(x) =

∫ A

0

h(y)ρ(x, y)y2νdy, 0 < x ≤ A,

is the (finite section) Toeplitz integral operator. Using Lemma 6 below, ρ(u, v) exists

and xνyνρ(x, y) is bounded on (0,∞). It is easy then to see that TA : L2(0, A; x2ν) →
L2(0, A; x2ν). The Hankel transform does not have a standard definition; we will define

it on L1(0,∞; x2ν) by

f̂(x) =

∫ ∞

0

f(t)J(xt)t2ν dt
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which differs only slightly from other sources, including [7], [12], [15]. In particular,

our definition differs from [7] by a multiplicative constant.

We are interested in formulating conditions on F (t) which allow the determination

of the asymptotic behavior of the eigenvalues of TA as A → ∞.

This problem was previously considered by J. R. Davis in [3] and [4]. Although

our definition of TA differs from that of Davis, so does our definition of ρ(x, y) and

J(x), and in fact our TA is the same as his. Using methods in complex analysis, he

found in [3] that for F (t) satisfying the following three conditions:

C1: F (t) is a bounded, continuous, real function defined on [0,∞) such that

t2F (t) is bounded as t → ∞;

C2: F (0) = M and F (t) < M for t > 0;

C3: F (t) is twice continuously differentiable in a one sided neighborhood of

0, F ′(0) = 0, and F ′′(0) = −2σ2 for some constant σ.

then the kth largest eigenvalue λk,A of the associated Toeplitz integral operator satis-

fies

(1.2) lim
A→∞

A2(M − λk,A) = σ2z2
k ,

where 0 < z1 < z2 < · · · are the positive zeros of the Bessel function Jν−1/2(z). In

his later paper [4], he extended his results for functions satisfying these more general

conditions:

C4: F (t) is a bounded, real function in L1(0,∞; t2ν);

C5: F (0) = M is the unique maximum and lim supt→∞ F (t) < M ;

C6: limt→0+
F (0)−F (t)

tω
= σ2 for some constant ω > 0 and σ > 0.

In this case he was able to describe an abstractly defined operator, with positive

eigenvalues 0 < µ1 ≤ µ2 ≤ · · · , so that the kth largest eigenvalue λk,A of the Toeplitz

integral operator satisfies:

(1.3) lim
A→∞

Aω(F (0) − λk,A) = σ2µk.

Note that C4 and C5 imply F (0) = M > 0, while C1 and C2 only imply M ≥ 0.

We suspect that the proof in [3] also requires M > 0 and that its omission was an

oversight.

In our treatment of these theorems below, we will assume that σ > 0 so that

σ2 > 0. We suspect this is assumed in [3], without emphasis. We shall also assume

that M > 0.

Ideally, the result in [4] should give the result in [3] in the case ω = 2. Although

C6 is more general than C3 in this case, the comparison of the integrability condition

of C6, which varies with ν, with C4 is curious. For example, for ν > 1, C6 is more
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restrictive than C3. Also, it is not clear how the result in [4] is related to the zeros

of the Bessel function Jν−1/2(z).

Our first goal has been to understand these results from a different point of view

and to obtain more specific information about the abstract operator whose eigenvalues

µk appear in the result in [4]. Our results apply only to the case that ω = 2n is an even

integer and are then only partially successful, providing upper bounds on a limsup

for the cases n > 1. In these cases, we will exhibit a specific ordinary differential

operator L̃n in a specific Hilbert space and provide conditions on F (t) for which

lim sup
A→∞

A2n(F (0) − λk,A) ≤ σ2Λk,

where Λk are the eigenvalues of L̃n arranged in nondecreasing order with repetitions

for multiple eigenvalues. Our conjecture is that equality holds in this result, but we

have been able to prove this only for the case n = 1. The key result is given in the first

three lemmas in Section 4 and we have been unable to find appropriate extensions to

the case n > 1. Thus, in the case n = 1, we will recover the result of [3] about the

zeros of the Bessel functions, under the following hypotheses. For FS(t) = (1 + t2)−1,

H1: F (t) is bounded and absolutely integrable on (0,∞);

H2: F (0) − F (t) ≥ q2(1 − FS(t)) for t > 0, for some constant q > 0;

H3: limt→0+
F (0)−F (t)

t2
= σ2 for some constant σ.

It is easy to see that C1 implies H1, C3 implies H3, and if F (0) = M > 0, then C1

and C2 imply H2. Even for our inequality result in the case ω = 2n, we require only

the integrability hypothesis H1; the integrability requirement C4 with respect to the

weight function t2ν remains a mystery for us.

We follow closely the methods used in [14], which proved similar results for

Toeplitz operators associated with the Fourier transform. These methods were previ-

ously used on a discrete form of the problem in the case of Fourier series by Parter in

[10] and [11] and later by Baxley in [1], in a case involving orthogonal polynomials.

Our second goal was born in an effort, suggested by R. A. Askey, to solve a similar

problem involving the Jacobi functions. For α, β ≥ −1/2 and for 0 ≤ x, t < ∞, the

Jacobi functions are defined by

(1.4) φt(x) = φ
(α,β)
t (x) = 2F1

(
1

2
(ρ + it),

1

2
(ρ − it); α + 1;−(sinh x)2

)
,

where ρ = α + β + 1 and 2F1 denotes the usual hypergeometric function. We recall

some facts from [6]. The Jacobi functions satisfy the differential equation

(1.5) −∆(x)−1(∆(x)φ′
t(x))′ = (ρ2 + t2)φt(x),

where

(1.6) ∆(x) = 22ρ(sinh x)2α+1(cosh x)2β+1.
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The Jacobi transform is given by

(1.7) f̂(t) =
1√
2π

∫ ∞

0

f(x)φt(x)∆(x)dx,

for suitable functions f . The inverse transform is then

(1.8) f(x) =

∫ ∞

0

f̂(t)φt(x)dν(t),

where

(1.9) dν(t) =
1√
2π

|c(t)|−2dt

and

(1.10) c(t) =
2ρ−itΓ(it)Γ(α + 1)

Γ(1
2
(ρ + it))γ(1

2
(ρ + it) − β)

.

For the present purpose, it is convenient to change these formulas slightly. We

put

(1.11) ωt(x) = (φ0(x))−1φt(x).

Using (1.5), it is easy to verify that

(1.12) −(p(x))−1(p(x)ω′
t(x))′ = t2ωt(x),

where

(1.13) p(x) = φ2
0(x)∆(x).

We put

dµ(x) =
1√
2π

p(x)dx

and replace (1.7) by

(1.14) f̂(t) =

∫ ∞

0

f(x)ωt(x)dµ(x).

Then the inverse transform takes the new form

(1.15) f(x) =

∫ ∞

0

f̂(t)ωt(x)dν(t).

For an appropriate real function F (t), the finite Toeplitz integral operator of

Jacobi type is

(1.16) (TAh)(x) =

∫ A

0

h(y)ρ(x, y)dµ(y), 0 < x ≤ A,

where

ρ(x, y) =

∫ ∞

0

F (t)ωt(x)ωt(y)dν(t).

Although a large part of the work below in the Hankel case can be successfully imple-

mented for the Jacobi case, there is a central difficulty which we have not overcome.
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We will make some concluding comments about this difficulty in the final section

below.

2. Preliminary Results

We first establish basic notation. We will be using three particular Hilbert spaces,

namely L2(0, 1; x2ν), L2(0, A; x2ν) for A > 0, and L2(0,∞; x2ν). We will use (· , ·) and

‖ · ‖ to denote the inner product and norm of L2(0, 1; x2ν), (· , ·)A and ‖ · ‖A to denote

the inner product and norm of L2(0, A; x2ν), and 〈· , ·〉 to denote the inner product

of L2(0,∞; x2ν).

