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ABSTRACT. We consider patch-based population dynamics, called metapopulations, and inves-
tigate the spread of two species and their competition for habitat areas. Let 0 ≤ p1, p2 denote
the proportion (density) of the areas occupied by the species 1 and 2, respectively. Obviously,
0 ≤ p1 + p2 ≤ 1. Both species can locally extinct and colonize empty patches or patches occupied
by the other with different rates. Hence the model is

p′
1 = k1p1 (1− p1 − p2)− e1p1 + c1p1p2 − c2p1p2

p′
2 = k2p2 (1− p1 − p2)− e2p2 − c1p1p2 + c2p1p2,

where ei are the extinction rates, ki are the rates of colonization of empty patches, and species “i”
overcolonize “j” with the rate ci (i, j = 1, 2; i 6= j).

We investigate the asymptotic stability properties of the equilibria of such systems and we
give a complete characterization of the parameter space. We prove that there can appear a globally
asymptotically stable coexisting equilibrium. On the other hand, this equilibrium can become unsta-
ble and then the exclusive equilibria are only locally asymptotically stable. We have also developed
dynamic applications in Wolfram Mathematica to illustrate our results.

AMS (MOS) Subject Classification. 92D40, 34D20.

1. INTRODUCTION

A generalized model of competition of two species that are living in a patchy

environment is investigated. Classical metapopulation concept provides spatially im-

plicit approach of population dynamics. A metapopulation consists of several local

populations in a patchy environment. The size of local populations on the patches

(habitat areas) is ignored, but the temporal change of the proportion of the occupied
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patches is examined. Empty patches can be colonized by a species, consequently a

local population is established and considered to be in equilibrium. Local populations

can die out as a result of some local event or some other species may overcolonize

them in cases of multispecies models. Metapopulation models have several applica-

tions in conservation biology, since human activity transforms naturally continuous

landscapes into some collection of (still) habitable patches. The concept of metapop-

ulation was developed by Levins [6, 7]. His simple, single species model provided a

base of many other more complex models [3, 11, 13, 17]. Levins’ model build upon

the main assumptions, that patches are uniform, equally distributed and equally con-

nected, hence the probability of the local extinction and the colonization of patches

are independent of spatial location. Levins’ model describes the dynamics of the

fraction of occupied patches (0 ≤ p ≤ 1)

(1.1) p′ = kp(1− p)− ep,

where k is the global rate of colonization (k > 0) and e is the global rate of extinction

(e ≥ 0). As the patches occupied by a species are uniformly distributed, the coloniza-

tion of available patches, which denotes the speed of the spreading is proportional

to p(1 − p). Local extinction is proportional to fraction of occupied patches. The

long-term survivor of the single species metapopulation depends on the balance be-

tween local extinction and colonization. It is trivial that the equilibrium 0 is globally

asymptotically stable if k < e. On the other hand, there appears a positive, globally

asymptotically stable equilibrium 1 − e
k

if e < k. Many publications discuss exten-

sions of the Levins model but it is still considered as a basic model up to now, see

[3, 11, 12, 14, 17, 18, 19] and references therein.

Dealing with one species, the conditions of the survival are analyzed, while in

the cases when more species fight for habitats, the basic question is if they can

coexist or their competition is exclusive. This problem has been widely investigated

in ecology and different kinds of models have been developed for competing systems.

[3, 4, 10, 11, 12, 13, 14, 17, 18, 19]. There can be several strategies of competition

for areas depending on the type of interaction. Certain species can colonize only

empty patches, others can colonize even those which have been already occupied

by others. The latter is called overcolonization. From this point, generalizing the

Levins model, we consider two-species models, where p1 = p1(t) and p2 = p2(t)

denote the proportions of the occupied patches by species 1 and 2, respectively, where

0 ≤ p1, 0 ≤ p2 and p1 +p2 ≤ 1. A patch can be occupied by at most one of the species.

