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ABSTRACT. Consider the following difference equation of order k + 1

(0.1) xn+1 = (1 − tn)xn + tnf(xn−k), n = 0, 1, . . .

where f : [0, B) → [0, B), B ≤ ∞, is a continuous function, {tn} is a sequence in [0, 1) and k is a

nonnegative integer. We establish some sufficient conditions for the global attractivity of positive

solutions of this equation. By applying these results to some discrete population models, several

new global attractivity criteria are obtained.
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1. Introduction

Consider the following difference equation of order k + 1

(1.1) xn+1 = (1 − tn)xn + tnf(xn−k), n = 0, 1, . . .

where f : [0, B) → [0, B), B ≤ ∞, is a continuous function, {tn} is a sequence in [0, 1)

and k is a nonnegative integer. When k = 0 and f is a nonexpansive function defined

on a finite closed interval, Eq. (1.1) reduces to the first order difference equation

(1.2) xn+1 = (1 − tn)xn + tnf(xn), n = 0, 1, . . .

which is often said to be a segmenting Mann iteration or to be of Kransnoselski-type.

Various properties of (1.2) and extensions to more abstract spaces have been discussed

by numerous authors, see for example, [1, 2, 15] and the references cited therein.

Eq. (1.1) can be viewed as a different kind of extension of Eq. (1.2). In analogy to

delay differential equations, we may say that Eq. (1.1) is a first order difference equa-

tion with delay k. In general, the presence of the delay can cause more complicated

dynamics. The global attractivity of solutions of Eq. (1.1) has been studied in [14]

recently. Two explicit sufficient conditions for the global attractivity of solutions of
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Eq. (1.1) on a finite interval [a, b] have been obtained for the cases that limn→∞ tn = 0

and limn→∞ tn = λ > 0, respectively. While for the case that {tn} does not necessar-

ily have a limit, for instance {tn} is a periodic sequence, a global attractivity result

has been obtained under the hypothesis that f has a globally attracting fixed point

x̄ ∈ [a, b], that is, x̄ is a global attractor of solutions of the first order difference equa-

tion xn+1 = f(xn) on [a, b]. However, this hypotheses is not a necessary condition

for x̄ to be a global attractor of solutions of Eq. (1.1). Our aim in this paper is to

establish some sufficient conditions for the global attractivity of positive solutions of

Eq. (1.1) without this hypothesis. Although the interval discussed here is [0, B), as

we will see, the results to be obtained may be applied to the global attractivity of

solutions of Eq. (1.1) defined on a finite closed interval also.

Besides its theoretical interest, Eq. (1.1) has applications in mathematical biology

also. For instance, the difference equation

(1.3) xn+1 = (1 − µ)xn + µxn−k

[

1 + q
(

1 −
(xn−k

K

)z)]

+
, n = 0, 1, . . .

where k is a positive integer, K, q, z ∈ (0,∞), µ ∈ (0, 1) and [x]+ = max{x, 0}, has

been proposed by the International Whaling Commission as a model that describes

the dynamics of baleen whales. The global stability of Eq. (1.3) has been studied

by several authors, and a sufficient condition for the positive equilibrium K to be

globally asymptotically stable relative to the interval (K − a, K + a) ⊂ (0, x∗) has

been established, where x∗ = K
(

1+q
q

)1/z

and a is a positive constant with a ≤

min{K, x∗−K}, see [8] and the references cited therein. Later, a sufficient condition

for the global asymptotic stability of the equilibrium K of Eq. (1.3) relative to the

whole interval (0, x∗) has been obtained in [13].

Although simple difference equations sometimes are proper models in various

applications, the need for more sophisticated models is evident due to the complexity

of natural and laboratory systems. For example, the effects of a periodically varying

environment are important for evolutionary theory as the selective forces on systems in

a fluctuating environment differ from those in a stable environment. The assumptions

of periodicity of the parameters are a way of incorporating the periodicity of the

environment. Clearly, in the model (1.3), the parameter µ plays an important role.

Hence, if we replace the constant parameter µ by a variable tn ∈ [0, 1), Eq. (1.3)

becomes

(1.4) xn+1 = (1 − tn)xn + tnxn−k

[

1 + q
(

1 −
(xn−k

K

)z)]

+
, n = 0, 1, . . .

which is in the form of Eq. (1.1).

By a solution of Eq. (1.1), we mean a sequence {xn} which is defined for n ≥ −k

and which satisfies Eq. (1.1) for n ≥ 0. With Eq. (1.1) we associate an initial condition
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of the form

(1.5) x−k, x−k+1, . . . , x0 ∈ [0, B) with x0 > 0.

