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ABSTRACT. This paper is concerned with the existence of positive solutions for a multi-points

boundary value problem of higher order fractional differential equations. Firstly, we give the Green’s

function and discuss its property; then the existence criteria of one and two positive solutions are

established by means of fixed point theory. The results extend and generalize some related results

in the literature.
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1. INTRODUCTION

Fractional differential equations have been of great interest recently which is due

to its significant role in engineering, science, economy and other fields. During the

last few decades, many monographs and papers on fractional calculus and fractional

differential equations have appeared, see [1, 9, 13, 15, 16]. Recently, there have been

a lot of works dealing with the existence and multiplicity of solutions (or positive

solutions) of boundary value problems for nonlinear fractional differential equations

by use of techniques of nonlinear analysis (fixed-point theorems, critical point theory,

et. al.) [1, 2, 3, 5, 6, 7, 10, 17, 18, 19, 20]. However, few papers considered multi-point

boundary value problems for higher-order fractional differential equations [5].

In [5], El-Shahed and Nieto considered the following nonlinear differential equa-

tion m-points boundary value problem






RDα
0+u(t) + f(t, u(t)) = 0, t ∈ [0, 1],

u(0) = u′(0) = · · · = u(n−1)(0) = 0, u(1) =
∑m−2

i=1 aiu(ηi),
(P )

They transformed the differential equation into an integral equation and obtained

some results for nontrivial solutions of problem (P) by using Leray-Schauder nonlinear

alternative and Banach contraction mapping principle.
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Motivated by [5], in this paper, we further investigate existence of positive solu-

tions of (P), by deriving the corresponding Green’s function and analyzing its prop-

erties. We reduce (P) to the equivalent Fredholm integral equation of second order,

then by applying fixed-point theorems in cones, the existence criteria of one and two

positive solutions for the problem (P) are established. The results generalize and

extend some corresponding results in the literature, for example, Eloe and Ahmad

[4] (α ∈ N, m = 3), Ma [11] (α = 2), and [12] (α = 2, m = 3), Pang, Dong and

Wei[14](α ∈ N).

The rest of the paper is organized as follows. In Section 2, we first present

preliminaries and lemmas which are used to prove our main results and then discuss

some properties of the Green’s function. Section 3 develops existence criteria for

positive solutions of the problem (P).

2. PRELIMINARIES

For convenience, we present some preliminaries which are needed later.

Definition 2.1 ([15]). The Riemann-Liouville fractional integral (derivative) of order

α > 0 of a function u : (0,∞) → R is defined by

Iα
0+u(t) =

1

Γ(α)

∫ t

0

(t − s)α−1u(s)ds,

(

Dα
0+u(t) =

(

d

dt

)n

In−α
0+ u(t)

)

provided that the right side are pointwise defined on (0,∞), where n = [α] + 1.

Lemma 2.2 ([15]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of

order α > 0 that belongs to C(0, 1) ∩ L(0, 1), then

Iα
0+Dα

0+f(t) = f(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

for some ci ∈ R, i = 1, 2, . . . , n, n − 1 < α ≤ n.

Lemma 2.3 ([8]). Let P be a cone in a Banach space E. Assume Ω1, Ω2 are open

subsets of E with 0 ∈ Ω1, Ω1 ⊆ Ω2. If T : P∩(Ω2\Ω1) → P is a completely continuous

operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

Next, we derive the corresponding Green’s function for the problem (P) and

obtain some properties of it.

Lemma 2.4. Suppose D = 1 −
∑m−2

i=1 aiη
α−1
i 6= 0, for given y ∈ C[0, 1], then the

solution of problem

RDα
0+u(t) + y(t) = 0, t ∈ (0, 1),(2.1)
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u(0) = u′(0) = · · · = u(n−1)(0) = 0, u(1) =

m−2
∑

i=1

aiu(ηi),(2.2)

is given by

(2.3) u(t) =

∫ 1

0

G(t, s)y(s)ds

where the Green’s function G(t, s) is

(2.4) G(t, s) = G1(t, s) + tα−1g(s).