Since the systems investigated in our paper are restricted to the region D =

{(p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1} and it turns out to be invariant for these sys-

tems, global asymptotic stability (G.A.S.) of an equilibrium P ∈ D is understood in
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Figure 1. Two-species Levins model without overcolonization: in-

teractions and attractivity domains on the parameter space
{

e1

k1
, e2

k2

}
the sense that P is stable with respect to D, and every solution (p1(t), p2(t)) tends

to P as t→∞, provided (p1(0), p2(0)) ∈ D.

The simplest case is a two-species model without overcolonization (part 1 of

Fig. 1), i.e., species can occupy only empty patches.

(1.2)
p′1 = k1p1 (1− p1 − p2)− e1p1,

p′2 = k2p2 (1− p1 − p2)− e2p2,

where k1 and k2 are the global rates of colonization (k1, k2 > 0), e1 and e2 are the

global rates of extinction (e1, e2 ≥ 0). If e1

k1
6= e2

k2
, three boundary equilibria exist:

the trivial (0, 0) equilibrium and two other equilibria
(

1− e1

k1
, 0
)

and
(

0, 1− e2

k2

)
,

and at most one of the species can survive. There is no interior equilibrium when

both species would coexist. The stability properties of equilibria are summarized in

Table 1. The global dynamics of the system can be easily seen on the right in Fig. 1.

Equilibrium Exists G.A.S. Unstable

O = (0, 0) always 1 ≤ e1

k1
and 1 ≤ e2

k2

e1

k1
< 1 or e2

k2
< 1

P1 =
(

1− e1

k1
, 0
)

e1

k1
< 1 e1

k1
< e2

k2

e1

k1
> e2

k2

P2 =
(

0, 1− e2

k2

)
e2

k2
< 1 e1

k1
> e2

k2

e1

k1
< e2

k2

Table 1. Summary of attractivity properties of system (1.2)

Note that in the singular case e1

k1
= e2

k2
=: d, every point of the line p1 + p2 = 1− d is

a stable equilibrium.

Competitive hierarchy is quite common among plant species. In the simplest

overcolonization model species 1 is dominant (called superior), and it can colonize

any other patches at the same rate even they are occupied by species 2. Meanwhile,
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Figure 2. Hierarchic overcolonization: interactions and attractivity

domains on the parameter space
{

e1

k1
, e2

k2

}
at k1

k2
= 0.5

species 2 (called inferior) can colonize only empty patches (Fig. 2). We can formulate

the hierarchical overcolonization model as

(1.3)
p′1 = k1p1 (1− p1)− e1p1,

p′2 = k2p2 (1− p1 − p2)− k1p1p2 − e2p2,

where all the notations are the same as before. Three boundary equilibria can ex-

ist: the trivial (0, 0) and two other
(

1− e1

k1
, 0
)

and
(

0, 1− e2

k2

)
when one species

survives and the other dies out. There can appear a G.A.S. interior equilibrium(
−k1(e2+k1)+e1(k1+k2)

k1k2
, 1− e1

k1

)
. For more hierarchically competing species the existence

of such coexisting equilibrium is also proved [5, 15]. The properties are summarized

in Table 2. The global dynamics of the system can be easily seen on the second part

Equilibrium Exists G.A.S. Unstable

O = (0, 0) always 1 ≤ e1

k1
and 1 ≤ e2

k2
otherwise

P1 =
(

1− e1

k1
, 0
)

e1

k1
< 1 e1

k1
≤ k1+e2

k1+k2
otherwise

P2 =
(

0, 1− e2

k2

)
e2

k2
< 1 1 ≤ e1

k1
otherwise

P ∗ =
(

e1(k1+k2)−k1(e2+k1)
k1k2

, 1− e1

k1

)
k1+e2

k1+k2
< e1

k1
< 1 always −

Table 2. Summary of attractivity properties of system (1.3)

of Fig. 2 (the domains depend on the parameters). Note that the concerned equilibria

coincide at the common borders of the domains.

In our paper we release strict hierarchy between the competing species and allow

reciprocal overcolonization. We define a general overcolonization model of two species.

Then, we consider the local asymptotic stability properties of the the equilibria and
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Figure 3. The general overcolonization model

investigate the globality of them. Finally, we give examples by some interactive

applications developed in Wolfram Mathematica.