Then, by the method of steps, it follows IVP Eqs. (1.1) and (1.5) has a unique positive

solution {xn} with xn ∈ (0, B), n = 0, 1, . . . .

Clearly, when tn 6≡ 0, x̄ is an equilibrium of Eq. (1.1) if and only if x̄ is a fixed

point of f . In Section 2, we will establish some sufficient conditions for a fixed point

of f to be a global attractor of all positive solutions of Eq. (1.1). Then in Section 3,

we will apply our results obtained in Section 2 to Eq. (1.4) and several other difference

equations derived from mathematical biology to establish some new global attractivity

criteria for these equations.

2. Main Results

In this section, we establish some sufficient conditions for the global attractivity

of positive solutions of Eq. (1.1). In the following discussion, we always assume that f

has a unique positive fixed point x̄. In addition, we adopt the notation
∏n

i=m(1−ti) =

1 whenever m > n.

Theorem 2.1. Assume that

(2.1)

∞
∑

n=0

tn = ∞,

and there is a positive integer N0 ≥ k such that

(2.2)

n
∑

j=n−k

tj

n
∏

i=j+1

(1 − ti) ≤ T0, n ≥ N0.

where T0 is a positive constant. Suppose also that f satisfies

(2.3) (x − x̄)(f(x) − x) < 0 for x > 0 and x 6= x̄,

and that f is L-Lipschitz with LT0 < 1. Then every positive solution {xn} of Eq. (1.1)

converges to x̄ as n → ∞.

Proof. First, we show that

(2.4) lim sup
n→∞

xn < B.

Otherwise, there is a subsequence {xni
} of {xn} such that

(2.5) xni
> max{xn : −k ≤ n < ni}, i = 1, 2, . . . , and lim

i→∞

xni
= B.

Then it follows from Eq. (1.1) that

tni−1(f(xni−1−k) − xni
) = (1 − tni−1)(xni

− xni−1) > 0
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which, in view of (2.5), yields

(2.6) f(xni−1−k) > xni
> xni−1−k.

Then by noting (2.3) we see that xni−1−k < x̄. Hence, there is a subsequence

{xnir−1−k} of {xni−1−k} such that limr→∞ xnir−1−k = b, where 0 ≤ b ≤ x̄. From

(2.6), we see that f(xnir−1−k) > xnir
, which implies that f(b) ≥ B. Clearly, this

contradicts the hypothesis f : [0, B) → [0, B). Hence, (2.4) must hold and so {xn} is

bounded no matter B < ∞ or B = ∞.

In the following, we show that {xn} tends to x̄ as n → ∞. First, we assume

that {xn} is a nonoscillatory (about x̄) solution. Suppose that xn − x̄ is eventually

positive. The proof for the case that xn−x̄ is eventually negative is similar and will be

omitted. Let lim supn→∞
xn = R. Then x̄ ≤ R < B. Clearly, it suffices to show that

R = x̄. First, we assume that {xn} is decreasing eventually. Then limn→∞ xn = R.

If R > x̄, then by noting (2.1), it follows from Eq. (1.1) that

xn+1 − x0 =

n
∑

i=0

ti[f(xi−k) − xi] → −∞ as n → ∞,

which is a contradiction. Hence, R = x̄.

Next, assume that {xn} is not eventually decreasing. Then, there is a subsequence

{xnm
} of {xn} such that

lim
m→∞

xnm
= R and xnm

> xnm−1, m = 0, 1, . . . .

Hence, it follows from Eq. (1.1) that

tnm−1[f(xnm−1−k) − xnm
] = (1 − tnm−1)(xnm

− xnm−1) > 0, m = 0, 1, . . . .

and so

(2.7) f(xnm−1−k) > xnm
, m = 0, 1, . . . .

Since xnm−1−k ≥ x̄, f(xnm−1−k) ≤ xnm−1−k. Hence, xnm−1−k > xnm
and so

limm→∞ xnm−1−k = R. Then by taking limit on both sides of (2.7), we see that

f(R) ≥ R and so it follows that R ≤ x̄. Hence, R = x̄.