As usual, C∞(a, b) will denote the set of infinitely differentiable functions on the

interval (a, b) and C∞
0 (a, b) will denote those functions of C∞(a, b) having compact

support in (a, b).

Elementary properties of Bessel functions will also be needed. In particular we

will use the following identities, which can be found in [8] and [13].

Lemma 2.1.
d

dx
[xαJα(x)] = xαJα−1(x),

d

dx
[x−αJα(x)] = −x−αJα+1(x),

d

dx
[x−αKα(x)] = −x−αKα+1(x).

We will need information on the asymptotic behavior of Bessel functions. The

following lemma comes from [8, pg. 122–123], [13, pg. 199–202].

Lemma 2.2.
√

xJα(x) is bounded as x → ∞, and limx→∞ ex
√

xKα(x) =
√

π
2
.

We will use the following two facts, first proved in [7]. The first lemma is a fairly

simple application of the Bessel identities from Lemma 2.1.

Lemma 2.3. Let (τf)(x) = − 1
x2ν (x2νf ′(x))′. Then (τJ)(xt) = t2J(xt).

To avoid confusion, we will sometimes write τx rather than τ to indicate that

derivatives are with respect to x. The next lemma is the inversion theorem for the

Hankel transform from [7].

Lemma 2.4. If f, f̂ ∈ L1(0,∞; x2ν), then f may be redefined on a set of measure

zero so that it is continuous on (0,∞) and then

f(x) =

∫ ∞

0

f̂(t)J(xt)t2νdt.
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Next is the Parseval Theorem for Hankel transforms. The proof is an application

of Fubini’s Theorem and the inversion theorem and can be found in [15]. However,

some translation is required due to the differences in the definition of the Hankel

transform.

Theorem 2.5. If f, ĝ ∈ L1(0,∞; x2ν), then
∫ ∞

0

f(x)g(x)x2νdx =

∫ ∞

0

f̂(x)ĝ(x)x2νdx.

A critical role will be played by the Friedrichs extension of an unbounded sym-

metric operator. The following statement concerning the Friedrichs extension is found

in [5, Section XII.5].

Theorem 2.6. If an operator T , with a dense domain, is symmetric and semi-

bounded, then there exists a particular self-adjoint extension which preserves the lower

bound, called the Friedrichs extension and denoted T̃ . If g ∈ D(T̃ ), there exists a se-

quence {gn} ⊂ D(T ) with ‖gn − g‖ → 0 and (Tgn, gn) → (T̃ g, g) as n → ∞.

The ordinary differential operator which is central in our result is described in

detail in [2]. It is obtained by first defining Lnu = τnu for u ∈ D(Ln) where

D(Ln) =
{
u(x) ∈ C∞(0, 1) : u = 0 near x = 1, , (τn−1u)′ = 0 near x = 0,

and for n ≥ 2, x2νu′, x2ν(τu)′, . . . , x2ν(τn−2u)′ → 0 as x → 0+
}

,

and then obtaining L̃n as the Friedrichs extension of Ln in the Hilbert space L2(0, 1; x2ν).

Then L̃n has a compact inverse, its spectrum consists only of positive eigenvalues of

finite multiplicity, and the boundary condition description of this unbounded selfad-

joint operator is given by

Theorem 2.7. Let Ln
∗ be the Hilbert space adjoint of Ln. Then D(L̃n) = {u ∈

D(Ln
∗) : u(i)(1) = 0 for i = 0, 1, . . . , n − 1}

In particular, the eigenfunctions and eigenvalues of L̃1 are known:

Theorem 2.8. The eigenvalues Λk of L̃1 have multiplicity one and Λk = z2
k, where zk

is the kth positive zero of the Bessel function Jν−1/2. An eigenfunction corresponding

to Λk is x1/2−νJν−1/2(zkx).

We will also need a result about Rayleigh quotients which guarantees the existence

of positive eigenvalues for compact self-adjoint operators and provides a “maximin”

characterization of these eigenvalues. Since we could find a precise statement of

this result in the literature only for the finite dimensional case concerning symmetric

matrices, we also provide a proof. The result easily found in the literature for compact

self-adjoint operators is a complementary “minimax” statement.
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Theorem 2.9. Suppose T is a compact self-adjoint operator in a Hilbert space H,

and let n be a positive integer. If there exists a subspace M of dimension n for which

inf
f∈M

{
(Tf, f)

(f, f)

}
> 0,

then T has a least n positive eigenvalues, counting multiplicities. Moreover, if λ1 ≥
λ2 ≥ · · · ≥ λn > 0 are the largest n eigenvalues of T arranged in nondecreasing order,

with repetitions for multiple eigenvalues, then

λn = sup
M

[
inf
f∈M

{
(Tf, f)

(f, f)

}]
,

where M ranges over all n dimensional subspaces of H.

Proof. We prove the contrapositive of the first assertion. If T does not have at least

n positive eigenvalues, then by the Riesz theorem, we can decompose H into three

mutually orthogonal subspaces H1, H2, H3 with H1 being the span of the eigenvectors

of T corresponding to positive eigenvalues, H3 being the span of the eigenvectors of T

corresponding to the negative eigenvalues, and H2 the null space of T . Then by our

assumption, the dimension of H1 is less than n. Let u1, u2, . . . , un be an orthonormal

basis for the subspace M of our hypothesis. By the projection theorem, each uk may

be decomposed as a sum uk = vk + wk, with vk ∈ H1, wk orthogonal to H1. Then

v1, v2, . . . , vn are n vectors in a subspace H1 of dimension less than n. Hence there is

a nontrivial linear combination
n∑

k=1

ckvk = 0.

Since u1, u2, . . . , un are linearly independent, then u defined as

u =
n∑

k=1

ckuk =
n∑

k=1

ckvk +
n∑

k=1

ckwk =
n∑

k=1

ckwk

is a nonzero vector in M orthogonal to H1. Thus u ∈ H2 ⊕ H3 and so (Tu,u)
(u,u)

≤ 0.

To prove the second assertion, let uk be a normalized eigenvector of T cor-

responding to λk. Choosing M1 as the n dimensional subspace of H spanned by

u1, u2, . . . , un, a straightforward calculation shows that (Tf,f)
(f,f)

≥ λn, for any f ∈ M1.

Also, (Tun,un)
(un,un)

= λn. Thus, for M1, the relevant infimum equals λn. To complete the

proof, we need only show that for any n dimensional M , the relevant infimum is less

than or equal λn. Let S be the span of u1, u2, . . . , un−1. We can choose an arbitrary

orthonormal basis v1, v2, . . . , vn of M and use the projection theorem to decompose

each vk = wk + xk with wk ∈ S and xk orthogonal to S. Then w1, w2, . . . , wn all

belong to a subspace of dimension less than n and some nontrivial linear combination

n∑

k=1

ckwk = 0.
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Thus v defined as

v =
n∑

k=1

ckvk =
n∑

k=1

ckwk +
n∑

k=1

ckxk =
n∑

k=1

ckxk

is a nonzero vector in M orthogonal to S. We can decompose v = y1 + y2 + y3 with

y1 ∈ H1, y2 ∈ H2, y3 ∈ H3, and y1 orthogonal to S. Thus we have v ∈ M so that

(Tv, v)

(v, v)
=

(Ty1, y1) + (Ty2, y2) + (Ty3, y3)

(v, v)
≤ (Ty1, y1)

(v, v)
≤ λn(y1, y1)

(v, v)
≤ λn.