2. GENERAL OVERCOLONIZATION

Let us modify the model (1.3) by introducing reciprocal overcolonization as Fig. 3

shows. The model equations are

p′1 = k1p1 (1− p1 − p2)− e1p1 + c1p1p2 − c2p1p2,

p′2 = k2p2 (1− p1 − p2)− e2p2 − c1p1p2 + c2p1p2,

where the meaning of p1, p2, k1, k2, e1, e2 is as before. In addition, c1 and c2 are the

global rates of overcolonization of species 1 and 2, respectively. Without loss of

generality, we can introduce c = c1 − c2, the relative overcolonization rate, and since

the role of p1, p2 is symmetrical, we can assume c ≥ 0, i.e., species 1 is better at

overcolonization than species 2. Thus, the model becomes

(2.1)
p′1 = k1p1 (1− p1 − p2)− e1p1 + cp1p2,

p′2 = k2p2 (1− p1 − p2)− e2p2 − cp1p2.

Although the model itself looks quite simple, its dynamics is not trivial. Note that

similar simple compartmental networks are also widely used in epidemiology. An

analogous system is studied by Röst and Dénes in [16].

Obviously, the region D is invariant for system (2.1). Apart from some singular

cases, the system can have four equilibria: the trivial boundary equilibrium O = (0, 0)

when both species die out; two non-trivial boundary equilibria P1 =
(

1− e1

k1
, 0
)

and P2 =
(

0, 1− e2

k2

)
when one of the species survives the other one dies out. If

c (c− k1 + k2) 6= 0, an interior equilibrium P ∗ =
(

e2k1−e1k2+c(−e2+k2)
c(c−k1+k2)

, c(e1−k1)−e2k1+e1k2

c(c−k1+k2)

)
can also appear, when the two species coexist.

If c = 0, the interior equilibrium does not exist and we obtain system (1.2)

without any interaction between the competitors.
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The hierarchic model (1.3) is also a special case of system (2.1) with c = k1.

Note that in (2.1) c > k1 can happen, i.e., overcolonization can be more intensive

than colonizing empty patches.

If c = k1 − k2, system (2.1) would take the form

(2.2)
p′1 = k1p1

(
1− p1 − k2

k1
p2

)
− e1p1,

p′2 = k2p2

(
1− k1

k2
p1 − p2

)
− e2p2.

The behavior is the same as of system (1.2). Either no interior equilibrium exists or,

if in addition c = e1−e2, every point of the line p2 = −p1

(
c
k2

+ 1
)

+1− e2

k2
is a stable

equilibrium.

In this paper we are mainly interested in the properties of P ∗, hence we can

assume that c > 0 and c 6= k1 − k2.

Concerning the asymptotic properties of equilibria, the absence of periodic solu-

tions is a useful information. Using the Poincaré-Bendixson theory [2] the following

lemma holds.

Lemma 2.1. System (2.1) does not have any periodic solution in the domain D =

{(p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1}.

Proof. Let f1 and f2 denote the right hand sides of the equations of (2.1) and let

B (p1, p2) = 1
p1p2

be the so called Dulac function. Then, for p1, p2 > 0:

∂

∂p1

(Bf1) +
∂

∂p2

(Bf2) =

∂

∂p1

(
k1

p2

− k1p1

p2

− k1 −
e1

p2

+ c

)
+

∂

∂p2

(
k2

p1

− k2p2

p1

− k2 −
e2

p1

− c

)
= −k1

p2

− k2

p1

< 0

Thus, the Bendixson-Dulac theorem [2] guarantees that system (2.1) has no periodic

solutions in the region p1 > 0, p2 > 0. Finally, it is obvious that solutions are

monotonic on the axes. Thus, the lemma is proved.

3. ASYMPTOTIC STABILITY OF BOUNDARY EQUILIBRIA

Now, let us consider the local dynamics of the system around the boundary

equilibria. In most of the proofs of asymptotic stability, we use the method linear

approximation [10].

