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ABSTRACT. The authors study a nonlinear fractional boundary value problem with a separated

boundary condition. The associated Green’s function is constructed as a series of functions by

applying the spectral theory. A criterion for the existence and uniqueness of solutions is obtained

based on it.
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1. Introduction

We study the boundary value problem (BVP) consisting of the nonlinear frac-

tional differential equation

(1.1) −Dα
0+u + a(t)u′ = w(t)f(t, u), 0 < t < 1,

and the boundary condition (BC)

(1.2) u(0) = u′(0) = u(1) = 0,

where 2 < α ≤ 3, a ∈ C1[0, 1], w ∈ L[0, 1] such that w(t) 6≡ 0 a.e. on [0, 1], f ∈

C([0, 1] × R, R), and Dα
0+h is the α-th Riemann-Liouville fractional derivative of h

for h : [0, 1] → R defined by

(Dα
0+h)(t) =

1

Γ(l − α)

dl

dtl

∫ t

0

(t − s)l−α−1h(s)ds, l = ⌊α⌋ + 1,(1.3)

provided the right-hand side exists with Γ the Gamma function.

The Green’s functions play an important role in the study of nonlinear BVPs as

the existence of solutions or positive solutions of a nonlinear BVP can be established

by constructing a completely continuous operator based on the associated Greens
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function and finding the fixed point of the operator. This idea has been widely used

in the study of nonlinear BVPs of both integer and fractional orders; the reader is

referred to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and references therein

for some recent results. Due to the unusual feature of the fractional calculus, the

Green’s functions for fractional BVPs have not been well developed. In most existing

work in the literature, the Green’s functions were constructed only to solve the BVPs

consisting of

−Dα
0+u = f(t, u), 0 < t < 1,(1.4)

and certain BCs, see for example [1, 2, 5, 6]. When a more general equation such as

−Dα
0+u + a(t)u = f(t, u), 0 < t < 1,(1.5)

is involved, the method employed in those papers fail to work due to the complexity

caused by the extra term a(t)u.

Recently, Graef, Kong, Kong, and Wang [8, 9] used the Green’s function method

to study the BVPs consisting of Eq. (1.5) with 1 < α ≤ 2 and two different types

of BCs. An approach based on the spectral theory is used to construct the Green’s

functions as series of functions. We refer the reader to[8, Theorem 2.1] and [9, The-

orem 2.1] for the detail. It is notable that this approach can be extended to BVPs

consisting of Eq. (1.5) and some other BCs; however, it cannot be directly applied to

BVP (1.1), (1.2) due to the appearance of the term with u′.

In this paper, by a modified approach, we will first establish the Green’s function

for the BVP consisting of the equation

(1.6) −Dα
0+u + a(t)u′ = 0, 0 < t < 1,

and BC (1.2). Based on it, we will then obtain conditions for the existence and

uniqueness of solutions for BVP (1.1), (1.2).

This paper is organized as follows: After this introduction, our main results are

stated in Section 2. One example is also given therein. All the proofs are given in

Section 3.

2. Main results

The Green’s function for BVP (1.4), (1.2) is given by Feng, Zhang, and Ge [5,

Lemma 2.1] as

(2.1) G0(t, s) =















[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.
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It is easy to see that

∂G0(t, s)

∂s
=















(1 − α)(tα−1(1 − s)α−2 − (t − s)α−2)

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(1 − α)tα−1(1 − s)α−2

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

We will use (2.1) and (2.2) to construct the Green’s function for BVP (1.6), (1.2).

Let G0 be defined by (2.1) and K : [0, 1] × [0, 1] → R defined by

K(t, s) =
∂

∂s
[a(s)G0(t, s)]

= a′(s)G0(t, s) + a(s)
∂G0(t, s)

∂s
, (t, s) ∈ [0, 1] × [0, 1].(2.3)

Throughout this paper, we assume that |a(t)| and |a′(t)| are small enough such that

(H) B := maxt∈[0,1]

∫ 1

0
|K(t, s)|ds < 1.

Clearly, when a is constant, B = |a|maxt∈[0,1]

∫ 1

0

∣

∣

∣

∂G0(t,s)
∂s

∣

∣

∣
ds.

Define G : [0, 1] × [0, 1] → R and G : [0, 1] → R by

G(t, s) =

∞
∑

n=0

Gn(t, s) and G(s) =
G0(s)

1 − B
,(2.4)

where G0 is defined by (2.1),

Gn(t, s) =

∫ 1

0

K(t, τ)Gn−1(τ, s)dτ, n = 1, 2, . . . ,(2.5)

and

G0(s) =











(θ(s)(1 − s))α−1 − (θ(s) − s)α−1

Γ(α)
, s ∈ (0, 1),

0, s = 0, 1,

(2.6)

with θ(s) = s

1−(1−s)(α−1)/(α−2) , s ∈ (0, 1).

We then have the following result.

Theorem 2.1. The function G(t, s) defined by (2.4) as a series of functions is uni-

formly convergent for (t, s) ∈ [0, 1] × [0, 1]. Furthermore, G is the Green’s function

for BVP (1.6), (1.2) and satisfies |G(t, s)| ≤ G(s) on [0, 1] × [0, 1].

With the Green’s function G given in Theorem 2.1, we may study the existence

and uniqueness of solutions of BVP (1.1), (1.2).