(2.5) G1(t, s) =
1

Γ(α)







tα−1(1 − s)α−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1, 0 ≤ t ≤ s ≤ 1,

g(s) =
1

DΓ(α)

m−2
∑

i=1

ai[η
α−1
i (1 − s)α−1 − (ηi − s)α−1χ[0,ηi](s)]

and χ[0,ηi](s) = 1 for s ∈ [0, ηi], χ[0,ηi](s) = 0 otherwise.

Proof. From Lemma 2.2 and (2.1), one gets

u(t) = −Iα
0+y(t) + c1t

α−1 + · · ·+ cn+1t
α−n−1.

In view of (2.2), we have c2 = 0, . . . , cn+1 = 0 and

c1 =
1

DΓ(α)

[
∫ 1

0

(1 − s)α−1y(s) −
m−2
∑

i=1

ai

∫ ηi

0

(ηi − s)α−1y(s)ds

]

.

Therefore, the solution of (2.1), (2.2) is

u(t) = −
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds −
tα−1

DΓ(α)

m−2
∑

i=1

ai

∫ ηi

0

(ηi − s)α−1y(s)ds

+
tα−1

DΓ(α)

∫ 1

0

(1 − s)α−1y(s)ds

= −
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds −
tα−1

DΓ(α)

m−2
∑

i=1

ai

∫ ηi

0

(ηi − s)α−1y(s)ds

=
1

Γ(α)

∫ 1

0

tα−1(1 − s)α−1y(s)ds +
tα−1

DΓ(α)

m−2
∑

i=1

aiη
α−1
i

∫ 1

0

(1 − s)α−1y(s)ds

=
1

Γ(α)

∫ t

0

[tα−1(1 − s)α−1 − (t − s)α−1]y(s)ds +
1

Γ(α)

∫ 1

t

tα−1(1 − s)α−1y(s)ds

−
tα−1

DΓ(α)

m−2
∑

i=1

ai

{

∫ ηi

0

(ηi − s)α−1y(s)ds + ηα−1
i

∫ 1

0

(1 − s)α−1y(s)ds
}

=

∫ 1

0

G1(t, s)y(s)ds +

∫ 1

0

tα−1g(s)y(s)ds =

∫ 1

0

G(t, s)y(s)ds.
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Conversely, let u(t) be given by (2.3), it is easy to verify that u(t) is the solution of

(2.1), (2.2).

Lemma 2.5. Suppose D > 0, then the Green’s function G(t, s) given in (2.4) has the

following properties:

0 ≤ G(t, s) ≤ k(s) for (t, s) ∈ [0, 1] × [0, 1],

and there exists a constant γ ∈ (0, 1) such that

min
t∈[η1,1]

G(t, s) ≥ γk(s), s ∈ [0, 1]

where k(s) = α−1
Γ(α)

s(1 − s)α−1 + g(s).

Proof. By (2.5), when 0 ≤ s ≤ t ≤ 1, in view of the Lagrange mean value problem

we get that

0 ≤ Γ(α)G1(t, s) = tα−1(1 − s)α−1 − (t − s)α−1

≤ (α − 1)(t(1 − s))α−2(t(1 − s) − (t − s)) ≤ (α − 1)s(1 − s)α−1,

when 0 ≤ t ≤ s ≤ 1, 0 ≤ Γ(α)G1(t, s) = tα−1(1 − s)α−1 ≤ (α − 1)s(1 − s)α−1.

Therefore

0 ≤ G(t, s) = G1(t, s) + tα−1g(s) ≤
α − 1

Γ(α)
s(1 − s)α−1 + g(s) = k(s).

