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ABSTRACT. In this paper, we introduce an extended discrete economic epidemiological model
based on the most recent work by Aadland et al.. Our generalization is on the consideration of
unequal birth and death rates and also the modification of the utility function by using a parametric
quadratic function. The new assumptions make it possible to consider the maximum number of
contact made by rational individuals as a space variable. It is shown that, if rational individuals
have a range of possible contacts to choose from, with the maximum number of contacts allowable
for these individuals being dependent on the parameter of the utility function, the variation of this
parameter tends to affect the stability properties of the system. We also show that birth and death
rates affect the stability of the system for high values of the health gap and the infection parameter.
Finally, effects of the parameters on various types of dynamic paths of the system are investigated
by numerical simulation.
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1. INTRODUCTION

Economic Epidemiology (EE) incorporates economic choices in epidemiology mod-

els. It is mainly concerned with the study of how the health status of an individual

affects his or her responses to a disease outbreak [4]. The commonly held view is

that individual behaviour in the presence of an infectious disease is dependent on the

disease’s prevalence and the danger that it poses [8]. For instance, extended research

has been done in trying to understand how the behavioural pattern has affected the

spread of the AIDS epidemics [12]. EE models also take into account the role of exter-

nalities in disease propagation; how an individual’s response to an infectious disease

outbreak can have a tremendous effect on the epidemiology of the disease; and finally

the cost of curbing it. It is recognized that disease treatment and prevention depend

heavily on the behaviour of the afflicted and non-afflicted; sometimes their behaviour
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is volatile during and in the aftermath of the outbreak and these mood swings have

a bearing on the rest of the population as well [8]. Therefore, it is imperative to

understand the wide variety of individual reactions during and in the aftermath of an

epidemic outbreak and how the same affects policy formulation and implementation.

In the earlier work [11], Kaplan considered how the number of sexual contacts

by individuals affect HIV infection rate. Later, syphilis cycles were studied in [1] and

it was pointed out that the cycles depend heavily on individuals’ preferences over

their health and sexual activities. Most recently, Aadland et al. introduced an eco-

nomic version of compartmental models in epidemiology under rational expectations

[2, 3]. In the form of difference equations, their models have the key assumptions

of constant population and the most commonly applied logarithmic utility function.

They assumed that a representative agent makes a finite number of contacts that

maximizes his or her expected life time utility. In this paper, we considered general-

izations of the models from [2] by allowing dynamical population (unequal birth and

death rates) and the replacement of the utility function using a parametric quadratic

function. The new assumptions make it possible to consider the maximum number

of contacts made by rational individuals as a new space variable. We studied the

stability properties of the equilibria for the extended EE models using the linearizing

analysis for discrete dynamical systems [5, 13]. It is shown that, if rational individuals

have a range of possible contacts to choose from, with the maximum of the number

of contacts allowable for these individuals being dependent on the parameter of the

utility function, the variation in this parameter tends to affect the stability properties

of the system. It is also shown that birth and death rates affect the stability of the

system for high values of health gap and the infection parameter.

The rest of the paper is organized as the following: In Section 2, we introduced

the modified EE SIRS and EE SIS models as discrete dynamical systems under the

new assumptions. Stability analysis of the equilibria is given in Section 3. Simulation

results on various types of dynamic paths are demonstrated in Section 4. Finally,

Section 5 presents some discussions and conclusions.

2. EE SIRS AND SIS MODEL WITH RATIONAL EXPECTATIONS

2.1. The EE SIRS Model. The classical SIRS model consists of three mutually

exclusive disease categories: Susceptible(S), Infected(I) and Recovered with immu-

nity(R). The mechanism involved in transitioning from one disease category to the

other is as follows: an individual infected by a disease will migrate from the suscepti-

ble category to the infected category and then when treated and immune against the

disease, will migrate from the infected category to the recovered category and then

back to the susceptible category when he or she becomes prone to the disease again.
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Let pt be the probability that susceptible individuals become infected after coming

into contact with infected individual(s) and ν be the recovery rate of the infected

category. Assume the immunity period is exponentially distributed with the rate γ.

Then 1
γ

is the average duration of immunity and (1−γ) is the rate at which individuals

remain in the recovered category. In this case, the number of individuals entering the

susceptible category is γR and those remaining in the recovered category is (1−γ)R.