Theorem 3.1. The trivial boundary equilibrium O = (0, 0) always exists. It is globally

asymptotically stable if 1 ≤ e1

k1
and 1 ≤ e2

k2
. It is unstable if either e1

k1
< 1 or e2

k2
< 1.

Proof. Since 0 ≤ p1, 0 ≤ p2 and p1 + p2 ≤ 1 are always true, the trivial bound-

ary equilibrium O = (0, 0) always exists. The Jacobian of system (2.1) at O is(
k1 − e1 0

0 k2 − e2

)
with eigenvalues k1− e1 and k2− e2. If they are negative, that
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is if 1 < e1

k1
and 1 < e2

k2
then O is asymptotically stable. If either e1

k1
< 1 or e2

k2
< 1

then the O is unstable.

Using the function V (p1, p2) = p1 + p2 as Lyapunov function, the asymptotic

stability of O can be easily proved under the weaker conditions e1

k1
≥ 1, e2

k2
≥ 1. The

derivative of V with respect to (2.1) is

V̇ (p1, p2) = − (e1 − k1) p1 − (e2 − k2) p2 − (p1 + p2) (k1p1 + k2p2)

≤ −min (k1, k2) V (p1, p2)
2,

and it holds globally. Hence the theorem is proved.

Theorem 3.2. I. The equilibrium P1 =
(

1− e1

k1
, 0
)

exists and nontrivial if e1

k1
< 1.

II. In addition, P1 is locally asymptotically stable if e1

k1
< c+e2

c+k2
.

III. In the special case max (0, k1 − k2) < c, P1 is locally asymptotically stable if
e1

k1
≤ c+e2

c+k2
.

IV. Otherwise, P1 is unstable.

Proof. As 0 ≤ p1, 0 ≤ p2, p1 + p2 ≤ 1, and all the parameters are positive, P1 exists

and nontrivial if e1

k1
< 1. The Jacobian of (2.1) at P1 is

(
e1 − k1 c + e1 − ce1

k1
− k1

0 ce1−ck1−e2k1+e1k2

k1

)
with negative eigenvalues e1 − k1 and ce1−ck1−e2k1+e1k2

k1
. By doing some arithmetics,

the negativity of the second one follows from the condition e1

k1
< c+e2

c+k2
, and hence P1

is asymptotically stable. On the other hand, if any of the eigenvalues is positive,

i.e. either e1

k1
> 1 or c+e2

c+k2
< e1

k1
, then P1 is unstable. In the critical case e1

k1
=1, this

equilibrium coexists with O.

Characterizing the special case c+e2

c+k2
= e1

k1
needs further study. Expressing e2

from this equality and substituting into system (2.1), we obtain that the system

has only the equilibria O, P1, P2. The Jacobian at P1 is obviously singular, but the

eigenvalues of it at O are−e1+k1 and
(

1− e1

k1

)
(c + k2) which are positive. Hence O is

unstable. What concerns P2, the eigenvalues of the Jacobian are
(

e1

k1
− 1
)

(c + k2) and(
1− e1

k1

)
c (c−k1+k2)

k2
. The first one is negative, but the second one is positive provided

c > 0 and c > k1−k2. As the region D is invariant, Poincaré-Bendixson theorem and

Lemma 2.1 implies that at least one of the equilibria must be asymptotically stable.

Consequently, if c > max (0, k1 − k2),
e1

k1
< 1 and c+e2

c+k2
= e1

k1
, P1 is asymptotically

stable.

Note that the condition e1

k1
< c+e2

c+k2
is more restrictive than e1

k1
< 1 only if e2

k2
< 1,

i.e., species 2 does not die out in itself.

Theorem 3.3. I. The equilibrium P2 =
(

0, 1− e2

k2

)
exists and nontrivial if e2

k2
< 1.

II. In addition, P2 is locally asymptotically stable if e2

k2

(
1− c

k1

)
+ c

k1
< e1

k1
.
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III. In the special case max (0, k1 − k2) < c, P2 is locally asymptotically stable if
e2

k2

(
1− c

k1

)
+ c

k1
≤ e1

k1
.