Finally, assume that {xn} is a solution of Eq. (1.1) and oscillates about x̄. Let

yn = xn − x̄. Then {yn} satisfies

(2.8) yn+1 = (1 − tn)yn + tn(f(yn−k + x̄) − x̄), n = 0, 1, . . . ,

and {yn} oscillates about zero. Since {xn} is bounded, there is a positive constant

M such that |yn| = |xn − x̄| ≤ M , n = 0, 1, . . . . Then by noting f(x̄) = x̄ and the

Lipschitz property of f , we see that

(2.9) |f(yn−k + x̄) − x̄| = |f(yn−k + x̄) − f(x̄)| ≤ L|yn−k| ≤ LM, n ≥ k.
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Let yl and ys be two consecutive members of the solution {yn} with N0 < l < s such

that

(2.10) yl ≤ 0, ys+1 ≤ 0 and yn > 0 for l + 1 ≤ n ≤ s.

Let

(2.11) yr = max{yl+1, yl+2, . . . , ys}

where yr is chosen as the first one to reach the maximum among yl+1, yl+2 · · · ys. We

claim that

(2.12) r − (l + 1) ≤ k.

Suppose, for the sake of contradiction, that r − (l + 1) > k. Then, yr > yr−1−k > 0.

By noting yr−1−k + x̄ > x̄ and (2.3), we see that f(yr−1−k + x̄) < yr−1−k + x̄ and so

f(yr−1−k + x̄) − yr − x̄ < yr−1−k + x̄ − yr − x̄

= yr−1−k − yr < 0.(2.13)

However, on the other hand, (2.8) yields

tr−1(f(yr−1−k + x̄) − yr − x̄) = (1 − tr−1)(yr − yr−1) > 0.

Then it follows that f(yr−1−k + x̄) − yr − x̄ > 0 which contradicts (2.13). Hence,

(2.12) holds.

Now, observe that (2.8) yields

(2.14)
yn+1

∏n
i=0(1 − ti)

−
yn

∏n−1
i=0 (1 − ti)

=
tn

∏n
i=0(1 − ti)

.(f(yn−k + x̄) − x̄)

Summing up from l to r − 1, we see that

yr
∏r−1

i=0 (1 − ti)
−

yl
∏l−1

i=0(1 − ti)
=

r−1
∑

j=l

tj
∏j

i=0(1 − ti)
(f(yj−k + x̄) − x̄)

and so

yr =

r−1
∏

i=0

(1 − ti)

{

yl
∏l−1

i=0(1 − ti)
+

r−1
∑

j=l

tj
∏j

i=0(1 − ti)
(f(yj−k + x̄) − x̄)

}

.

By noting yl ≤ 0 and f(x̄) = x̄ we see that

yr ≤

r−1
∏

i=0

(1 − ti)

{

r−1
∑

j=l

tj
∏j

i=0(1 − ti)
|f(yj−k + x̄) − f(x̄)|

}

Then by combining (2.9), it follows that

yr ≤ ML
r−1
∏

i=0

(1 − ti)
r−1
∑

j=l

tj
∏j

i=0(1 − ti)
= ML

r−1
∑

j=l

tj

r−1
∏

i=j+1

(1 − ti).



580 C. QIAN

Since (2.12) holds, that is, r − 1 − k ≤ l, and (2.2) holds, we find that

yr ≤ ML
r−1
∑

j=r−1−k

tj

r−1
∏

i=j+1

(1 − ti) ≤ MLT0.

Hence, it follows that yn ≤ MLT0, l ≤ n ≤ s. Since yl and ys are two arbitrary

members of the solution with property (2.10), we see that there is a positive integer

N ′

1 ≥ N0 such that yn ≤ MLT0, n ≥ N ′

1. Then, by a similar argument, it can be

shown that there is a positive integer N ′′

1 ≥ N0 such that yn ≥ −MLT0, n ≥ N ′′

1 .

Hence, there is a positive integer N1 ≥ N0 such that

(2.15) |yn| ≤ MLT0, n ≥ N1.

Now, by noting the Lipschitz property of f(x) and (2.15), we see that

|f(yn−k + x̄) − x̄| = |f(yn−k + x̄) − f(x̄)| ≤ L|yn−k| ≤ ML2T0, n ≥ N1 + k.

Let yl and ys be two consecutive members of the solution {yn} with t0 ≤ l < s

such that (2.10) holds. Let yr be defined by (2.11). By a similar argument, we may

show that (2.12) holds and

yr ≤ ML2T0

r−1
∑

j=r−1−k

tj

r−1
∏

i=j+1

(1 − ti) ≤ M(LT0)
2.