Finally, assume the birth and death rates are ω and µ respectively. Following the

similar approaches as [2], we have the following system:

St+1 = ωNt + (1− pt − µ)St + γRt,

It+1 = (1− ν − µ)It + ptSt,(2.1)

Rt+1 = (1− γ − µ)Rt + νIt.

Let Nt+1 = St+1 + It+1 + Rt+1 be the total population at time t + 1. We have

Nt+1 = (1 + ω− µ)Nt. Therefore system (2.1) can be written as proportions of Nt+1:

st+1 = Aω + A(1− pt − µ)st + Aγrt,

it+1 = A(1− ν − µ)it + Aptst,(2.2)

rt+1 = A(1− µ− γ)rt + Aνit,

where st+1 = St+1

Nt+1
, st = St

Nt
, it+1 = It+1

Nt+1
, it = It

Nt
, rt+1 = Rt+1

Nt+1
, rt = Rt

Nt
and A = 1

1+ω−µ .

Suppose individuals independently choose xt contacts and that the probability

of an uninfected individual becoming infected follows the Bernoulli process. Let α

be the chance of becoming infected with each contact. Then the probability of a

susceptible individual becoming infected is

(2.3) pt = Pr(infection) = 1− (1− αit)xt .

The dependence of the probability of infection on the chosen number of contacts

differentiates the analysis from the standard (classical) mathematical epidemiology

(ME) [1]. For instance, if individuals under study do not take into account the

health consequences of their risky behaviour, thus going for the maximum number of

contacts x̄ each period, then we have the EE model collapsing to the standard ME

with infection probability being

(2.4) pt = 1− (1− αit)x̄ .

2.2. Rational Expectations on the Number of Contacts. Suppose the rep-

resentative agent n maximizes expected lifetime utility by choosing the number of

contacts, xn,t. Using the utility function u(xn,t, hn,t) = xn,t − δx2
n,t + hn,t, where

0 < δ < 1 is a fixed parameter, hn,t is a parameter that captures the agent’s health
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status at time t, we have the following as the objective function for the agent:

(2.5) Et

∞∑
j=0

βj[(xn,t+j − δx2
n,t+j) + hn,t+j] ,

where 0 < β < 1 is the discount factor, Et is the individual’s expectation operator

at time t. The parameter h plays a very important role in the individual’s choice of

number of contacts. In that, if the individual is infected, the individual experiences

low value of h. Because the additional contacts made by an individual bring immedi-

ate satisfaction or a risk of getting infected by the disease, an additional contact the

individual makes either affect the level of utility positively or negatively. For instance,

a contact made by an individual that resulted in contracting the disease will cause a

deterioration in the individual’s health, thus reducing the value of the parameter h

at the given period, hence affecting the utility of the individual inversely.

Under the assumption of all individuals are identical with the exception of having

a different disease states and health levels, we analyze the model in terms of a single

individual in each of the disease categories [3]. So the subscript n can be dropped. An

individual belonging to the susceptible group makes a choice about contacts on the

basis of his single-period utility function and expected future utility which depends on

infection expectations. This susceptible individual’s decision will satisfy the Bellman’s

equation

(2.6) V s
t = max

x∈X
{xt − δx2

t + hs + βEt[ptV
i
t+1 + (1− pt)V s

t+1]},

where V s
t is the value function associated with being susceptible at time t. The term in

the bracket is the expected future utility which depends on expected future infection

levels. The present value of the expected future utility is V s
t+1 if the individual remains

susceptible and V i
t+1 if the individual becomes infected after making a choice in period

t [8]. X is the range of possible contacts. In our case, we have X = [0, 1
2δ

] derived

from the quadratic utility function.