Lemma 2.10. xνJ(x), J(x), and J ′(x) are all bounded for x ≥ 0.

Proof. From the definition of J(x) and the series expansion of Jν−1/2(x), we have

xνJ(x) =
√

xJν−1/2(x) =

∞∑

k=0

(−1)k
√

2

Γ(k + 1)Γ(k + ν + 1/2)

(x

2

)ν+2k

so xνJ(x) is a continuous function for x ≥ 0. Further, from Lemma 2.2, Jν(x) ≤
Mx−1/2 for large x and some constant M , independent of ν. Thus xνJ(x) =

√
xJν−1/2(x)

is bounded as x → ∞. Therefore, xνJ(x) is bounded for x ≥ 0. Since J(0) = 1
Γ(ν+1/2)

,

J(x) is also bounded for x ≥ 0. Using the Bessel identity from Lemma 2.1, we have

J ′(x) = −x1/2−νJν+1/2(x). Since the asymptotic behavior of Jν(x) is independent of

ν, J ′(x) behaves similarly to J(x) as x → ∞ (in absolute value). Since J ′(0) = 0,

then by continuity J ′(x) is bounded for x ≥ 0.

Lemma 2.11. For F ∈ L1(0,∞), the integral defining ρ(u, v) converges for all u, v >

0 and ρ(u, v) is a continuous function of (u, v). Also, (uv)ν|ρ(u, v)| is bounded.

Proof. From Lemma 2.10, for u, v > 0,
∣∣∣∣
∫ ∞

0

F (t)J(ut)J(vt)t2νdt

∣∣∣∣ ≤
∫ ∞

0

∣∣F (t)(ut)νJ(ut)(vt)νJ(vt)(uv)−ν
∣∣ dt

≤ C(uv)−ν

∫ ∞

0

|F (t)|dt

for some constant C. Since F (t) ∈ L1(0,∞), the integral defining ρ(u, v) converges

for all u, v > 0. Note that this implies (uv)ν |ρ(u, v)| is bounded.

For u, v > 0 , let (un, vn) → (u, v). Then

lim
n→∞

ρ(un, vn) =

∫ ∞

0

lim
n→∞

F (t)J(unt)J(vnt)t2νdt

by the generalized Lebesgue Dominated Convergence Theorem since the absolute

value of the integrand is dominated by the integrable function C|F (t)|(unvn)−ν from

above. Then since J(x) is a continuous function, J(unt) → J(ut) and J(vnt) → J(vt)

and we have ρ(un, vn) → ρ(u, v), so ρ(u, v) is a continuous function for u, v > 0.
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Define

G = {f(x) ∈ C∞(0,∞) : x2ν(τkf)′ → 0 as x → 0+, τkf is bounded on (0,∞),

and (τkf)′ and τkf are rapidly decreasing on (0,∞) for all k ≥ 0}.
The following lemma is proved in [2] for a class of functions larger than G.

Lemma 2.12. If u ∈ G ⊂ L2(0,∞; x2ν), the following conditions hold:

1. τu ∈ G
2. For i + j = k + l, 〈τ iu, τ ju〉 = 〈τku, τ lu〉
3. For 0 < x1 < x2 < ∞, |u(x2) − u(x1)|2 ≤ 〈τu, u〉

∫ x2

x1

1
t2ν dt

4. For 0 < x1 < x2 < ∞, |x2
2νu′(x2) − x1

2νu′(x1)|2 ≤ 〈τ 2u, u〉
∫ x2

x1
t2ν dt

Lemma 2.13. If f ∈ G, then x2k f̂(x) = τ̂kf(x) for k = 1, 2, . . . and f̂ is rapidly

decreasing on (0,∞).

Proof. Given the formula for the Hankel transform,

f̂(x) =

∫ ∞

0

f(t)J(xt)t2νdt,

we multiply the equation by x2, apply Lemma 2.3, and integrate by parts:

x2f̂(x) =

∫ ∞

0

f(t)x2J(xt)t2νdt =

∫ ∞

0

f(t)τtJ(xt)t2νdt

= −
∫ ∞

0

f(t)(t2νJ ′(xt))′dt = −f(t)t2νJ ′(xt)
∣∣∞
0

+

∫ ∞

0

f ′(t)J ′(xt)t2νdt

=

∫ ∞

0

t2νf ′(t)J ′(xt)dt.

Since J ′(xt) is bounded on (0,∞) from Lemma 2.10 and f(t) ∈ G, the boundary

term vanishes at infinity because f is rapidly decreasing and vanishes at 0 because f

is bounded. Integrating by parts again we have
∫ ∞

0

t2νf ′(t)J ′(xt)dt = t2νf ′(t)J(xt)
∣∣∞
0
−

∫ ∞

0

(t2νf ′(t))′J(xt)dt =

∫ ∞

0

τtf(t)J(xt)t2νdt

Here the boundary term vanishes because J(xt) is bounded from Lemma 2.10 and

since f(t) ∈ G, f ′ is rapidly decreasing and t2νf ′(t) → 0 as t → 0+. Thus, we have

the relation

x2f̂(x) =

∫ ∞

0

τf(t)J(xt)t2νdt = τ̂ f(x).

From Lemma 2.12(i), τf ∈ G, so we can iterate this process to generate

x2kf̂(x) =

∫ ∞

0

τkf(t)J(xt)t2νdt = τ̂kf(x)

and since τkf is rapidly decreasing and J is bounded, the integral will converge for

all k, yielding

x2k f̂(x) ≤ Mk for k = 0, 1, . . .
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and thus f̂ is rapidly decreasing.

The proof of the next lemma is a standard exercise.

Lemma 2.14. For a given A, the integral operator TA : L2(0, A; x2ν) → L2(0, A; x2ν)

is a compact self-adjoint operator.

Since we would prefer to study our operators on a fixed interval of integration we

replace x with Ax and y with Ay in Equation (1.1) to obtain

(TAh)(Ax) = A2ν+1

∫ 1

0

h(Ay)ρ(Ax, Ay)y2νdy

for 0 < x ≤ 1, A ≥ 1. If we now let f(y) = h(Ay) we may now view the operator TA

defined for f ∈ L2(0, 1; x2ν) by the equation

(2.1) (TAf)(x) = A2ν+1

∫ 1

0

f(y)ρ(Ax, Ay)y2νdy.

The restriction of TA to

C∞
1 (0, 1) = {v ∈ C∞(0, 1) : v is bounded and v(x) ≡ 0 for x near 1}

has a useful alternative formula to Equation (2.1), which requires that we extend any

f ∈ C∞
1 (0, 1) to (0,∞) by defining f(x) = 0 for x ≥ 1 (we will often assume, without

comment, that such an extension has been made for functions in C∞
1 (0, 1)). For such

f we have

(TAf)(x) = A2ν+1

∫ 1

0

f(y)ρ(Ax, Ay)y2νdy

= A2ν+1

∫ 1

0

∫ ∞

0

f(y)F (t)J(Ayt)J(Axt)t2νy2νdt dy.

Using Lemma 2.10, we can apply Fubini’s theorem to get

(TAf)(x) = A2ν+1

∫ ∞

0

F (t)f̂(At)J(Axt)t2νdt.

With a change of variable, replacing t with t/A, we have

(2.2) (TAf)(x) =

∫ ∞

0

F (t/A)f̂(t)J(xt)t2νdt.

Since TA is a compact self-adjoint operator, then every nonzero element in the

spectrum of TA is an eigenvalue of finite multiplicity. The next lemma gives further

information about these eigenvalues.

Lemma 2.15. Let m ≤ 0 and M > 0. Suppose m ≤ F (t) ≤ M for −∞ < t < ∞.