IV. Otherwise, P2 is unstable.

Proof. For the existence and the stability of the boundary equilibrium P2 the proof is

similar to P1. The Jacobian matrix of the system at P2 is

(
ck2−e1k2+e2k1−e2c

k2
0

(e2−k2)(k2+c)
k2

e2 − k2

)
with eigenvalues ck2−e1k2+e2k1−e2c

k2
and e2 − k2. The second one is negative as e2

k2
< 1.

The first one is negative provided e2(k1−c)
k2

< e1 − c, what is equivalent with the

condition of the theorem.

The special case e1

k1
= e2

k2

(
1− c

k1

)
+ c

k1
can be considered similarly to Theorem 3.2.

Expressing e1 from this equality and substituting into (2.1), we obtain that the equi-

libria O, P1, P2 may exist (P1 exists only if c < k1). Since e2 < k2, O is unstable.

The eigenvalues of the Jacobian at P1 are (c−k1)(k2−e2)
k2

and c(k2−e2)(c−k1+k2)
k1k2

. The first

one is negative, but the second one is positive provided c > 0 and c > k1 − k2. As

the region D is invariant, the Poincaré-Bendixson theorem and Lemma 2.1 implies

that at least one of the equilibria, namely P2 must be asymptotically stable. Conse-

quently, if c > max (0, k1 − k2),
e1

k1
< 1 and e1

k1
= e2

k2

(
1− c

k1

)
+ c

k1
, P2 is asymptotically

stable.

Remember that species 2 is weaker than species 1 in overcolonization. Hence,

reordering condition e2

k2

(
1− c

k1

)
+ c

k1
< e1

k1
, we have e2

k2
+
(

1− e2

k2

)
c
k1

< e1

k1
that shows

that its relative extinction ratio e2

k2
must be definitely smaller than that of species 1

to survive (even win in the competition).

4. INTERIOR EQUILIBRIUM

The interior equilibrium of system (2.1) is the solution of the linear system

k1 (1− p1 − p2)− e1 + cp2 = 0,

k2 (1− p1 − p2)− e2 − cp1 = 0,

and it takes the form

(4.1) P ∗ = (p∗1, p
∗
2) =

(
c (k2 − e2) + e2k1 − e1k2

c (c− k1 + k2)
,
c (e1 − k1)− e2k1 + e1k2

c (c− k1 + k2)

)
The following theorem holds.

Theorem 4.1. I. If, max (0, k1 − k2) < c, and c+e2

c+k2
< e1

k1
< e2

k2

(
1− c

k1

)
+ c

k1
then

the interior equilibrium P ∗ = (p∗1, p
∗
2) exists (satisfies p∗1 > 0, p∗2 > 0) and is

locally asymptotically stable.

II. If 0 < c < k1−k2 and e2

k2

(
1− c

k1

)
+ c

k1
< e1

k1
< c+e2

c+k2
then P ∗ exists and unstable.
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Proof.

Existence: Assume that c > 0 and c > k1 − k2. Now to have p∗1 > 0, p∗2 > 0

and p∗1 + p∗2 ≤ 1 the conditions e2k1 − e1k2 + c (−e2 + k2) > 0, c (e1 − k1) − e2k1 +

e1k2 > 0 and (e1−k1)−(e2−k2)
c−(k1−k2)

≤ 1 must hold. These inequalities become c+e2

c+k2
< e1

k1
,

e1

k1
< e2

k2

(
1− c

k1

)
+ c

k1
, and e1 ≤ c + e2, respectively.

Remember that the first two inequalities appear as conditions for instability of

P1 and P2.

Using c > k1−k2, we obtain e1

k1
< e2

k2

(
1− c

k1

)
+ c

k1
= e2

k2

(
k1−c
k1

)
+ c

k1
< e2

k2

k2

k1
+ c

k1
=

e2+c
k1

, and hence the inequality e1 ≤ c + e2 is needless.

In case of c < k1 − k2 the proof is similar.