Assume that all individuals regardless of infection status maximize the objective

function (2.5) without the concern for the general population. Infected and recovered

individuals with immunity therefore choose the maximum number of contacts x̄ be-

cause they do not stand any risk of immediate infection [2]. The value functions for

the infected and recovered groups can then be obtained as the following:

(2.7) V i
t = x̄− δx̄2 + hi + βEt[νV

r
t+1 + (1− ν)V i

t+1],

(2.8) V r
t = x̄− δx̄2 + hs + βEt[γV

s
t+1 + (1− γ)V r

t+1],

where hs > hi are the health status associated with an individual in the susceptible

(or recovered) and infected groups respectively.
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The implication of the model is that an infected individual who involved in the

maximum possible amount of risky behavior will spread the disease in the population,

thus causing the susceptible group to make the number of contacts that is suboptimal

[1]. The converse holds if one is dealing with an altruistic population (In [1], syphilis

cycles were studied based on this assumption). Suppose an individual in the suscep-

tible group chooses a number of contacts xt such that the following Euler’s equation

is satisfied:

(2.9) (2δxt − 1) = −βpx,tEt[V s
t+1 − V i

t+1],

where px,t = ∂pt

∂xt
= − (1−pt)

xt
ln(1 − pt) (from (2.3)). The right hand of (2.9) depicts

the expected marginal damage costs of increasing current contacts in terms of the

discounted expected reduction in future utility due to infection. On the other hand,

the left hand term represents the current period benefit as the individual increases

contacts. Therefore, condition (2.9) implies that an individual who is in the suscep-

tible group chooses xt such that his or her marginal benefits and expected marginal

cost are equal. The contact level also influences the probability of becoming infected.

Furthermore, equation (2.9) shows that the contact rate in the EE model is based on

behavioral responses to changes in disease risk as opposed to the classical epidemiol-

ogy models where the contact rate is considered as being constant or can be varied

deterministically. This is exhibited by the expression connecting px,t.

We consider two cases that is dependent on the agent’s observance of his or her

own immunity [2].

Case (1): Unobservable Host Immunity

Suppose an individual who has recovered with immunity believes he is still sus-

ceptible to the disease. We can ignore equation (2.8) and obtain from (2.7) that

(2.10) V i
t = xt − δx2

t + hi + βEt[νV
s
t+1 + (1− ν)V i

t+1].

Substituting out the value functions V s
t+1 and V i

t+1 from (2.9), we have

(2.11) (2δxt − 1) = px,tβEt

[
−[ψ(xt+1, x̄) + h] +

(1− ν − pt+1)

px,t+1

[2δxt+1 − 1]

]
,

where ψ(xt, x̄) = (xt − δx2
t )− (x̄− δx̄2), ψ(xt+1, x̄) = (xt+1 − δx2

t+1)− (x̄− δx̄2), and

h = hs − hi.

Case (2): Observable Host Immunity

Assume individuals recovered with immunity observe their own immunity and

thus rationally choose the maximum number of contacts x̄ and have health level hs.

Then (2.6), (2.7) and (2.8) becomes relevant and equation (2.9) can be derived to

(2.12) (2δxt− 1) = βpx,tEt

[
−[ψ(xt+1, x̄) + h] + (1− ν − pt+1)

(2δxt+1 − 1)

px,t+1

+ βτt+2

]
,
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where

τt+2 = (1− ν − γ)

[
ψ(xt+2, x̄)− (1− pt+2)(2δxt+2 − 1)

px,t+2

]
+ (1− γ)

[
h+

(2δxt+1 − 1)

βpx,t+1

]
− νγ

[
(2δxt+2 − 1)

px,t+2

]
,

and ψ(xt+2, x̄) = (xt+2 − δx2
t+2)− (x̄− δx̄2).

Equations (2.11) and (2.12) are identical except for τt+2 in (2.12). The term

τt+2 captures the expected future “costs” of an individual infected but can observe

acquired immunity [2]. If τt+2 < 0, the possibility of future immunity will be a benefit

of becoming infected since it will have an adverse effect on the marginal cost. On

the other hand, if τt+1 is positive, becoming infected will be a cost even under the

possibility of future immunity.

2.3. The EE SIS Model. As a special case for the SIRS model, the SIS model

considers two mutually exclusive disease categories: Susceptible(S) and Infected(I).

An individual in the susceptible category makes a transition to the infected category

when he becomes infected and then back to the susceptible category immediately

after recovering. That is, the disease does not confer any long lasting immunity so

there is no need to create the recovered region. An example is the common cold.

In this case, ν is the rate of migrating from the infected group to the susceptible.