Observe that g(s), k(s) are nonnegative on [0, 1], g(s) = 0, k(s) = 0 if and only if

s = 0 or 1, and

lim
s→0+

g(s)

k(s)
= lim

s→0+

∑m−2
i=1 ai[η

α−1
i (1 − s)α−1 − (ηi − s)α−1]

D(α − 1)s(1 − s)α−1 +
∑m−2

i=1 ai[η
α−1
i (1 − s)α−1 − (ηi − s)α−1]

= lim
s→0+

∑m−2
i=1 ai[(ηi − s)α−2 − ηα−1

i (1 − s)α−2]

D(1 − s)α−1 − D(α − 1)s(1 − s)α−2 +
∑m−2

i=1 ai[(ηi − s)α−2 − ηα−1
i (1 − s)α−2]

=

∑m−2
i=1 aiη

α−2
i (1 − ηi)

D +
∑m−2

i=1 aiη
α−2
i (1 − ηi)

.

lim
s→1−

g(s)

k(s)
= lim

s→1−

∑m−2
i=1 aiη

α−1
i (1 − s)α−1

D(α − 1)s(1 − s)α−1 +
∑m−2

i=1 aiη
α−1
i (1 − s)α−1

=

∑m−2
i=1 aiη

α−1
i

D(α − 1) +
∑m−2

i=1 aiη
α−1
i

.

So by the continuity and positivity of g(s) and k(s) on (0, 1), we get that there is

γ ∈ (0, 1) such that

min
t∈[η1,1]

G(t, s) = min
t∈[η1,1]

G1(t, s) + tα−1g(s) ≥ ηα−1
1 g(s) ≥ γk(s), s ∈ [0, 1].
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Let the Banach space E = C[0, 1] be endowed with the maximum norm ‖u‖ =

max0≤t≤1 |u(t)| and choose the cone K ⊂ E defined by

(2.13) K =

{

u ∈ E : u(t) ≥ 0, t ∈ [0, 1]. min
t∈[η1,1]

u(t) ≥ γ‖u‖

}

.

We make the following assumptions:

(H) Suppose 0 < η1 < η2 < · · · < ηm−2 < 1, ai ≥ 0 (i = 1, 2, . . . , m − 2), D > 0 and

n ≥ 2, f ∈ C([0, 1] × [0,∞), [0,∞)).

Define the operator A : E → E by

(2.14) Au(t) =

∫ 1

0

G(t, s)f(s, u(s))ds.

Therefore, seeking positive solutions of the problem (P) turns into seeking fixed points

of the operator A.

Lemma 2.6. Suppose (H) is satisfied, then A : K → K is completely continuous.

Proof. Notice from (2.14), Lemma 2.5 and (H) that for u ∈ K, we obtain

0 ≤ Au(t) ≤

∫ 1

0

k(s)f(s, u(s))ds, t ∈ [0, 1].

and

min
t∈[η1,1]

Au(t) ≥

∫ 1

0

γk(s)f(s, u(s))ds ≥ γ‖Au‖

Thus, A(K) ⊂ K. In view of Arzela-Ascoli theorem, it is routine to see that A : K →

K is completely continuous.

3. MAIN RESULTS

For convenience, throughout this section we assume (H) hold and introduce the

following notations.

f0 = lim inf
u→0+

min
t∈[0,1]

f(t, u)

u
, f 0 = lim sup

u→0+

max
t∈[0,1]

f(t, u)

u
,

f∞ = lim inf
u→+∞

min
t∈[0,1]

f(t, u)

u
, f∞ = lim sup

u→+∞

max
t∈[0,1]

f(t, u)

u
,

M =

(
∫ 1

0

k(s)ds

)−1

, N =

(

γ

∫ 1

η1

G(1, s)ds

)−1

.

Theorem 3.1. Assume f0 > N , f∞ < M , then (P) has least one positive solution u.
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Proof. Since f0 > N , we can find r > 0 so that f(t, u) > Nu for t ∈ [0, 1], 0 ≤ u ≤ r.

Let Ωr = {u ∈ K | ‖u‖ < r}, then for u ∈ ∂Ωr, we have γr ≤ u(t) ≤ r, t ∈ [η1, 1].

So, by Lemma 2.5 and (2.14), one gets

(Au)(1) ≥

∫ 1

η1

G(1, s)f(s, u(s))ds ≥ rN

∫ 1

η1

G(1, s)u(s)ds

≥ rNγ

∫ 1

η1

G(1, s)ds = ‖u‖.