Then every eigenvalue λ of the operator TA satisfies m ≤ λ ≤ M .
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Proof. Let λ be an eigenvalue of TA, and f a corresponding normalized eigenfunction.

Let 0 < ǫ < 1. Then there exists an h ∈ C∞
0 (0, 1) such that ‖f −h‖ < ǫ and ‖h‖ = 1.

Using the boundedness property of TA and the Schwarz inequality, we have

λ = (TAf, f) = (TA(f − h), (f − h)) + (TA(f − h), h) + (TAh, (f − h)) + (TAh, h)

≤ 3‖TA‖ǫ + (TAh, h)

and similarly (TAh, h) ≤ 3‖TA‖ǫ + (TAf, f), so

(TAh, h) − 3‖TA‖ǫ ≤ λ ≤ (TAh, h) + 3‖TA‖ǫ.

Since h(t) = 0 for t ≥ 1, Theorem 2.5 implies (TAh, h) = 〈TAh, h〉 = 〈F (t/A)ĥ, ĥ〉.
Thus

m〈ĥ, ĥ〉 ≤ 〈F (t/A)ĥ, ĥ〉 ≤ M〈ĥ, ĥ〉

and 〈ĥ, ĥ〉 = 〈h, h〉 = (h, h) = 1 together imply m ≤ (TAh, h) ≤ M . Thus,

m − 3ǫ‖TA‖ ≤ λ ≤ M + 3ǫ‖TA‖

and letting ǫ → 0, we have m ≤ λ ≤ M .

We now wish to introduce a special case where F (t) is chosen as FS(t) = (1+t2)−1

with the corresponding

ρS(u, v) =

∫ ∞

0

FS(t)J(ut)J(vt)t2ν dt.

Then for f ∈ L2(0, 1; x2ν), the corresponding Toeplitz integral operator is

(2.3) (SAf)(x) = A2ν+1

∫ 1

0

f(y)ρS(Ax, Ay)y2νdy.

and for f ∈ C∞
1 (0, 1),

(2.4) (SAf)(x) =

∫ ∞

0

1

1 + (t/A)2
f̂(t)J(xt)t2νdt

Lemma 2.16. Let f ∈ C∞
1 (0, 1) ∩ G, and let g =

(
I + τ

A2

)n
f . Then

SA
ig =

(
I +

τ

A2

)n−i

f for i = 1, 2, . . . , n.

Proof. With

g =
(
I +

τ

A2

)n

f =

n∑

j=0

(
n

j

) ( τ

A2

)j

f,

since f ∈ G from Lemma 2.13 we have τ̂ jf = t2j f̂ , so

ĝ =
n∑

j=0

(
n

j

) (
t2

A2

)j

f̂ =

(
1 +

t2

A2

)n

f̂ .
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Since f ∈ C∞
1 (0, 1) ∩ G, then from Lemma 2.12(i) we can conclude g ∈ C∞

1 (0, 1).

Thus from Equation (2.4),

SAg(x) =

∫ ∞

0

(
1 +

t2

A2

)n−1

f̂(t)J(xt)t2ν dt

which is the Hankel transform of
(
1 + t2

A2

)n−1

f̂ . From Lemma 2.13 and using Lemma 2.4,

SAg =
(
I +

τ

A2

)n−1

f.

Iterating this process, we have our result.

Lemma 2.17. Let f ∈ C∞
1 (0, 1)∩G. Then (SAf)(x) and (SAf)′(x) are both bounded

on x ∈ [0, 1] as A → ∞.

Proof. From Equation (2.4),

(SAf)(x) =

∫ ∞

0

FS(t/A)f̂(t)J(xt)t2νdt

and since 0 < FS(t/A) ≤ 1, both J and J ′ are bounded from Lemma 2.10, and f̂ is

rapidly decreasing from Lemma 2.13, we can differentiate to obtain

(SAf)′(x) =

∫ ∞

0

FS(t/A)f̂(t)J ′(xt)t2ν+1dt.

Thus (SAf)(x) and (SAf)′(x) are integrals which converge for x ∈ (0, 1) independent

of A.

3. First Main Theorem

Recall the special function FS(t) = (1 + t2)−1. Let n be a fixed positive integer

and F (t) be a function satisfying the following conditions

H4: F (t) is bounded and absolutely integrable on (0,∞),

H5: F (t) has a positive absolute maximum M at t = 0,

H6: limt→0+
F (0)−F (t)

t2n = σ2 for some constant σ.

Note that H1–H3 are a special case of H4–H6, where n = 1. Let M = F (0).

From H6:

lim
t→0+

M − F (t)

(1 − FS(t))n
= σ2

and so given ǫ > 0 there exists δ > 0 such that

(3.1)

∣∣∣∣
M − F (t)

(1 − FS(t))n
− σ2

∣∣∣∣ < ǫ for 0 ≤ t ≤ δ.

Define

G(t) =





F (t), 0 ≤ t < δ,

M − (σ2 + γ)(1 − FS(t))n, t ≥ δ.

where γ = M−F (δ)
(1−FS(δ))n − σ2.
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Lemma 3.1. Suppose F (t) satisfies H4–H6 and let G(t) be defined as above for an

arbitrary ǫ > 0. Then for t ≥ 0,

M − F (t) < (σ2 + ǫ)(1 − FS(t))n + |G(t) − F (t)|

and the quantity |G(t) − F (t)| is bounded for t ≥ 0 and vanishes for 0 ≤ t < δ.

Proof. We decompose M − F (t) into three terms:

M − F (t) = σ2(1 − FS(t))n +
(
M − G(t) − σ2(1 − FS(t))n

)
+ (G(t) − F (t)) .

We consider the second term. For 0 ≤ t < δ, G(t) = F (t) so (3.1) implies

∣∣M − G(t) − σ2(1 − FS(t))n
∣∣ < ǫ(1 − FS(t))n, for 0 ≤ t < δ.

For t ≥ δ, G(t) = M − (σ2 + γ)(1 − FS(t))n and so

M − G(t) − σ2(1 − FS(t))n = γ(1 − FS(t))n

but (3.1) and the definition of γ imply |γ| < ǫ. Thus for all t ≥ 0,

∣∣M − G(t) − σ2(1 − FS(t))n
∣∣ < ǫ(1 − FS(t))n,

and the three term decomposition gives

M − F (t) < (σ2 + ǫ)(1 − FS(t))n + |G(t) − F (t)| , for t ≥ 0,

and the remaining statements are obvious.

The next two lemmas are straightforward.

Lemma 3.2. Let {fj}k
j=1 ⊂ L2(0, 1; x2ν) be a set of orthonormal functions. For

0 < ǫ < 1/k, let hj ∈ L2(0, 1; x2ν) be defined such that ‖fj−hj‖ < ǫ for j = 1, 2, . . . , k.

Then the hj’s are linearly independent.

Lemma 3.3. Let L = span{g1, . . . , gn} be an n-dimensional subspace of a Hilbert

space H. Then the Rayleigh quotient for a bounded operator T

Q(g) =
(Tg, g)

(g, g)

achieves a minimum on L, and the minimum is achieved for some g0 =
∑n

i=1 cigi

such that
n∑

i=1

|ci|2 = 1.

We come to our first main theorem.
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Theorem 3.4. Let k be a positive integer. Then for A sufficiently large, the inte-

gral operator TA, with F (t) satisfying conditions H4–H6, will have at least k positive

eigenvalues with M ≥ λ1,A ≥ λ2,A ≥ · · · ≥ λk,A > 0, allowing repetitions for multiple

eigenvalues, and we have

lim sup
A→∞

A2n(M − λj,A) ≤ σ2Λj for j = 1, 2, . . . , k,

where {Λj} are the eigenvalues of L̃n arranged in nondecreasing order with repetitions

for multiple eigenvalues.