Other parameters such as the birth and death rates, probability of infection and the

chance of becoming infected with each contact are same as those of the SIRS model.

We therefore have the following system explaining the model:

st+1 = Aω + A(1− pt − µ)st + AνIt,(2.13)

it+1 = A(1− ν − µ)it + Aptst,(2.14)

where st+1, st, it+1, it, A and Nt+1 are same as before.

The economic part of the model also follows the same reasoning discussed in

Section 2.2. In this case, the Euler’s equation can be obtained as

(2.15) (2δxt − 1) = px,tβEt

[
−[ψ(xt+1, x̄) + h] +

(1− ν − pt+1)

px,t+1

[2δxt+1 − 1]

]
,

where ψ(xt, x̄) = (xt − δx2
t ) − (x̄ − δx̄2), ψ(xt+1, x̄) = (xt+1 − δx2

t+1) − (x̄ − δx̄2),

and h = hs − hi. This is same as the case that the individual does not observe his

immunity against the disease.

3. DYNAMICS OF THE EQUILIBRIA

3.1. Stability of the EE SIRS Model. Since an infectious disease can be endemic

in or may be eradicated from a population, generally there are two possible steady

state equilibria: the endemic equilibrium and the eradication equilibrium. For the



EPIDEMIOLOGICAL MODELS UNDER RATIONAL EXPECTATIONS 641

eradication steady state equilibrium, s = 1, i = r = 0, and x = x̄. At the endemic

steady state, we assume time is invariant. Therefore we have the following system of

equations in four unknown variables (s, i, r, x):

(3.1)



s = A(ω+γr)
1−A(1−p−µ)

,

i = Asp
1−A(1−ν−µ)

,

r = Aνi
1−A(1−µ−γ)

,

x = β
2δ

[px[φβτ − (ψ(x, x̄) + h)] + (1− ν − p)(2δx− 1)] + 1
2δ
.

.

where the Euler Equation either takes the form (2.11) when the indicator variable

φ = 0 or the form (2.12), when φ = 1.

τ =
1

px

[
(2δx− 1)

[
(1− γ)

β
− (1− ν − γ)(1− p)− νγ

]]
+(1−γ)h+(1−ν−γ)ψ(x, x̄),

where ψ(x, x̄) = (x− δx2)− (x̄− δx̄2). Linearizing around the endemic steady state

by employing first-order Taylor series approximation, we have

ŝt+1 = A(1− p− µ)ŝt + Aγr̂t − Asp̂t,

ît+1 = A(1− ν − µ)̂it + Asp̂t + Apŝt,(3.2)

r̂t+1 = A(1− µ− γ)r̂t + Aνît,

where hat (∧) over the variables denotes deviation from the endemic steady state.

The linearized Euler equation is below:

2δpxx̂t − (2δx− 1)p̂x,t = βpx[px(2δx− 1) + 2δ(1− ν − p)]Etx̂t+1

− β(1− ν − p)(2δx− 1)Etp̂x,t+1

− βpx(2δx− 1)Etp̂t+1

+ φβ2
[2δpx(1− γ)

β
Etx̂t+1 −

(1− γ)(2δx− 1)

β
Etp̂x,t+1

+ px[(1− ν − γ)[px(1− 2δx)− 2δ(1− p)]− 2δνγ]Etx̂t+2

+ [(1− ν − γ)(1− p) + νγ](2δx− 1)Etp̂x,t+2

+ px(2δx− 1)(1− ν − γ)Etp̂t+2

]
,(3.3)

where

p̂t = piît + pxx̂t,

p̂x,t =
[1 + ln[1− p]]

x
p̂t −

px
x
x̂t,
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and

pi =
∂p

∂i
= xα(1− αi)x−1,

px = −(1− p)
x

ln(1− p).