From which we know that

(3.1) ‖Au‖ ≥ ‖u‖, u ∈ ∂Ωr .

On the other hand, since f∞ < M , there exists H > 0 such that

(3.2) f(t, u) < Mu, t ∈ [0, 1], u ≥ H.

If maxt∈[0,1] f(t, u) is unbounded on [0,∞), then we choose R > max{r, H} so that

(3.3) f(t, u) ≤ max
t∈[0,1]

f(t, R) for t ∈ [0, 1] u ∈ (0, R].

For u ∈ K with ‖u‖ = R, then it follows from Lemma 2.5, (3.3) and (3.2) that

‖Au‖ ≤

∫ 1

0

k(s) max
t∈[0,1]

f(t, R)ds ≤ RM

∫ 1

0

k(s)ds = R = ‖u‖.

If maxt∈[0,1] f(t, u) is bounded on [0,∞], we have f(t, u) ≤ L for t ∈ [0, 1], u ≥ 0. In

this case, we choose R > r + L
M

. For u ∈ K with ‖u‖ = R, from Lemma 2.5 we have

‖Au‖ ≤
∫ 1

0
k(s)Lds = L

M
< R = ‖u‖.

Therefore, in either case we may put ΩR = {u ∈ K | ‖u‖ < R} and we get

(3.4) ‖Au‖ ≤ ‖u‖, u ∈ ∂ΩR.

Therefore, by (3.1), (3.4) and Lemma 2.3, we know that the operator A has at least

one fixed point u ∈ ΩR \ Ωr, which is a positive solution of (P).

Theorem 3.2. Assume that f 0 < M , f∞ > N hold, then the problem (P) has at

least one positive solution u.

Proof. By f 0 < M, there is r > 0 such that f(t, u) < Mu for t ∈ [0, 1], 0 < u ≤ r.

Let Ωr = {u ∈ K | ‖u‖ < r}. For u ∈ ∂Ωr, then 0 ≤ u(t) ≤ r on t ∈ [0, 1]. By

Lemma 2.5, we know

(Au)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤ M

∫ 1

0

k(s)u(s)ds ≤ Mr

∫ 1

0

k(s)ds = r = ‖u‖.

From which we can see that

(3.5) ‖Au‖ ≤ ‖u‖, u ∈ ∂Ωr .
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On the other hand, since f∞ > N , there exists H > 0 such that f(t, u) > Nu for

t ∈ [0, 1], u > H . Let R = max{H
γ
, 2r}, ΩR = {u ∈ K | ‖u‖ < R}. For u ∈ ∂ΩR, we

have u(t) ≥ γ‖u‖ = γR ≥ H on t ∈ [η1, 1]. By Lemma 2.5, this implies

‖Au‖ ≥ |(Au)(1)| ≥

∫ 1

η1

G(1, s)f(s, u(s))ds

≥ N

∫ 1

η1

G(1, s)u(s)ds ≥ γN

∫ 1

η1

G(1, s)ds‖u‖ = ‖u‖.

So

(3.6) ‖Au‖ ≥ ‖u‖ for u ∈ ∂ΩR.

Thus, from (3.5), (3.6) and Lemma 2.3, we know that the operator A has at least one

fixed point u ∈ ΩR \ Ωr, which is a positive solution of (P).

Theorem 3.3. Under the assumptions f0 > N , f∞ > N , there exists a p > 0 such

that f(t, u) < Mp, (t, u) ∈ [0, 1] × [0, p], then (P) has at least two positive solutions

u1 and u2 satisfying 0 < ‖u1‖ < p < ‖u2‖.

Proof. Since f0 > N , we can find 0 < r0 < p so that f(t, u) > Nu, t ∈ [0, 1],

0 < u ≤ r0. Let Ωr0
= {u ∈ K | ‖u‖ < r0}, similar to the proof of Theorem 3.1, one

gets

(3.7) ‖Au‖ ≥ ‖u‖ for u ∈ ∂Ωr0
.