Stability: The Jacobian of the system at P ∗ is

(4.2) JP ∗ =

(
k1(c(e2−k2)−e2k1+e1k2)

c(c−k1+k2)
(c−k1)(c(k2−e2)+e2k1−e1k2)

c(c−k1+k2)
(c+k2)(c(k1−e1)+e2k1−e1k2)

c(c−k1+k2)
k2(c(k1−e1)+e2k1−e1k2)

c(c−k1+k2)

)
(calculations are done with Wolfram Mathematica). It is quite difficult to directly

estimate the real part of the eigenvalues. Instead, take the benefit of the fact that

det (JP ∗) = v1v2 and tr (JP ∗) = v1 + v2. Obviously, if det (JP ∗) > 0 and tr (JP ∗) < 0

then the real parts of both eigenvalues are negative. If any of these inequalities turns

to the opposite direction, the real part of at least one of the eigenvalues is positive.

Note that this idea is generalized in [8, 9] using the so called second compound

matrices.

The determinant of the Jacobian (4.2) is

(4.3)
− (e2k1 − e1k2 + c (k1 − e1)) (e2k1 − e1k2 + c (k2 − e2))

c (c− k1 + k2)
,

and the trace is
e2k1 − e1k2

c
.

Case max (0, k1 − k2) < c: The determinant (4.3) is negative if

(e2k1 − e1k2 + c (k1 − e1)) (e2k1 − e1k2 + c (k2 − e2)) < 0.

Thus either c (e1 − k1) < e2k1 − e1k2 < c (e2 − k2) or c (e2 − k2) < e2k1 − e1k2 <

c (e1 − k1), that is e2

k2

(
1− c

k1

)
+ c

k1
< e1

k1
< c+e2

c+k2
or c+e2

c+k2
< e1

k1
< e2

k2

(
1− c

k1

)
+ c

k1

must hold. The first inequality contradicts to the conditions of the existence of the

equilibrium thus c+e2

c+k2
< e1

k1
< e2

k2

(
1− c

k1

)
+ c

k1
hold.

The trace of the Jacobian is negative if e2

k2
< e1

k1
, but this follows from the previous

enequality. If e1

k1
≤ 1, then c+e2

c+k2
< 1 what implies e2

k2
< c+e2

c+k2
and hence e2

k2
< e1

k1
. If

e1

k1
> 1, then 1 < e2

k2

(
1− c

k1

)
+ c

k1
, and hence k1 − c < e2

k2
(k1 − c). If k1 > c, then

e2

k2
> 1 would hold. However it is impossible, since e1

k1
, e2

k2
> 0 contradicts to the

existence of P ∗. Hence k1 < c and 1 > e2

k2
hold, what implies e2

k2
< e1

k1
.
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Case 0 < c < k1− k2: The conditions of stability become (e2k1 − e1k2 + c (k1 − e1))

(e2k1 − e1k2 + c (k2 − e2)) > 0 and e2

k2
< e1

k1
. Thus max {c (e1 − k1) , c (e2 − k2)} <

e2k1−e1k2 or e2k1−e1k2 < min {c (e1 − k1) , c (e2 − k2)}must hold. These inequalities

contradict to the conditions of the existence of the equilibrium. Thus in case of

0 < c < k1 − k2 the equilibrium P ∗ exists but unstable.

5. GLOBAL DYNAMICS

We can see that in the case max (0, k1 − k2) < c, the conditions of asymptotic

stability of equlibria are disjoint, and they cover the whole positive quadrant of the{
e1

k1
, e2

k2

}
parameter space. Hence, at a given parameter combination, exactly one of

the equilibria is asymptotically stable on the simply connected domain D. Since we

excluded the existence of periodic solutions for system (2.1), the Poincaré-Bendixson

theorem implies that the asymptotic stability of this equilibrium is global.

On the other hand, if 0 < c < k1 − k2 the asymptotic stability conditions for P1

and P2 overlap each other. There is a domain where both are asymptotically stable

and both the trivial and the interior equilibrium is unstable. Hence the following

corollary holds:

Corollary 5.1. I. Case max (0, k1 − k2) < c: one of the equilibria O, P1, P2, P
∗ is

globally asymptotically stable and the others are unstable.

II. Case 0 < c < k1 − k2: if the interior equilibrium P ∗ exists, then it is unstable,

O is unstable and both P1 and P2 equilibria are locally asymptotically stable. If

P ∗ does not exists, one of O, P1, P2 is globally asymptotically stable.