Proof. Let 1/k > ǫ > 0 be given. Let fj be the normalized eigenfunction of L̃n

corresponding to Λj for j = 1, 2, . . . , k. From Theorem 2.6, there exists hj ∈ D(Ln)

such that ‖hj‖ = 1 and

‖fj − hj‖ < ǫ for j = 1, 2, . . . , k

and for i, j = 1, 2, . . . , k,

|(hi, hj) − (fi, fj)| < ǫ

|(Lnhi, hj) − (L̃nfi, fj)| < ǫ.

From Lemma 3.2, the hj ’s are linearly independent. Now define

gj,A =
(
I +

τ

A2

)n

hj.

From Lemma 2.16 we have SA
ngj,A = hj , and so the gj,A’s are also linearly indepen-

dent.

Let Mk denote any k-dimensional subspace of L2(0, 1; x2ν). We shall show that

for A sufficiently large,

sup
Mk

inf
g∈Mk

[
(TAg, g)

(g, g)

]
> 0.

It will then follow from Theorem 2.9 that TA has at least k positive eigenvalues.

Let Lk be the span of gj,A. Since the gj,A’s are linearly independent, Lk is a

particular k-dimensional subspace of L2(0, 1; x2ν). Now define µk,A as follows:

µk,A = sup
g∈Lk

[
M − (TAg, g)

(g, g)

]
= M − inf

g∈Lk

[
(TAg, g)

(g, g)

]
.

From Lemma 3.3, the Rayleigh quotient Q(g) = (TAg,g)
(g,g)

achieves a minimum on Lk

and there exists gA ∈ Lk such that gA =
∑k

j=1 cjgj,A minimizes the Rayleigh quotient

and
∑k

j=1 |cj|2 = 1. For this particular gA, we have

µk,A =
((MI − TA)gA, gA)

(gA, gA)
.

We will first consider the numerator ((MI − TA)gA, gA). Note that

((MI − TA)gA)(x) =

∫ ∞

0

(M − F (t/A))ĝA(t)J(xt)t2νdt
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is the Hankel transform of (M − F (t/A))ĝA(t), and that gA ∈ C∞
1 (0, 1). So

((MI − TA)gA, gA) = 〈(MI − TA)gA, gA〉

and by Theorem 2.5,

〈(MI − TA)gA, gA〉 = 〈(M − F (t/A))ĝA, ĝA〉 =

∫ ∞

0

(M − F (t/A))|ĝA(t)|2t2νdt.

From Lemma 3.1,
∫ ∞

0

(M − F (t/A))|ĝA(t)|2t2νdt < (σ2 + ǫ)I1 + I2,

where

I1 =

∫ ∞

0

(1 − FS(t/A))n|ĝA(t)|2t2νdt and

I2 =

∫ ∞

0

|G(t/A) − F (t/A)| |ĝA(t)|2t2νdt.

Since gA =
∑k

j=1 cjgj,A and the Hankel transform is a linear operation, we can write

I1 =
k∑

j,ℓ=1

cjcℓ

∫ ∞

0

(1 − FS(t/A))nĝj,A(t)ĝℓ,A(t)t2νdt.

Because gj,A = (1 + τ
A2 )

nhj and Lemma 2.13 implies τ̂khj = t2kĥj , we have ĝj,A =

(1 + (t/A)2)nĥj. Also, since (1 − FS(t/A)) = (t/A)2

1+(t/A)2
, we have

I1 =

k∑

j,ℓ=1

cjcℓ

n∑

m=0

(
n

m

) 〈(
t2

A2

)n

ĥj,

(
t2

A2

)m

ĥℓ

〉
.

Then by Theorem 2.5, Lemma 2.13, and the fact that each hj vanishes for t > 1, we

can rewrite these inner products as

I1 =

k∑

j,ℓ=1

cjcℓ

n∑

m=0

(
n

m

) (( τ

A2

)n

hj,
( τ

A2

)m

hℓ

)
.

Multiplying through by A2n and rearranging we have

A2nI1 =
k∑

j,ℓ=1

cjcℓ

[
(τnhj, hℓ) +

n∑

m=1

1

A2m

(
n

m

)
(τnhj, τ

mhℓ)

]
,

and noting that the hj functions have no dependence on A, we conclude that

lim
A→∞

A2nI1 =

k∑

j,ℓ=1

cjcℓ (τnhj, hℓ).

Then since I1 is a nonnegative quantity, using the triangle inequality and letting

A → ∞ we have

lim sup
A→∞

A2nI1 ≤
k∑

j,ℓ=1

|cjcℓ|
∣∣∣(Lnhj , hℓ) − (L̃nfj, fℓ)

∣∣∣ +
k∑

j,ℓ=1

|cjcℓ| (L̃nfj, fℓ)
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<
k∑

j,ℓ=1

ǫ +
k∑

j=1

|cj|2Λj ≤ ǫk2 + Λk.

We now consider the integral I2. From Lemma 3.1, we can write

I2 = A

∫ ∞

δ

|G(t) − F (t)| |ĝA(At)|2(At)2νdt

≤ KA

∫ ∞

δ

|ĝA(At)|2(At)2νdt

for some constant K. As shown above (from Lemma 2.13),

ĝA(At) =

k∑

j=1

cj(1 + (t/A)2)nĥj(At) =

k∑

j=1

n∑

m=0

cj

A2m

(
n

m

)
τ̂mhj(At).

We define H(t) =
∑k

j=1

∑n
m=0

(
n
m

) ∣∣∣τ̂mhj(t)
∣∣∣. Since τmhj ∈ G for all values of m and

j, from Lemma 2.13, τ̂mhj is rapidly decreasing for all m, j, and so H(t) is a rapidly

decreasing function which is independent of A. Thus we have, for A sufficiently large,

|ĝA(At)| ≤ H(At) ≤ (At)−(1+n+ν)

for t ≥ δ. Then

I2 ≤ KA−2n−1

∫ ∞

δ

t−2n−2dt

which implies

lim
A→∞

A2nI2 = 0.

Given these properties of I1 and I2, we now have

lim sup
A→∞

A2n ((MI − TA)gA, gA) ≤ (σ2 + ǫ)(ǫk2 + Λk).

We will now consider the denominator (gA, gA). From Theorem 2.5 and Lemma 2.13,

(gA, gA) =
k∑

j,ℓ=1

cjcℓ〈gj,A, gℓ,A〉 =
k∑

j,ℓ=1

cjcℓ〈ĝj,A, ĝℓ,A〉

=

k∑

j,ℓ=1

cjcℓ

〈
n∑

m=0

1

A2m

(
n

m

)
τ̂mhj ,

n∑

p=0

1

A2p

(
n

p

)
τ̂phℓ

〉

=
k∑

j,ℓ=1

cjcℓ

〈
n∑

m=0

1

A2m

(
n

m

)
τmhj ,

n∑

p=0

1

A2p

(
n

p

)
τphℓ

〉

Since the inner products (τmhj , τ
phℓ) are independent of A, we have

lim
A→∞

(gA, gA) =

k∑

j,ℓ=1

cjcℓ (hj, hℓ)

=
k∑

j,ℓ=1

cjcℓ (fj, fℓ) +
k∑

j,ℓ=1

cjcℓ [(hj, hℓ) − (fj, fℓ)]
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= 1 +
k∑

j,ℓ=1

cjcℓ [(hj , hℓ) − (fj, fℓ)]

≥ 1 − ǫk2.