Then it follows that yn ≤ M(LT0)
2, l ≤ n ≤ s and so again by noting yl and ys are

two arbitrary members of the solution with property (2.10), there is a positive integer

N ′

2 ≥ N1 + k such tat yn ≤ M(LT0)
2, n ≥ N ′

2. Similarly, it can be shown that there

is a positive integer N ′′

2 ≥ N1 + K such that yn ≥ −M(LT0)
2, n ≥ N ′′

2 . Hence, there

is a positive integer N2 ≥ N1 + k such that |yn| ≤ M(LT0)
2, n ≥ N2. Finally, by

induction, we find that for any positive integer m, there is a positive integer Nm with

Nm → ∞ as m → ∞ such that

|yn| ≤ M(LT0)
m, n ≥ Nm.

Then, by noting the hypotheses LT0 < 1, we see that yn → 0 as n → ∞, and so it

follows that xn → x̄ as n → ∞. The proof is complete.

Remark 2.2. The global attractivity of Eq. (1.1), where f is defined on a finite

interval [a, b], has been studied in [14]. It has been shown that if (2.1) and (2.3) hold,

limn→∞ tn = λ > 0, and that f is L-Lipschitz with

(2.16) (1 − (1 − λ)k+1)L < 1,

then the equilibrium point x̄ is a global attractor of all solutions of Eq. (1.1) on [a, b].

While for the case that {tn} does not necessarily have a limit, a sufficient condition

for x̄ to be a global attractor of solutions of Eq. (1.1) has been obtained under the

hypothesis that x̄ is a globally attracting fixed point of f on [a, b]. From the proof of
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Theorem 2.1, it is easy to see that by a slight modification of the proof, Theorem 2.1

holds also when Eq. (1.1) is defined on a finite interval [a, b]. This is a sufficient

condition for the global attractivity of Eq. (1.1) without the hypothesis that x̄ is a

globally attracting fixed point of f . While for the case that {tn} has a limit λ > 0,

the condition LT0 < 1 assumed in Theorem 2.1 is equivalent to (2.16).

To establish next sufficient condition for the global attractivity of solutions of

Eq. (1.1) with a different assumptions, we need the following result which is extracted

from [9].

Lemma 2.3. Consider the following difference equation

(2.17) xn+1 = g(xn), n = 0, 1, . . .

where g : [0,∞) → [0,∞) is a S-map, that is, g is three times differentiable, g′(x) < 0

and (Sg)(x) < 0 for x > 0, where (Sg)(x) = g′′′(x)
g′(x)

− 3
2

(

g′′(x)
g′(x)

)2

is the Schwarzian

derivative of g. Assume that x̄ is the unique fixed point of g and |g′(x̄)| ≤ 1. Then x̄

is a global attractor of all solutions of Eq. (2.17).

Theorem 2.4. Assume that (2.1) and (2.2) assumed in Theorem 2.1 hold. Suppose

also that f is an S-map, and

(2.18) T0|f
′(x̄)| ≤ 1.

Then every positive solution {xn} of Eq. (1.1) converges to x̄ as n → ∞.

Proof. Since f is decreasing, (2.3) assumed in Theorem 2.1 holds. From the proof of

Theorem 2.1, we see that every nonoscillatory solution of Eq. (1.1) converges to x̄.

Hence, we only need to show that every oscillatory solution of Eq. (1.1) tends to x̄

also as n → ∞.

Assume that {xn} is a solution of Eq. (1.1) and oscillates about x̄. Let yn = xn−x̄.

Then yn ≥ −x̄ , {yn} oscillates about zero, and {yn} satisfies

(2.19) yn+1 = (1 − tn)yn + tn(f(yn−k + x̄) − x̄).

We will say that ys is a local maximum of {yn} if

(2.20) ys ≥ 0, ys ≥ ys−1 and ys ≥ ys+1,

and ys is a local minimum of {yn} if

(2.21) ys ≤ 0, ys ≤ ys−1 and ys ≤ ys+1.