The attractivity conditions can be shown on the parameter space
{

e1

k1
, e2

k2

}
. Obvi-

ously, the attractivity domains (except for O = (0, 0)) change according to the values

of k1, k2 and c.

Asymptotic stability in the case max (0, k1 − k2) < c can be seen in Fig. 4 (a)

and Table 3. Observe that due to the stronger overcolonization strategy, species 1

can coexist with species 2 even if e1

k1
≥ 1.

Asymptotic stability properties in the case 0 < c < k1 − k2 are similar to the

case with absence of overcolonization, but the dynamics is more complex. It can be

seen in Fig. 4 (b) and Table 4. In most cases only the boundary equilibria O, P1, P2

exist and one of them is G.A.S., but on a narrow parameter domain an unstable P ∗

appears and then the result of the competition depends on the initial values.

6. EXAMPLES AND COMPUTER EXPERIMENTS

To verify the conditions and investigate the properties of the system interactively,

we have prepared a dynamic application in Wolfram Mathematica (available at our

website [1]). Here we show some snapshots to illustrate different cases.
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(a) (b)

Figure 4. Parameter space with the stability of coexistence:

(a) The case max (0, k1 − k2) < c with stable coexistence

(k1 = 0.2, k2 = 0.2, c = 0.4); (b) The case 0 < c < k1 − k2 with un-

stable coexistence (k1 = 1, k2 = 0.2, c = 0.3)

Equilibrium Exists G.A.S. Unstable

O always 1 ≤ e1

k1
and 1 ≤ e2

k2
otherwise

P1
e1

k1
< 1 e1

k1
≤ c+e2

c+k2
otherwise

P2
e2

k2
< 1 e1

k1
≥ e2

k2

(
1− c

k1

)
+ c

k1
otherwise

P ∗ c+e2

c+k2
< e1

k1
< e2

k2

(
1− c

k1

)
+ c

k1
when P ∗ exists never

Table 3. Summary of attractivity properties in the case

max (0, k1 − k2) < c

Equilibrium Exists A.S. G.A.S. Unstable

O always 1 ≤ e1

k1
and 1 ≤ e2

k2
if A.S. otherwise

P1
e1

k1
< 1 e1

k1
< c+e2

c+k2
@P ∗ otherwise

P2
e2

k2
< 1 e1

k1
> e2

k2

(
1− c

k1

)
+ c

k1
@P ∗ otherwise

P ∗
e2

k2

(
1− c

k1

)
+ c

k1

< e1

k1
< c+e2

c+k2

– – always

Table 4. Summary of attractivity properties in the case 0 < c < k1 − k2

First consider, the case of large overcolonization c > 0, k1−k2 < c, see Fig. 5. The

parameter space
{

e1

k1
, e2

k2

}
contains four disjoint domains. Let us present parameter

combinations with different development. It is obvious that although species 1 is

weaker both at dispersal and survivor than species 2, however species 1 can survive
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Figure 5. Large overcolonization k1 = k2 = 0.2, c = 0.4: Case a: e1 =

0.4, e2 = 0.5; Case b: e1 = 0.4, e2 = 0.1; Case c: e1 = 0.05, e2 = 0.1;

Case d: e1 = 0.18, e2 = 0.1; Case e: e1 = 0.24, e2 = 0.1.

because of its dominance in overcolonization. In Case a both species die out. In Case

b species 1 wins the competition as a result of effective overcolonization. Without

overcolonization the species 2 would win the competition (as in Fig. 1). In Case c

species 2 wins the competition. In Case e the competing species coexist, although

species 1 would die out without species 2. Observe that P1 does not exists in this

example. A similar behavior with existing unstable P1 can be seen at Case d.

Finally, consider the case of small overcolonization 0 < c < k1 − k2. Here we

present only the case where the interior equilibrium is unstable. The other cases are

similar to the corresponding ones at large overcolonization. Fig. 6 contains the full

view of the dynamic demonstration prepared in Wolfram Mathematica.