In the case of unobservable immunity, φ = 0. Coupled with the relation ŝt = −r̂t− ît
and imposing perfect foresight (Etx̂t+1 = x̂t+1), we obtain the following system: 0 A(1− ν − µ− p) −Ap

0 Aν A(1− µ− γ)

2δpx 0 0


︸ ︷︷ ︸

M1

x̂tît
r̂t



+

As 0

0 0

0 −(2δx− 1)


︸ ︷︷ ︸

M2

[
p̂t

p̂x,t

]
=

 0 1 0

0 0 1

βpx[px(2δx− 1) + 2δ(1− ν − p)] 0 0


︸ ︷︷ ︸

x̂t+1

ît+1

r̂t+1


M3

(3.4)

+

 0 0

0 0

−βpx(2δx− 1) −β(1− ν − p)(2δx− 1)


︸ ︷︷ ︸

M4

[
p̂t+1

p̂x,t+1

]

and

(3.5)

 1 0

−
[

1+ln(1−p)
]

x
1


︸ ︷︷ ︸

M5

[
p̂t

p̂x,t

]
=

[
px pi 0

−px

x
0 0

]
︸ ︷︷ ︸

M6

 x̂t

ît

r̂t

 .

Similarly, the case of observable immunity has φ = 1 and (3.3) can be reduced to

2δpxx̂t − (2δx− 1)p̂x,t = βpx[px(2δx− 1) + 2δ(2− ν − p− γ)]Etx̂t+1

+ β2px[(1− ν − γ)[px(1− 2δx)− 2δ(1− p)]− 2δνγ]Etx̂t+2

− βpx(2δx− 1)Etp̂t+1 − β(2− ν − p− γ)(2δx− 1)Etp̂x,t+1

+ β2px(2δx− 1)(1− ν − γ)Etp̂t+2 + β2[(1− ν − γ)(1− p)

+ νγ](2δx− 1)Etp̂x,t+2.
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Therefore imposing perfect foresight (Etxt+1 = xt+1), we have the following as the
linearized EE matrix system:26666664

0 A(1− ν − µ− p) −Ap 0 0

0 Aν A(1− µ− γ) 0 0

2δpx 0 0 0 0

0 0 0 1 0

0 0 0 0 1

37777775
| {z }

26666664
x̂t

ît

r̂t

x̂t+1

ît+1

37777775
M1

+

26666664
As 0 0 0

0 0 0 0

0 −(2δx− 1) 0 0

0 0 0 0

0 0 0 0

37777775
| {z }

266664
p̂t

p̂x,t

p̂t+1

p̂x,t+1

377775
M2

=

26666664
0 1 0 0 0

0 0 1 0 0

βpx[px(2δx− 1) + 2δ(2− ν − p− γ)] 0 0 β2px[(1− ν − γ)[px(1− 2δx)− 2δ(1− p)]− 2δνγ] 0

1 0 0 0 0

0 1 0 0 0

37777775
| {z }

26666664
x̂t+1

ît+1

r̂t+1

x̂t+2

ît+2

37777775
M3

+

(2δx− 1)

26666664
0 0 0 0

0 0 0 0

−βpx −β(2− ν − p− γ) β2px(1− ν − γ) β2[(1− ν − γ)(1− p) + νγ]

0 0 0 0

0 0 0 0

37777775
| {z }

266664
p̂t+1

p̂x,t+1

p̂t+2

p̂x,t+2

377775
M4

and 266664
1 0 0 0

− (1+ln(1−p)
x

1 0 0

0 0 1 0

0 0 − (1+ln(1−p)
x

1

377775
| {z }

M5

266664
p̂t

p̂x,t

p̂t+1

p̂x,t+1

377775 =

266664
px pi 0 0 0

− px
x

0 0 0 0

0 0 0 px pi

0 0 0 − px
x

0

377775
| {z }

26666664
x̂t

ît

r̂t

x̂t+1

ît+1

37777775
M6

.

Let Ẑt = (x̂t, ît, r̂t)
T

or Ẑt = (x̂t, ît, r̂t, x̂t+1, ît)
T and P̂t = (p̂t, p̂x,t)

T or P̂t =

(p̂t, p̂x,t, p̂t+1, p̂x,t+1)T , we have

M1Ẑt +M2P̂t = M3Ẑt+1 +M4P̂t+1

and M5P̂t = M6Ẑt. Therefore the EE system reduces to

(3.6) Ẑt = JẐt+1,

where J = (M1 +M2M
−1
5 M6)−1(M3 +M4M

−1
5 M6).