Therefore we have

lim sup
A→∞

A2nµk,A ≤ (σ2 + ǫ)(ǫk2 + Λk)

1 − ǫk2
.

Since the left side has no dependence on ǫ, which was chosen arbitrarily, we have

lim sup
A→∞

A2nµk,A ≤ σ2Λk.

Thus for sufficiently large A, µk,A < M , and by Theorem 2.9, we have

λk,A = sup
Mk

[
inf

g∈Mk

(TAg, g)

(g, g)

]
≥ min

g∈Lk

(TAg, g)

(g, g)
= M − µk,A > 0.

Thus the operator TA will have at least k positive eigenvalues with

M ≥ λ1,A ≥ λ2,A ≥ · · · ≥ λk,A > 0.

We also see that M − λk,A ≤ µk,A so that we have

lim sup
A→∞

A2n(M − λk,A) ≤ σ2Λk.

4. Second Main Theorem

The following integral can be found in [9, pg. 336] and is a consequence of a more

general result proved in [13, pg. 429].

Lemma 4.1.
∫ ∞

0

tJν(at)Jν(bt)

z2 + t2
dt = Iν(bz)Kν(az), R(z) > 0, a ≥ b > 0, R(ν) > −1.

Thus, we are able to evaluate the corresponding ρS integral:

ρS(u, v) = (uv)1/2−ν

∫ ∞

0

tJν−1/2(ut)Jν−1/2(vt)

1 + t2
dt

and from Lemma 4.1, letting z = 1, we have

(4.1) ρS(u, v) = (uv)1/2−νIν−1/2(v)Kν−1/2(u), for u ≥ v > 0.

Armed with this formula, we obtain the following two results which are crucial for

our second main theorem. As mentioned in the introduction, our failure to properly

generalize these results is the reason we have not succeeded with our full goal.
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Lemma 4.2. Let f ∈ C∞
1 (0, 1) and g = SAf . Then there exists ǫ > 0 such that

g′(x) = −A
Kν+1/2(Ax)

Kν−1/2(Ax)
g(x) for x > 1 − ǫ.

Proof. From Equation (2.3),

g(x) = A2ν+1

∫ 1

0

f(y)ρS(Ax, Ay)y2νdy.

Since f ∈ C∞
1 (0, 1) there exists ǫ > 0 such that f(x) = 0 for x > 1 − ǫ. Thus

g(x) = A2ν+1

∫ 1−ǫ

0

f(y)ρS(Ax, Ay)y2νdy

and for x > 1 − ǫ, since y < x in the integrand, we can substitute for ρS(Ax, Ay)

using Equation (4.1), yielding

g(x) = A2ν+1

∫ 1−ǫ

0

f(y)(Ay)1/2−νIν−1/2(Ay)(Ax)1/2−νKν−1/2(Ax)y2νdy

=

[
A2ν+1

∫ 1−ǫ

0

f(y)(Ay)1/2−νIν−1/2(Ay)y2ν dy

]
(Ax)1/2−νKν−1/2(Ax).

Differentiating using Lemma 2.1,

g′(x) =

[
A2ν+1

∫ 1−ǫ

0

f(y)(Ay)1/2−νIν−1/2(Ay)y2ν dy

]
(−A(Ax)1/2−νKν+1/2(Ax))

and so
g′(x)

g(x)
= −A

Kν+1/2(Ax)

Kν−1/2(Ax)
.

Thus, for x > 1 − ǫ we have the identity

g′(x) = −A
Kν+1/2(Ax)

Kν−1/2(Ax)
g(x).

Lemma 4.3. Let f ∈ C∞
1 (0, 1) ∩ G and g = SAf . Then for 0 ≤ x1 ≤ x2 ≤ 1,

|g(x2) − g(x1)|2 +

(∫ x2

x1

1

x2ν
dx

) (
A

Kν+1/2(A)

Kν−1/2(A)
|g(1)|2

)
≤ (τg, g)

(∫ x2

x1

1

x2ν
dx

)
.

Proof. Let 0 ≤ x1 ≤ x2 ≤ 1, then using the Schwarz inequality and integration by

parts, we obtain

|g(x2) − g(x1)|2 =

∣∣∣∣
∫ x2

x1

1

xν
g′(x)xνdx

∣∣∣∣
2

≤
(∫ x2

x1

1

x2ν
dx

) (∫ 1

0

g′(x)g′(x)x2νdx

)

≤
(∫ x2

x1

1

x2ν
dx

) (
g′(1)g(1) + (τg, g)

)
.

Here the boundary term at 0 vanishes since g and g′ are both bounded from Lemma 2.17.

Substituting the identity from Lemma 4.2 for x = 1, the result follows.
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It is important to realize, in these last two results, that (see [8, p. 119, (5.10.24)],

[13, p. 172 (4)]) Kα(x) > 0, for x > 0.

Lemma 4.4. Let f ∈ D(L1) and g = SAf . Then (I + τ
A2 )g = f and (I−SA)f = τ

A2 g.

Proof. From Equation (2.4) we have g(x) =
∫ ∞

0
1

1+ t2

A2

f̂(t)J(xt)t2νdt. Since J(xt)

and J ′(xt) are bounded from Lemma 2.10 and f̂(t) is rapidly decreasing, we may

differentiate twice and use Lemma 2.3 to get

τx

A2
g(x) =

∫ ∞

0

1

1 + t2

A2

f̂(t)
τx

A2
J(xt)t2νdt =

∫ ∞

0

t2

A2

1 + t2

A2

f̂(t)J(xt)t2νdt.

Therefore

(I +
τ

A2
)g(x) =

∫ ∞

0

f̂(t)J(xt)t2νdt = f(x).

and also τ
A2 g = f − g = (I − SA)f .

Theorem 4.5. For each integer k ≥ 1 and A sufficiently large, the integral operator

TA, with F (t) satisfying conditions H1–H3, will have k positive eigenvalues satisfying

M ≥ λ1,A ≥ λ2,A ≥ · · · ≥ λk,A > 0 and

lim
A→∞

A2(M − λk,A) = σ2zk
2

where zk is the kth positive zero of the Bessel function Jν−1/2.

Proof. Note that in the case n = 1,

D(L1) = {v ∈ C∞(0, 1) : v = 0 near x = 1 and v′ = 0 near x = 0}.

Since H2 is stronger than H5, from Theorem 3.4 with n = 1 and Theorem 2.8, we

know

lim sup
A→∞

A2(M − λj,A) ≤ σ2z2
j for j = 1, 2, . . . , k.

Define αk = lim infA→∞ A2(M − λk,A). We will show that αk = σ2z2
k, which will

complete the proof. Since αk = lim infA→∞ A2(M − λk,A), there exists a sequence S
of real numbers tending monotonically to infinity such that

αk = lim
A→∞

A2(M − λk,A), (A ∈ S)

exists. Since the sequences {A2(M − λj,A) : A ∈ S}, for 1 ≤ j < k, are each bounded

from Theorem 3.4, by the Bolzano-Weierstrass Theorem we may assume without loss

of generality that

αj = lim
A→∞

A2(M − λj,A), (A ∈ S) for j = 1, 2, . . . , k

exists. Henceforth, we restrict attention to values of A ∈ S. Let fj,A be a normalized

eigenfunction of TA, corresponding to the eigenvalue λj,A, for j = 1, 2, . . . , k. Since

D(L1) is dense, we may choose gj,A ∈ D(L1) such that ‖gj,A−fj,A‖ < min
{

1
A3‖MI−TA‖

, 1
A

}
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and ‖gj,A‖ = 1. Let uj,A = SAgj,A. Then from Lemma 4.4, (I + τ
A2 )uj,A = gj,A and

(I − SA)gj,A = τ
A2 uj,A.