On the other hand, since f∞ > N , there exist a H > 0 such that f(t, u) > Nu for

t ∈ [0, 1], u ≥ H . Choose R > R0 := max{H
γ
, p + 1}, let ΩR = {u ∈ K | ‖u‖ < R},

similar to the proof of Theorem 3.2, we have

(3.8) ‖Au‖ ≥ ‖u‖, u ∈ ∂ΩR.

Let Ωp = {u ∈ K | ‖u‖ < p}. For u ∈ ∂Ωp, we know f(t, u(t)) < Mp for (t, u) ∈

[0, 1]× [0, p]. By Lemma 2.5, so ‖Au‖ ≤
∫ 1

0
G(t, s)f(s, u(s))ds ≤

∫ 1

0
k(s)Mp ds = p =

‖u‖. Thus

(3.9) ‖Au‖ ≤ ‖u‖ for u ∈ ∂Ωp.

Therefore, by (3.7), (3.8), (3.9) and Lemma 2.3, we know that operator A has at least

two fixed points u1 and u2 satisfying 0 < ‖u1‖ < p < ‖u2‖, which are two positive

solutions of (P).

Theorem 3.4. Under the assumptions that f 0 < M , f∞ < M , and there exists a

p > 0 such that f(t, u) > Nu, (t, u) ∈ [η1, 1]×[γp, p], then (P) has at least two positive

solutions u1 and u2 satisfying 0 < ‖u1‖ < p < ‖u2‖.
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Proof. Since f 0 < M , there exists 0 < r0 < p such that f(t, u) < Mu, t ∈ [0, 1],

0 < u ≤ r0. Let Ωr0
= {u ∈ K | ‖u‖ < r0}, similar to the proof of Theorem 3.2, one

has

(3.10) ‖Au‖ ≤ ‖u‖, u ∈ ∂Ωr0
.

On the other hand, let R = max{r0 + L
M

, H, p+1}, ΩR = {u ∈ K | ‖u‖ < R}, similar

to the proof of Theorem 3.1, we get

(3.11) ‖Au‖ ≤ ‖u‖ for u ∈ ∂ΩR.

Let Ωp = {u ∈ K | ‖u‖ < p}, for u ∈ ∂Ωp, we obtain γp ≤ u(t) ≤ p, t ∈ [η1, 1]. Thus

f(t, u) > Nu, (t, u) ∈ [η1, 1] × [γp, p]. In view of Lemma 2.5, then

Au(1) ≥

∫ 1

η1

G(1, s)f(s, u(s))ds > Nγp

∫ 1

η1

G(1, s)ds = p = ‖u‖.

So

(3.12) ‖Au‖ ≥ ‖u‖ for u ∈ ∂Ωp.

Therefore, by (3.10), (3.11), (3.12) and Lemma 2.3, we know that operator A has

at least two fixed points u1 and u2 satisfying 0 < ‖u1‖ < p < ‖u2‖, which are two

positive solutions of (P).

Remark 3.5. In this paper, if α = 2, (P) is reduced to 2nd-order BVPs. Through

the verification, we can verify that the properties of the Green’s function are still

satisfied, so these results still hold. The results of this paper generalized the main

results in [4] (α is an integer, m=3), [11] (α = 2), [12] (α = 2, m = 3) and [14] (α is

an integer).

Remark 3.6. In this paper, we get some existence results for positive solutions to

(P), when the nonlinearity term is nonnegative. Future research will consider the

existence of positive solution to (P) with sign changing nonlinearity.

Example 3.7. Consider the following problem






RD2.5
0+ u(t) + up(t) = 0, t ∈ [0, 1],

u(0) = u′(0) = 0, u(1) = 2u(1/16) + 4u(1/4).

Clearly, D = 11
16

> 0, f(u) = up with p > 0 and p 6= 1, then f : [0,∞) → [0,∞) is

continuous. When 0 < p < 1, we have f0 = ∞, f∞ = 0; when p > 1, we have f 0 = 0,

f∞ = ∞, so, by Theorem 3.1 and 3.2, the problem has at least one positive solution.
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