The three-variable system (3.6) has one non-predetermined (x̂t) and two prede-

termined (̂it and r̂t) variables. Applying the results of [5], if there are exactly two

eigenvalues of J outside the unit circle, the system exhibits a stable saddle-path. On

the other hand, the system will exhibit indeterminate multiple stable paths or a sink

if all the eigenvalues of J are unstable (outside the unit circle) and explosive paths if

the number of forward stable eigenvalues (inside the unit circle) of J are more than

one [5]. The five-variable system has three non-predetermined (x̂t, x̂t+1, and ît+1) and

two predetermined (it and r̂t) variables. Following the same chain of analysis, the
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system will exhibit a saddle-path stability if there are exactly two eigenvalues out-

side the unit circle, indeterminate multiple path stability if more than three unstable

eigenvalues, and explosive paths if less than two unstable eigenvalues.

It is noticed that equation (3.6) can also be written as:

(3.7) Ẑt+1 = J−1Ẑt ,

where J−1 = (M3 + M4M
−1
5 M6)−1(M1 + M2M

−1
5 M6). Stability results can also be

determined from the corresponding eigenvalues of J−1[5].

3.2. Stability of the EE SIS Model. The EE SIS model discussed in Section 2.3

has the endemic steady state

(3.8)


s = A(ω+νi)

1−A(1−p−µ)
,

i = Asp
1−A(1−ν−µ)

,

x = β
2δ

[
px[−(ψ(x, x̄) + h)] + (1− ν − p)(2δx− 1)

]
+ 1

2δ
.

The linearized system around the endemic steady state is as follows:

(3.9) ŝt+1 = A(1− µ− p)ŝt + Aνît − Asp̂t,

(3.10) ît+1 = A(1− ν − µ)̂it + Asp̂t + Apŝt.

The linearized Euler equation has the form:

2δpxx̂t − (2δx− 1)p̂x,t = βpx[px(2δx− 1) + 2δ(1− ν − p)]Etx̂t+1

− β(1− ν − p)(2δx− 1)Etp̂x,t+1

− βpx(2δx− 1)Etp̂t+1.

From ŝt + ît = 0, (3.10) can be written as

(3.11) ît+1 = A(1− ν − µ− p)̂it + A(1− i)p̂t.
Follow the same approaches of Section 3.1, we have the following EE matrices:"

0 A(1− ν − µ− p)
2δpx 0

#
| {z }

"
x̂t

ît

#
N1

+

"
A(1− i) 0

0 −(2δx− 1)

#
| {z }

"
p̂t

p̂x,t

#
N2"

0 1

βpx[px(2δx− 1) + 2δ(1− ν − p)] 0

#
| {z }

N3

"
x̂t+1

ît+1

#
+

"
0 0

−βpx(2δx− 1) −β(1− ν − p)(2δx− 1)

#
| {z }

"
ˆpt+1

p̂x,t+1

#
N4

and [
1 0

− (1−ln(1−p)
x

1

]
︸ ︷︷ ︸

[
p̂t

p̂x,t

]
N5

=

[
px pi

−px

x
0

]
︸ ︷︷ ︸

N6

[
x̂t

ît

]
.

Let Ẑt = (x̂t, ît)
T and Q̂t = (p̂t, p̂x,t)

T so that the system reduces to

(3.12) Ẑt = JẐt+1.
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where J = (N1 +N2N
−1
5 N6)−1(N3 +N4N

−1
5 N6).

This system has one non-predetermined {x̂t} and one predetermined{ît} variable.

If there is exactly one unstable eigenvalue, then it shows saddle-path stability. If there

are two unstable eigenvalues, the system will exhibit indeterminate multiple paths

stability. Zero unstable eigenvalue implies explosive paths.

4. NUMERICAL SOLUTIONS

In this section, we investigate the effects of the health gap (h = hs − hi) and

the infection parameter α on the dynamics of the system using numerical simulation

by Maple. These two parameters are the possible public health policy targets. A

high h means the health gap of individuals within the population is high, thus raises

concerns. For h to be maintained at a low level, investment could be made into drugs

or medication. As well, α can be maintained low by introducing vaccines or a new

way of protecting the population from being infected [9]. A high α means the disease

can spread quickly among the population.