Since {yn} oscillates, it has infinitely many local maximums and infinitely many local

minimums. We claim that when ys is a local maximum or local minimum,

(2.22) ys

(

ys
∏s−1

i=0 (1 − ti)
−

ys−1
∏s−2

i=0 (1 − ti)

)

≥ 0.
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In fact, if {ys} is a local maximum, then by noting (2.20), we see that

ys
∏s−1

i=0 (1 − ti)
−

ys−1
∏s−2

i=0 (1 − ti)
=

1
∏s−2

i=0 (1 − ti)

(

1

1 − ts−1
ys − ys−1

)

≥
1

∏s−2
i=0 (1 − ti)

(ys − ys−1) ≥ 0

and so (2.22) holds; if {ys} is a local minimum, then by noting (2.21), we see that

ys
∏s−1

i=0 (1 − ti)
−

ys−1
∏s−2

i=0 (1 − ti)
=

1
∏s−2

i=0 (1 − ti)

(

1

1 − ts−1
ys − ys−1

)

≤
1

∏s−2
i=0 (1 − ti)

(ys − ys−1) ≤ 0

and so (2.22) holds also. Next, observe that (2.19) yields

(2.23)
yn+1

∏n
i=0(1 − ti)

−
yn

∏n−1
i=0 (1 − ti)

=
tn

∏n
i=0(1 − ti)

(f(yn−k + x̄) − x̄).

Then it follows from (2.22) and (2.23) that when ys is a local maximum or local

minimum,

ys

(

ts−1
∏s−1

i=0 (1 − ti)
(f(ys−1−k + x̄) − x̄)

)

≥ 0

and so

ys(f(ys−1−k + x̄) − x̄) ≥ 0.

Since f(x̄) − x̄ = 0 and f is decreasing, we see that ysys−1−k ≤ 0 which yields

(2.24)

(

1
∏s−1

i=0 (1 − ti)
ys

)(

1
∏s−2−k

i=0 (1 − ti)
ys−1−k

)

≤ 0.

Now, suppose that ys is a local minimum of {yn}. Then it follows from (2.23) and

(2.24) that

1
∏s−1

i=0 (1 − ti)
ys ≥

1
∏s−1

i=0 (1 − ti)
ys −

1
∏s−2−k

i=0 (1 − ti)
ys−1−k

=

s−1
∑

j=s−1−k

(

tj
∏j

i=0(1 − ti)
(f(yj−k + x̄) − x̄)

)

.

Then, by noting f(yj−1−k + x̄) ≥ 0, we see that

1
∏s−1

i=0 (1 − ti)
ys ≥ −x̄

s−1
∑

j=s−1−k

tj
∏j

i=0(1 − ti)

and so

ys ≥ −x̄

s−1
∏

i=0

(1 − ti)

s−1
∑

j=s−1−k

tj
∏j

i=0(1 − ti)
= −x̄

s−1
∑

j=s−1−k

tj

s−1
∏

i=j+1

(1 − ti) ≥ −x̄T0.

Let z0 = −x̄T0. Since z0 is independent of the choice of ys, it is easy to see that

(2.25) yn ≥ z0 for n ≥ N ′

1
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where N ′

1 > N0 such that yN ′

1
is a local minimum of {yn}.

Now, assume that ys with s > N ′

1 + 2k is a local maximum of {yn}. Then it

follows from (2.23) and (2.24) that

1
∏s−1

i=0 (1 − ti)
ys ≤

1
∏s−1

i=0 (1 − ti)
ys −

1
∏s−2−k

i=0 (1 − ti)
ys−1−k

=
s−1
∑

j=s−1−k

(

tj
∏j

i=0(1 − ti)
(f(yj−k + x̄) − x̄)

)

.

Clearly,
∑n

j=n−k tj
∏n

i=j+1(1− ti) ≤ 1 for any tn ∈ [0, 1). Hence, we may have T0 ≤ 1

in (2.2). Then it follows that z0 + x̄ = −x̄T0 + x̄ ≥ 0 and so f(z0 + x̄) is defined.

Then by noting (2.25) and f is decreasing, we see that

f(yi−k + x̄) ≤ f(z0 + x̄) for i ≥ N ′

1 + k, and f(z0 + x̄) ≥ x̄.

Hence, it follows that

1
∏s−1

i=0 (1 − ti)
ys ≤

s−1
∑

j=s−1−k

tj−1
∏j−1

i=0 (1 − ti)
[f(z0 + x̄) − x̄]

and so

ys ≤
s−1
∏

i=0

(1 − ti)
s−1
∑

j=s−1−k

tj
∏j

i=0(1 − ti)
[f(z0 + x̄) − x̄]

=

s−1
∑

j=s−1−k

tj

s−1
∏

i=j+1

(1 − ti)[f(z0 + x̄) − x̄] ≤ T0[f(z0 + x̄) − x̄].