We will now establish a useful inequality, which will reveal the role played by H2.

We have

‖gj,A − uj,a‖2 +
( τ

A2
uj,A, uj,A

)
= ((I − SA)gj,A, gj,A) = 〈(I − SA)gj,A, gj,A〉

= 〈(1 − FS(t/A))ĝj,A, ĝj,A〉 ≤
1

q2
〈(M − F (t/A))ĝj,A, ĝj,A〉

=
1

q2
〈(MI − TA)gj,A, gj,A〉 =

1

q2
((MI − TA)gj,A, gj,A)

=
1

q2
[((MI − TA)fj,A, gj,A) + ((MI − TA)(gj,A − fj,A), gj,A)]

≤ 1

q2
[(M − λj,A) + ‖MI − TA‖ ‖gj,A − fj,A‖]

≤ 1

q2

[
(M − λj,A) +

1

A3

]
.

From Lemma 4.3, (τuj,A, uj,A) is a nonnegative quantity, so we apply Theorem 3.4 to

obtain

(4.2) lim
A→∞

‖gj,A − uj,a‖ = 0

and (τuj,A, uj,A) is bounded, by M1 say. We now wish to show that for 1 ≤ j ≤ k,

{uj,A(x) : A ∈ S} is bounded at x = 1 and equicontinuous on compact subsets of (0, 1].

We first show equicontinuity on compact subsets of (0, 1]. For 0 < ǫ ≤ x1 ≤ x2 ≤ 1,

|uj,A(x2) − uj,A(x1)|2 ≤ (τuj,A, uj,A)

(∫ x2

x1

1

x2ν
dx

)
≤ M1ǫ

−2ν(x2 − x1)

which implies equicontinuity on [ǫ, 1]. To prove that {uj,A : A ∈ S} is bounded at

x = 1, we apply Lemma 4.3 to get

A
Kν+1/2(A)

Kν−1/2(A)
|uj,A(1)|2 ≤ (τuj,A, uj,A) ≤ M1.

Then from Lemma 2.2

lim sup
A→∞

|uj,A(1)|2 ≤ lim
A→∞

M1

A

Kν−1/2(A)

Kν+1/2(A)
= 0

and thus {uj,A : A ∈ S} is bounded at x = 1, and in fact limA→∞ uj,A(1) = 0, (A ∈ S).

Thus, using Ascoli’s theorem (boundedness at one point and equicontinuity on an

interval implies uniform boundedness on that interval), there exists a subsequence Sǫ

of S such that {uj,A : A ∈ Sǫ} converges uniformly on [ǫ, 1]. Since ǫ > 0 can be made

arbitrarily small, we can use a diagonalization argument to find a subsequence S ′ of

S such that {uj,A : A ∈ Sj} converges uniformly on each compact subset of (0, 1].

Since we can use this argument for each j, we first find a subsequence S1 such

that {u1,A : A ∈ S1} converges uniformly on each compact subset of (0, 1], then we
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find a subsequence S2 of S1 such that {u2,A : A ∈ S2} converges uniformly on each

compact subset of (0, 1], and continue this process until we find a subsequence Sk

such that {uk,A : A ∈ Sk} converges uniformly on each compact subset of (0, 1] for

all j = 1, 2, . . . , k simultaneously. We will assume without loss of generality that S is

this deep subsequence. Also, we define for 0 < x ≤ 1,

uj(x) = lim
A→∞

uj,A(x) (A ∈ S) for j = 1, 2, . . . , k

and we note that from the pointwise convergence at x = 1 given above,

uj(1) = 0 for j = 1, 2, . . . , k.

The goal now is to show that uj ∈ D(L1
∗) and that L1

∗uj =
αj

σ2 uj for each j. We

begin by investigating the equality

(4.3)
(
A2(MI − TA)fj,A, v

)
=

(
A2(M − λj,A)fj,A, v

)

for a fixed v ∈ D(L1) and evaluating the limit of each side as A → ∞ with A ∈ S.

We first show that the right side tends to (αjuj, v) and then argue that the left side

tends to σ2(uj, L1v) for each j. This will give the equality, for arbitrary v ∈ D(L1),

(uj, L1v) =
(αj

σ2
uj, v

)

which implies that uj ∈ D(L1
∗) and that L1

∗uj =
αj

σ2 uj. Further, since uj(1) = 0, from

Theorem 2.7, uj ∈ D(L̃1) and so for each j, (
αj

σ2 , uj) is an eigenpair of the Friedrichs

extension after we show that uj is a nontrivial function.

We write
(
A2(M − λj,A)fj,A, v

)
= A2(M − λj,A)(fj,A − uj,A, v) + A2(M − λj,A)(uj,A, v)

From Theorem 3.4, A2(M − λj,A) is bounded, so we decompose

(fj,A − uj,A, v) = (fj,A − gj,A, v) + (gj,A − uj,A, v)

and note that our choice of gj,A and (4.2) force each term to tend to 0. Thus

lim
A→∞

(
A2(M − λj,A)fj,A, v

)
= lim

A→∞
A2(M−λj,A)(uj,A, v) = αj lim

A→∞
(uj,A, v), (A ∈ S).

In order to apply the Lebesgue Dominated Convergence Theorem, we need an inte-

grable function that bounds |uj,A(x)v(x)|x2ν . From Lemma 4.3, letting x2 = 1 and

x1 = x, we have

|uj,A(1) − uj,A(x)| ≤
√

M1
1

xν

and since sequence {uj,A(1)} is bounded, by M2 say, we have

(4.4) |uj,A(x)| ≤
√

M1
1

xν
+ M2

so

|uj,A(x)v(x)|x2ν ≤ (
√

M1x
ν + M2x

2ν)|v(x)|.
Thus limA→∞(uj,A, v) = (uj, v), and we are done with the right side of (4.3).
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The left side of (4.3) is more delicate. First we decompose
(
A2(MI − TA)fj,A, v

)
=

(
A2(MI − TA)(fj,A − gj,A), v

)
+

(
A2(MI − TA)gj,A, v

)

and the Schwarz inequality with our choice of gj,A shows that the first term tends to

0, so we turn to the second term and use Theorem 2.5 to obtain
(
A2(MI − TA)gj,A, v

)
= 〈A2(MI − TA)gj,A, v〉 = 〈A2(M − F (t/A))ĝj,A, v̂〉.

We use the same decomposition of M − F (t/A), with n = 1, as in the proof of

Lemma 3.1. For a given ǫ > 0 and corresponding δ > 0, we have

(4.5)
〈
A2(M − F (t/A))ĝj,A, v̂

〉
−

〈
A2σ2(1 − FS(t/A))ĝj,A, v̂

〉
= Q1(A) + Q2(A)

where

Q1(A) =
〈
A2

(
M − G(t/A) − σ2(1 − FS(t/A))

)
ĝj,A, v̂

〉

and Q2(A) =
〈
A2 (G(t/A) − F (t/A)) ĝj,A, v̂

〉
.

Note that the left side of (4.5) has no dependence on ǫ; the terms on the right depend

on G and thus on ǫ. We shall show that Q2(A) tends to 0 while Q1(A) is bounded

by a constant multiple of ǫ. Since G(u) = F (u) for u < δ,

Q2(A) = A2

∫ ∞

δA

(G(t/A) − F (t/A)) ĝj,A(t)v̂(t)t2νdt.