Using colors red, green, yellow and black to indicate saddle-path equilibria (sta-

bility), indeterminate multiple path stability, explosive paths and where individuals

are going for maximum contacts respectively, we plot the regions for different dynamic

paths by varying the values of δ (determinant of maximum number of contacts), ω

and µ. The selection of the values for β, ν and γ (see Table 1) implies that annual

discount rate is 4%, 100% recovery rate within a year of infection and an expected

5-year immunity duration respectively. In the experiments, some starting values for

h and α did not produce the endemic values for some of the models. Therefore, we

tested and chose the starting values that can produce the endemic values. For ex-

ample, for the SIRS model, the initial values for h and α were 5 and 0.1 and then

increased by steps of 0.02 and 0.01 respectively.

Table 1. Parameter values

Parameters β ν γ

Values 0.96 1 0.2

4.1. The EE SIR Model with Unobservable Immunity. The EE SIR model is

a special case of the EE SIRS model when γ = 0 (confirming permanent immunity).

The numerical solution for ω > µ and ω = µ at δ = 0.025 exhibits saddle-paths

equilibria for all combinations for h and α. This is shown by Fig. 1(a). This indicates

that, given an initial condition for i, r and x the system converges to the steady state.

It also implies that individuals have contact levels less than the maximum allowable

x̄. Therefore, public policy targeted at reducing the health gap (or improving the

health of infected individuals) would not affect stability of the system.
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Figs. 1(b) and 1(c) show the cases for ω > µ and ω = µ at δ = 0.05 respectively.

For ω > µ, at very low values of α, individuals are going for the maximum number of

contacts. The rest of the region exhibits saddle-path equilibria. For ω = µ (Fig. 1(c)),

the system shows similar pattern, but with a smaller maximum-contact region. Thus

indicating that, at this level, individuals may be behaving in a fatalistic way. As such,

policy direction towards the reduction of the level of contacts may not be effective

as individuals will place much importance on the benefit associated with going for

maximum number of contacts.

These results show that δ plays a significant role in determining the stability of

the system. The only case for which µ and ω has a somewhat significant effect on the

EE SIR system is when δ = 0.05. Further increasing in δ, the region for maximum

contact becomes wider.

4.2. The EE SIRS Model with Unobservable Immunity. Assume an average

duration of immunity is five years (γ = 0.2).

The system exhibits the same dynamic paths for ω > µ and ω = µ at δ = 0.025

respectively. Similar to the EE SIR case, the system exhibits saddle-paths equilibria

for the entire parameter combination of h and α, indicating that, when individuals

behave rationally, they will always go for contact levels less than x̄. Fig. 2(a) shows

this result.

Figs. 2(b) and 2(c) are for the cases for ω > µ and ω = µ at δ = 0.05 respectively.

It is noticed that the system exhibited saddle-path stability for all values of h and

low range of α. It also exhibits some indeterminate multiple paths for high values

of α and moderate values for h. Finally, when ω ≥ µ and both α and h are high,

explosive paths are shown.

The discussion above implies the birth and death rates do not have effect on the

dynamic paths of this system. On the other hand, it is evident that δ has significant

effect, therefore, the assumption of x depending on a parameter led a different outlook

for the dynamic paths.

4.3. Observable Host Immunity for the SIR(S) Model. Assume individuals

observe their immunity. We obtained the dynamic paths shown in Figs. 3 and 4

respectively.

Figs. 3(a)–3(c) show the dynamic paths for the EE SIR system. For unequal

birth and death rates and δ set at 0.05, the system exhibits saddle-paths stability for

all the parameter combinations of h and α. The same pattern holds for equal birth

and death rates, but with individuals going for x̄ at very low values of α. Both cases

(i.e ω ≥ µ) indicate that as rational individuals observe their immunity against a

particular infectious disease, they are still conscious of the health status of others and
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themselves and thus will opt to go for a number of contacts less than the maximum

allowable. Figs. 3(b) and 3(c) indicate these dynamics. Fig. 3(a) shows the dynamic

for δ set at 0.025. It exhibits the same dynamic paths shown in the case for ω > µ

with δ set at 0.05.

Figs. 4(a)–4(c) show the dynamic paths for the EE SIRS system. All the param-

eter combinations yielded the same dynamic paths. That is, they exhibited saddle-

paths equilibria for all the possible combinations of h and α given the respective values

for ω and µ. These results mean that public policy direction (whether to reduce h or

α or both) will not have any bearing on the stability properties of the system.