SPATIALLY IMPLICIT COMPETITION WITH OVERCOLONIZATION 689

Figure 6. Small overcolonization with unstable coexistence: k1 =

1, k2 = 0.2, c = 0.3, e1 = 0.6, e2 = 0.05.

7. SUMMARY

Our metapopulation model with overcolonization can be considered as the most

general extension of Levins model for two species. In the cases c = 0 or c = k1 we

obtain the known models (see the Introduction (1.2) and (1.3)).

We have shown that a stable interior equilibrium can exist only if there is large

enough asymmetric interaction between species. Otherwise, it either does not exist or

is unstable and the outcome of the system depends on the density of the competing

species. Relation of difference in ability of empty patch colonization k1 − k2 and the

net overcolonization plays important role in determining existence of G.A.S. equilibria

in parameter space.

Metapopulation based models have been being successfully used in several con-

servation biological and ecological problems, henceforward they still provide oppor-

tunities to further investigation and applications. A general n species model, where

n ≥ 2, the competition can be described as follows:

p′i = kipi

(
1−

n∑
j=1

pj

)
+
∑
j 6=i

cipipj −
∑
j 6=i

cjpipj − eipi, (i = 1, 2, ..., n),

where pi = pi(t) is the proportion of occupied patches at time t for species i where 0 ≤
pi, i = 1, . . . , n;

∑n
i=1 pi ≤ 1; ki, ci, ei ≥ 0, are the global colonization, overcolonization

and extinction rates of species i, respectively (i = 1, . . . , n).

Based on previous works [13, 14], our further research will concern the general-

izations to n-species as well as spatial explicit analogues, e.g. cellular automata and

partial differential equations.



690 I. SZIMJANOVSKI, J. KARSAI, AND E. V. P. RÁCZ
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2010-0010, TÁMOP-4.2.2.A-11/1/KONV-2012-0073 (Telemedicine-focused research

activities on the field of Mathematics, Informatics and Medical Sciences).

REFERENCES

[1] Electronic supplement to the paper: http://www.model.u-szeged.hu/index.php?action=edoc
&cmd=show edoc&edoc id=29

[2] L. Edelstein-Keshet, Mathematical Models in Biology, McGraw-Hill, 1987.
[3] I. Hanski, Metapopulation Ecology, Oxford University Press, 1999.
[4] C.A. Klausmeier, Habitat Destruction and Extinction in Competitive and Mutualistic Meta-

communities, Ecology Letters 4: 57–63, 2001.
[5] A. P. Kinzig, S. A. Levin, J. Dushoff, and S. Pacala, Limiting Similarity, Species Packing, and

System Stability for Hierarchical Competition–Colonization Models, The American Naturalist,
153(4): 371–383, 1999.

[6] R. Levins, Some Demographic and Genetic Consequences of Environmental Heterogenity for
Biological Control, Bulletin of the Entomological Society of America, 15: 237–240, 1969.

[7] R. Levins, Extinction, In: M. Gerstenhaber (ed), Some Mathematical Questions in Biology,
Lectures on Mathematics in the Life Sciences 2., 75–108. American Mathematical Society,
Providence, RI., 1970.

[8] M.Y. Li, J.R. Graef, L. Wang and J. Karsai, Global Dynamics of a SEIR Model with Varying
Total Population Size, Mathematical Biosciences, 160: 191–213, 1999.

[9] M.Y. Li and L. Wang, A Criterion for Stability of Matrices, Journal of Mathematical Analysis
and Application 225: 249–264, 1998.

[10] J.D. Murray, Mathematical Biology: I. An Introduction, Third Edition, Springer, 2002.
[11] S. Nee and R.R. May, Dynamics of Metapopulations: Habitat Destruction and Competitive

Coexistence, Journal of Animal Ecology, 61: 37–40, 1992.
[12] S. Nee, R.R. May and M.P. Hassel, Two-Species Metapopulation Models, In: I. Hanski and

M.E. Gilpin (ed), Metapopulation Biology: Ecology, Genetics and Evolution: 123–147. Aca-
demic Press, San Diego, 1997.
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