From Theorem 2.5, since gj,A ∈ D(L1) we have

(4.6)

∫ ∞

0

|ĝj,A(t)|2t2νdt =

∫ 1

0

|gj,A(t)|2t2νdt = ‖gj,A‖2 = 1.

Using the Schwarz inequality and (4.6), we get

|Q2(A)|2 ≤ A4

∫ ∞

δA

|(G(t/A) − F (t/A))v̂(t)|2t2νdt.

From Lemma 3.1, |G − F | is bounded and a change of variables gives

|Q2(A)|2 ≤ M3A
5

∫ ∞

δ

|v̂(At)|2(At)2νdt

where M3 is the bound on |G − F |. Since v̂ is rapidly decreasing from Lemma 2.13,

for A sufficiently large,

|Q2(A)|2 ≤ M3A
5

∫ ∞

δ

(At)−6 dt ≤ M3

A

∫ ∞

δ

t−6dt

which implies

lim
A→∞

|Q2(A)| = lim
A→∞

∣∣〈A2 (G(t/A) − F (t/A)) ĝj,A, v̂
〉∣∣ = 0.

From the proof of Lemma 3.1, we have

|Q1(A)| < ǫ

∫ ∞

0

A2(1 − FS(t/A))|ĝj,A(t)||v̂(t)|t2νdt

≤ ǫ

∫ ∞

0

t2|ĝj,A(t)||v̂(t)|t2νdt



TOEPLITZ INTEGRAL OPERATORS 527

Then the Schwarz inequality and (4.6) imply

|Q1(A)|2 < ǫ2

∫ ∞

0

t4|v̂(t)|2t2ν dt

and since v̂(t) is a fixed rapidly decreasing function,
∫ ∞

0
t4|v̂(t)|2t2ν dt converges to a

constant M4 independent of A and we have

|Q1(A)| =
∣∣〈A2

(
M − G(t/A) − σ2(1 − FS(t/A))

)
ĝj,A, v̂

〉∣∣ < ǫ
√

M4.

Thus from (4.5), we now have

lim sup
A→∞

∣∣〈A2(M − F (t/A))ĝj,A, v̂
〉
−

〈
A2σ2(1 − FS(t/A))ĝj,A, v̂

〉∣∣ <
√

ǫM4,

which is true for arbitrary ǫ > 0 and therefore the left side of (4.3) has the same limit

as

lim
A→∞

〈
A2(M − F (t/A))ĝj,A, v̂

〉
= lim

A→∞

〈
A2σ2(1 − FS(t/A))ĝj,A, v̂

〉
.

Using Theorem 2.5 and the fact that v(t) = 0 for t ≥ 1,

〈
A2σ2(1 − FS(t/A))ĝj,A, v̂

〉
= σ2

(
A2(I − SA)gj,A, v

)
= σ2 (τuj,A, v) .

Further, integrating by parts,

(τuj,A, v) = − x2νu′
j,A(x)v(x)

∣∣∣
1

0
+ x2νuj,A(x)v′(x)

∣∣∣
1

0
+ (uj,A, τv).

Since v ∈ D(L1), both v and v′ vanish in a neighborhood of x = 1 and are bounded

near x = 0. Also, from Lemma 2.17, uj,A and u′
j,A are both bounded on [0, 1], so all

the boundary terms vanish. So we have finally

lim
A→∞

〈
A2(M − F (t/A))ĝj,A, v̂

〉
= σ2 lim

A→∞
(uj,A, τv) = σ2(uj, L1v).

where we have used (4.4) to invoke the Lebesgue Dominated Convergence Theorem.

We will next show that the uj are orthonormal eigenfunctions of L̃1. Using (4.4)

as before, the Lebesgue dominated convergence theorem shows that

lim
A→∞

(uj,A, ui,A) = (uj, uk).

On the other hand, for 1 ≤ i, j ≤ n, the triangle inequality gives

|(uj,A, ui,A) − (fj,A, fi,A)| ≤ ‖uj,A − fj,A‖ ‖ui,A‖ + ‖fj,A‖ ‖ui,A − fi,A‖
≤ ‖uj,A − fj,A‖ (‖ui,A − fi,A‖ + 1) + ‖ui,A − fi,A‖

From our choice of gj,A, we have

‖uj,A − fj,A‖ ≤ ‖uj,A − gj,A‖ + ‖gj,A − fj,A‖ ≤ ‖uj,A − gj,A‖ +
1

A
.

It then follows from (4.2) that and we can conclude

lim
A→∞

|(uj,A, ui,A) − (fj,A, fi,A)| = 0
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and so

lim
A→∞

(uj,A, ui,A) = lim
A→∞

(fj,A, fi,A) =





0 if j 6= k

1 if j = k
.

Thus the uj are orthonormal eigenfunctions of L̃1.

Finally, since the {λj,A} are nondecreasing, it follows that the {αj} are non-

increasing. From Theorem 3.4, α1 ≤ σ2z2
1 and thus α1 = σ2z2

1 since α1/σ
2 is an

eigenvalue of L̃1. Using Theorem 3.4, αj ≤ σ2z2
j . Since the eigenvalues of L̃1 are

simple from Theorem 2.8, an easy induction argument concludes the proof.

5. Lingering Difficulties

The careful reader will have noted that our results have depended on two formulas

for TA, given first by (1.1) via the intermediate formula for ρ(x, y), and then by the

formula (2.2) directly in terms of the function F (t). Morevover, the inequality result

of the first main theorem (Theorem 3.4), holding for all n ≥ 1, depends only on the

second of these formulas, which reveals the role played by the differential operator

τ in the inversion result Lemma 2.16 (for the special case FS). On the other hand,

the second main theorem (Theorem 4.5), the equality result holding only for n = 1,

depends critically on the first of these formulas and the fact that we know the integral

given in Lemma 4.1. This result is useful in two ways: it gives us knowledge of the

boundary behavior of g = SAf in Lemma 4.2, which then gives Lemma 4.3, the key

which allows the use of Ascoli’s theorem. Our failure to find a suitable replacement

for this integral in the case n > 1 is the barrier to our effort to generalize the equality

result to the case n > 1.

Finally, we offer a brief discussion of difficulties in the Jacobi case. It is straight-

foward to extend Lemma 2.16 to this case, where FS is unchanged, but now the

operator I + τ/A2 of that lemma is replaced by I + τA/A2 and

τAu = (p(Ax)−1((p(Ax)u′)′, 0 < x ≤ 1.

The added difficulty now is that τA depends in a complicated fashion on A. It is then

necessary to know the behavior of p(Ax) as A → ∞, where, recall, p(x) = φ2
0(x)∆(x).

Using the formula

2F1(a, b; c; z) = (1 − z)−a
2F1(a, c − b; c; z/(z − 1))

and the known asymptotic behavior of 2F1(z), it is not hard to show that p(Ax) con-

verges uniformly on compact subsets of (0, 1] to cx2, where c is a constant (dependent

on α and β via the gamma function and also on ρ). Thus the limiting form of the

operator τA has the form τ∞u = x−2(x2u′)′. There are added technical difficulties,

but after some effort, the inequality result of our first main theorem can be extended

to the Jacobi case.
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Unfortunately, we have found it more difficult to extend the equality result in

our second main theorem. A search of the literature has not revealed an integral

which corresponds in the Jacobi case to the one in Lemma 4.1 in the Hankel case. We

have exerted some effort, without success, to the evaluation of the required integral.

In the absence of such knowledge, or an entirely different approach which dispenses

with such knowledge, it does not seem possible to implement the methods used here

to extend the second main theorem to the Jacobi case. One cannot fail to notice,

however, that the differential operator lurking in the background here is the same as

the one in the Hankel case, with ν = 1.
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