4.4. The EE SI Model. A special case of the EE SIS model is when ν = 0, which

indicates that no treatment is available for the disease. The numerical analysis for

δ = 0.025 with ω = 0.05 or ω = 0.06 and

Figs. 5(b) and 5(c) have the parameters δ = 0.05 with ω > µ and ω = µ re-

spectively. Both cases show saddle-path stability for high values of h given the entire

range of values for α. This demonstrates that, at a high level of health gap, rational

individual are willing to choose a number of contacts less than x̄. On the other hand,

low values of h yield a case where rational individuals are choosing x̄. This indicates

that irrespective of the level of infection parameter, they are willing to involve in

risky behaviour by going for the x̄. It also shows that δ has a significant effect on the

properties of the system.

4.5. The EE SIS model. As in the case for the EE SI system, the EE SIS system

shows the same property for the parameter combination of ω > µ and ω = µ for

δ = 0.025, in that, irrespective of the levels of infection and health gap, rational

individuals are going for the maximum number of contacts. Fig. 6(a) demonstrates

this result.

Figs. 6(b) and 6(c) show the dynamic paths for the system for ω > µ and ω = µ

for δ = 0.05 respectively. For ω > µ, the system exhibited the same property for

the EE SI system. On the other hand, it is different for ω = µ, in that, the system

exhibited explosive paths for parameter combinations of high values of h and α.

5. CONCLUSION

As the emergence of infectious disease has become a thorn in the flesh of hu-

manity, it is imperative to understand the mechanisms involve in the transmission

of these diseases so that health policies targeted at controlling their spread are ef-

fective. Classical mathematical epidemiological models provide a fair framework to

achieving this purpose [7]. However, it has the limitation of not explicitly modelling

the behavioural influence of individuals on the spread of these diseases. Economic
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Epidemiology aims to fill this gap since disease treatment and prevention depends

heavily on the behaviour of individuals [8].

In this paper, we study a modified version of the EE model that was recently

introduced in [2] within an optimization framework. As a new space variable, the

maximum number of contacts is introduced. In addition, we extended the previous

model by considering the case of dynamic population (different birth and death rates).

Our assumption is particular practical at the beginning of the spread of a disease since

the maximum number of contacts can be controlled by isolation.

Applying linearizing analysis, we investigated the stability of the EE system.

Numerical simulation is also employed to get an insight into the various types of

dynamics paths. Our results indicated that the maximum number of contacts have

clear effect on the dynamics of the system. On the other hand, the birth and death

rates do not have significant effect with the exception of some extreme cases where

both the levels of the health gap and the infection parameter have high values.

As future work, it would be interesting to apply real world data on a specific

disease to the model so as to ascertain a precise policy recommendations.
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(a) ω = 0.05 or 0.06, µ = 0.05,
δ = 0.025

(b) ω = 0.06, µ = δ = 0.05 (c) ω = µ = δ = 0.05

Figure 1. The EE SIR model for unobservable host immunity
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(a) ω = 0.05 or 0.06, µ = 0.05,
δ = 0.025

(b) ω = 0.06, µ = δ = 0.05 (c) ω = µ = δ = 0.05

Figure 2. The EE SIRS model for unobservable host immunity

(a) ω = 0.05 or 0.06, µ = 0.05,
δ = 0.025

(b) ω = 0.06, µ = δ = 0.05 (c) ω = µ = δ = 0.05

Figure 3. The EE SIR model for observable host immunity

(a) ω = 0.05 or 0.06, µ = 0.05,
δ = 0.025

(b) ω = 0.06, µ = δ = 0.05 (c) ω = µ = δ = 0.05

Figure 4. The EE SIRS model for observable host immunity
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(a) ω = 0.05 or 0.06, µ = 0.05,
δ = 0.025

(b) ω = 0.06, µ = δ = 0.05 (c) ω = µ = δ = 0.05

Figure 5. The EE SI model

(a) ω = 0.05 or 0.06, µ = 0.05,
δ = 0.025

(b) ω = 0.06, µ = δ = 0.05 (c) ω = µ = δ = 0.05

Figure 6. The EE SIS model
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