Let z1 = T0[f(z0 + x̄) − x̄]. Since z1 is independent of the choice of ys as long as

s > N ′

1 + 2k, it is easy to see that

yn ≤ z1 for n > N1

where N1 > N ′

1 + 2k such that yN1
is a local maximum of {yn}. Then, by an easy

induction, we see that for each m ≥ 0, there is a positive integer Nm+1 such that

z2m ≤ yn ≤ z2m+1 for n ≥ Nm+1

where {zm} is defined by

(2.26)







zm = T0[f(zm−1 + x̄) − x̄], m = 1, 2, . . .

z0 = −T0x̄.

Let wm = ym + z̄, m = 0, 1, . . . . Then (2.26) reduces to






wm = T0f(wm−1) + (1 − T0)x̄, m = 1, 2, . . .

w0 = (1 − T0)x̄

From the above discussion, it is easy to see that to show xn → x̄ as n → ∞ it suffices

to show that wm → x̄ as m → ∞. To this end, let g(x) = T0f(x) + (1 − T0)x̄.
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Clearly, g is defined on [0,∞), x̄ is a fixed point of g, g′(x) = T0f
′(x) < 0 and

(Sg)(x) = T0(Sf)(x) < 0 for x > 0. Hence, all the conditions assumed in Lemma 1

are satisfied and so wm → x̄ as m → ∞. Then, it follows that xn → x̄ as n → ∞.

The proof is complete.

3. Applications

In this section, we apply the results obtained in the last section to some equations

derived from mathematical biology.

First, consider the difference equation which has been discussed in Section 1

(3.1) xn+1 = (1 − tn)xn + tnxn−k

[

1 + q
(

1 −
(xn−k

K

)z)]

+
, n = 0, 1, . . .

where k is a positive integer, {tn} is a sequence in [0, 1), K, q, z ∈ (0,∞) and [x]+ =

max{0, x}, and the solutions {xn} of Eq. (3.1) satisfy the initial conditions of the

form

(3.2) xk, xk+1, . . . , x0 ∈ [0, x∗) with x0 > 0

where x∗ = K
(

1+q
q

)1/z

. Let

f(x) = x[1 + q(1 − (x/K)z)]+

and assume that

(3.3) q <
(1 + z)1+ 1

z

z
− 1.

It has been shown (see [8]) that f : (0, x∗) → (0, x∗). Then it is easy to see that the

solutions {xn} of Eq. (3.1) with initial conditions of form (3.2) satisfy xn ∈ (0, x∗),

n = 0, 1, . . . . Hence, with the initial conditions of form (3.2), Eq. (3.1) is equivalent

to the equation

(3.4) xn+1 = (1 − tn)xn + tnxn−k

[

1 + q
(

1 −
(xn−k

K

)z)]

, n = 0, 1, . . .

Clearly, f has the unique fixed point K ∈ (0, x∗) and

(x − K)(f(x) − x) < 0 for x ∈ (0, x∗) and x 6= K.

Observe that

f ′(x) = 1 + q(1 − (1 + z)(x/K)z), x ∈ (0, x∗).

Hence,

−z(1 + q) ≤ f ′(x) ≤ 1 + q, x ∈ (0, x∗).

and so the function f is L-Lipschitz with L = max{1+q, z(1+q)}. Then the following

result comes from Theorem 2.1 immediately.
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Theorem 3.1. Assume that (3.3) holds,
∑

∞

n=0 tn = ∞, and that there are a positive

constant c < 1 and a positive integer N0 > k such that

(3.5) L

n
∑

j=n−k

tj

n
∏

i=j+1

(1 − ti) ≤ c, n ≥ N0

where L = max{1+ q, z(1+ q)}. Then the positive equilibrium K is a global attractor

of solutions of Eq. (3.1) relative to the interval (0, x∗).

Next, consider the difference equations

(3.6) xn+1 = (1 − tn)xn + btn
xn−k

1 + xγ
n−k

, n = 0, 1, . . .

and

(3.7) xn+1 = (1 − tn)xn + ptnxn−ke
−σxn−k , n = 0, 1, . . .

where {tn} is a sequence in [0, 1), b, p, γ and σ are positive constants with b > 1 and

p > 1, and k is a nonnegative integer.

For the special case that {tn} is a positive constant λ ∈ (0, 1), let 1 − λ ≡ δ,

β = (1− δ)b, and ρ = (1− δ)p. Then Eqs. (3.6) and (3.7) can be written in the forms

(3.8) xn+1 = δxn + β
xn−k

1 + xγ
n−k

, n = 0, 1, . . .

and

(3.9) xn+1 = δxn + ρxn−ke
−σxn−k , n = 0, 1, . . .

respectively. Eq. (3.8) is a discrete analogue of a model of haematopoiesis [10], while

Eq. (3.4) is a discrete version of a model used in describing the dynamics of Nicholson’s

blowflies [5]. The global atrractivity of positive solutions of Eqs. (3.8) and (3.9) have

been studied by several authors, see for example, [6, 7, 8] and references cited therein.

In addition, when k = 0, Eq. (3.8) was proposed by Milton and Belair [11] as a model

for the bobwhite quail population of northern Wisconsin, and its local and global

stability has been studied in [11].

First consider Eq. (3.6) and let f(x) = bx
1+xγ . Clearly, f has a unique positive

fixed point x̄ = (b − 1)
1

γ which is the unique positive equilibrium of Eq. (3.6), and

(x − x̄)(f(x) − x) < 0 for x > 0 and x 6= x̄.

By observing

f ′(x) =
b(1 + (1 − γ)xγ)

(1 + xγ)2
and f ′′(x) =

bγxγ−1((γ − 1)xγ − (γ + 1))

(1 + xγ)3
,
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we see that when γ ≤ 1, supx>0{|f
′(x)|} = f ′(0) = b; while for the case that γ > 1,

supx>0{|f
′(x)|} = b and

inf
x>0

{f ′(x)} = f ′

(

(

γ + 1

γ − 1

)1/γ
)

= −
b(γ − 1)2

4γ

and so it follows that

sup
x>0

{|f ′(x)|} = b max

{

1,
(γ − 1)2

4γ

}

.

Hence, the function f is L-Lipschitz with L = b if γ ≤ 1 and L = b max
{

1, (γ−1)2

4γ

}

if

γ > 1. Therefore, by Theorem 2.1, we have the following result.

Theorem 3.2. Assume that

(3.10)
∞
∑

n=0

tn = ∞,

and there a positive integer N0 ≥ k such that

(3.11)

n
∑

j=n−k

tj

n
∏

i=j+1

(1 − ti) ≤ T0, n ≥ N0.

where T0 is a positive constant. Then the positive equilibrium x̄ of Eq. (3.6) is a global

attractor of all positive solutions of the equation if either γ ≤ 1 and bT0 < 1, or γ > 1

and bT0 max
{

1, (γ−1)2

4γ

}

< 1.

Next, consider Eq. (3.7) and let f(x) = pxe−σx. Clearly, f has a unique positive

fixed point x̄ = 1
σ

ln p which is the unique positive equilibrium of Eq. (3.7), and

(x − x̄)(f(x) − x) < 0 for x > 0 and x 6= x̄.

Then by noting

f ′(x) = p(1 − σx)e−σx and f ′′(x) = pσe−σx(σx − 2)

we see that supx>0{|f
′(x)|} = f ′(0) = p. Hence, the function f is L-Lipschitz with

L = p and so by Theorem 2.1 we have the following result.

Theorem 3.3. Assume that (3.10) and (3.11) hold. Then the positive equilibrium x̄

of Eq. (3.7) is a global attractor of all positive solutions of the equation if pT0 < 1

holds.

Now, let’s consider the difference equations

(3.12) xn+1 = (1 − tn)xn +
btn

1 + xγ
n−k

, n = 0, 1, . . .

and

(3.13) xn+1 = (1 − tn)xn + ptne
−σxn−k , n = 0, 1, . . .



GLOBAL ATTRACTIVITY 587

where {tn} is an sequence in [0, 1), b, p, γ and σ are positive constants, and k is a

nonnegative integer. For the special case that {tn} is a positive constant λ ∈ (0, 1),

let 1 − λ ≡ δ, β = (1 − δ)b, and ρ = (1 − δ)p. Then Eqs. (3.12) and (3.13) can be

written in the forms

(3.14) xn+1 = δxn +
β

1 + xγ
n−k

, n = 0, 1, . . .

and

(3.15) xn+1 = δxn + ρe−σxn−k , n = 0, 1, . . .

respectively. Eq. (3.14) is a discrete analogue of a model that has been used to study

blood cell production [10], while Eq. (3.15) is a discrete version of a model of the sur-

vival of red blood cells in an animal [16]. The global attractivity of positive solutions

of Eqs. (3.14) and (3.15) has been studied by several authors, see for example, [3, 4,

6, 7, 8] and references cited therein.

Clearly, Eq. (3.12) has a unique positive equilibrium x̄. It has been shown in [14]

that x̄ is a global attractor of all positive solutions of Eq. (3.12) if one of the following

conditions holds:

(i) γ ≤ 1 and
∑

∞

n=0 tn = ∞;

(ii) limn→∞ tn = 0 and
∑

∞
tn = ∞;

(iii) limn→∞ tn = λ > 0 and (1 − (1 − λ)k+1)bγ < 1.

While for the case that γ > 1 and {tn} does not necessarily have a limit, it has been

shown in [12] that if
∑

∞

n=1
tn

1−tn
= ∞, and there is a positive constant T0 such that

∑n
j=n−k

tj
1−tj

≤ T0 for large n, and bγT0 < 1, then x̄ is a global attractor of all positive

solutions of Eq. (3.12).

However, by letting f(x) = b
1+xγ and by an easy calculation, we find that f ′(x) =

− bγxγ−1

(1+xγ )2
< 0 for x > 0 and when γ > 1,

(Sf)(x) =
1

2
(1 − γ)(1 + γ)x−2 < 0, x > 0.

Hence, by Theorem 2.4, we have the following conclusion.

Theorem 3.4. Assume that (3.10) and (3.11) hold, and

γ > 1,
bγx̄γ−1

(1 + x̄γ)2
T0 < 1.

Then x̄ is a global attractor of all positive solutions of Eq. (3.12).

It is easy to see that
∑

∞

n=0
tn

1−tn
= ∞ if and only if

∑

∞

n=0 tn = ∞, and that
bγx̄γ−1

(1+x̄γ)2
< bγ. In addition, by noting tj

∏n
i=j+1(1 − ti) ≤

tj
1−tj

, we see that

n
∑

j=n−k

tj

n
∏

i=j+1

(1 − ti) ≤
n
∑

j=n−k

tj
1 − tj

.
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Hence, Theorem 3.4 is an improvement of the corresponding result obtained in [12].

Example 3.5. Consider the equation

(3.16) xn+1 = (1 − tn)xn +
2tn

1 + xγ
n−k

, n = 0, 1, . . .

which is in the form of (3.12) with b = 2. Clearly x̄ = 1 is the only positive equilibrium

of Eq. (3.16). Hence, by Theorem 3.4, if (3.10) and (3.11) hold, γ > 1 and γT0 < 2,

then every positive solution of Eq. (3.16) tends to 1 as n → ∞. (By the corresponding

result obtained in [14], as we mentioned above, when γ ≤ 1 and (3.10) holds, every

positive solution tends to 1 as n → ∞.)

Finally, consider Eq. (3.13). It has a unique positive equilibrium x̄. It has been

shown in [14] that x̄ is a global attractor of all positive solutions of Eq. (3.13) if one

of the following conditions holds:

(i) pσ ≤ e and
∑

∞

n=0 tn = ∞;

(ii) limn→∞ tn = 0 and
∑

∞
tn = ∞;

(iii) limn→∞ tn = λ > 0 and (1 − (1 − λ)k+1)pσ < 1.

For the case that {tn} does not necessarily have a limit, it has been shown in [12] that

if
∑

∞

n=1
tn

1−tn
= ∞, and there is a positive constant T0 such that

∑n
j=n−k

tj
1−tj

≤ T0

for large n, and pσT0 < 1, then x̄ is a global attractor of all positive solutions of

Eq. (3.13). Now, let f(x) = pe−σx and observe that

f ′(x) = −pσe−σx < 0 and (Sf)(x) = −
1

2
σ2 < 0.

Hence, by Theorem 2.4, we have the following result

Theorem 3.6. Assume that (3.10) and (3.11) hold, and

pσe−σx̄T0 < 1.

Then x̄ is a global attractor of all positive solutions of Eq. (3.13).

Again by noting that
∑

∞

n=0
tn

1−tn
= ∞ is equivalent to

∑

∞

n=0 tn = ∞, and
∑n

j=n−k tj
∏n

i=j+1(1 − ti) ≤
∑n

j=n−k
tj

1−tj
and by noting pσe−σx̄ < pσ, we see that

Theorem 7 is an improvement of the corresponding result obtained in [12].

Example 3.7. Consider the equation

(3.17) xn+1 = (1 − tn)xn + tneσ(1−xn−k),

which is in the form of (3.13) with p = eσ. Clearly, x̄ = 1 is the unique positive

equilibrium of Eq. (3.17). Hence, by Theorem 3.6, if (3.10) and (3.11) hold and

σT0 < 1, then every positive solution of Eq. (3.17) tends to 1 as n → ∞.
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