Theorem 2.2. Assume f satisfies the Lipschitz condition in x

|f(t, x1) − f(t, x2)| ≤ k|x1 − x2| for (t, x1), (t, x2) ∈ [0, 1] × R,

with k ∈ (0, 1/
∫ 1

0
G(s)|w(s)|ds). Then BVP (1.1), (1.2) has a unique solution. If in

addition, f(t, 0) ≡ 0 on [0, 1], then BVP (1.1), (1.2) has no nontrivial solution.
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To illustrate the application of our results, we consider the following example.

Example 2.3. Consider the BVP

(2.7)







−Dα
0+u + au′ = p tan−1 u + et,

u(0) = u′(0) = u(1) = 0,

where 2 < α ≤ 3 and |a| < (maxt∈[0,1]

∫ 1

0
|∂G0(t, s)/∂s|ds)−1. We claim that BVP

(2.7) has a unique solution when 0 < p < 1/
∫ 1

0
G(s)ds.

In fact, Assumption (H) holds when |a| < (maxt∈[0,1]

∫ 1

0
|∂G0(t, s)/∂s|ds)−1. Let

f(t, x) = p tan−1 x + et and w(t) ≡ 1. It is easy to see that |f(t, x1) − f(t, x2)| ≤

p|x1 − x2| for any (t, x1), (t, x2) ∈ [0, 1] × R. Then by Theorem 2.2, BVP (2.7) has

a unique solution. Furthermore, it is easy to see that the solution is nontrivial since

f(t, 0) 6≡ 0.

3. Proofs

The following lemma on the spectral theory in Banach spaces is used to derive

the associated Green’s function. See [16, page 795, items 57b and 57d] for the detail.

Lemma 3.1. Let X be a Banach space, B : X → X a linear operator with the

operator norm ‖B‖ and the spectral radius r(B) of B. Then

(a) r(B) ≤ ‖B‖;

(b) if r(B) < 1, then (I − B)−1 exists and (I − B)−1 =
∑

∞

n=0 B
n, where I stands

for the identity operator.

The following lemma is excerpted from [5, Proposition 2.2].

Lemma 3.2. Let G0 and G0 be defined by (2.1) and (2.6), respectively. Then

G0(t, s) ≤ G0(s) on [0, 1] × [0, 1].

In the sequel we let X = C[0, 1] be the Banach space with the standard maximum

norm.

Proof of Theorem 2.1. For any h ∈ X, let u be a solution of the BVP consisting of

−Dα
0+u + a(t)u′ = h(t), 0 < t < 1,

and (1.2). By (2.1),

u(t) =

∫ 1

0

G0(t, s)(h(s) − a(s)u′(s))ds,(3.1)

i.e.,

u(t) +

∫ 1

0

a(s)G0(t, s)u
′(s)ds =

∫ 1

0

G0(t, s)h(s)ds.
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By integration by parts and BC (1.2),
∫ 1

0

a(s)G0(t, s)u
′(s)ds = −

∫ 1

0

K(t, s)u(s)ds,

where K is defined by (2.3). Hence

u(t) −

∫ 1

0

K(t, s)u(s)ds =

∫ 1

0

G0(t, s)h(s)ds.(3.2)

Define A and B : X → X by

(Ah)(t) =

∫ 1

0

G0(t, s)h(s)ds and (Bh)(t) =

∫ 1

0

K(t, s)h(s)ds.(3.3)

Then Eq. (3.2) can be written as

u − Bu = Ah.(3.4)

By (H), it is easy to verify that ‖B‖ < 1. Then by Lemma 3.1, r(B) < 1, and

u = (I − B)−1Ah =
∞

∑

n=0

BnAh.(3.5)

By (3.3), (2.5), and induction, we can prove that for n ∈ N0,

(BnAh)(t) =

∫ 1

0

Gn(t, s)h(s)ds,(3.6)

and

|Gn(t, s)| ≤ BnG0(s) on [0, 1] × [0, 1],

where B is defined in (H). Since B ∈ [0, 1), by (2.4), for (t, s) ∈ [0, 1] × [0, 1],

|G(t, s)| = |

∞
∑

n=0

Gn(t, s)| ≤

∞
∑

n=0

|Gn(t, s)| ≤

∞
∑

n=0

BnG0(s) = G(s).

Therefore, G(t, s) as a series of functions is uniformly convergent on [0, 1]× [0, 1]. By

(2.4), (3.5), and (3.6),

u(t) =

∞
∑

n=0

∫ 1

0

Gn(t, s)h(s)ds =

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1].(3.7)

On the other hand, let u be defined by (3.7). By (2.4) and (3.6), u satisfies (3.5).

Hence (3.4) holds. By (3.3) and (2.3), u satisfies (3.1). Therefore, u is a solution of

Eq. (3.4).

Thus, G is the Green’s function for BVP (1.6), (1.2). �

Now we prove Theorem 2.2 using the contraction mapping principle.

Proof of Theorem 2.2. Define T : X → X by

(Tu)(t) =

∫ 1

0

G(t, s)w(s)f(s, u(s))ds, u ∈ X.
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Clearly, T is completely continuous and u(t) is a solution of BVP (1.1), (1.2) if and

only if u is a fixed point of T in X.

For any u1, u2 ∈ X, and t ∈ [0, 1],

|(Tu1 − Tu2)(t)| =

∣

∣

∣

∣

∫ 1

0

G(t, s)w(s) (f(s, u1(s)) − f(s, u2(s))) ds

∣

∣

∣

∣

≤

∫ 1

0

G(s)|w(s)| |f(s, u1(s)) − f(s, u2(s))| ds

≤

∫ 1

0

G(s)|w(s)|k |u1(s) − u2(s)| ds

≤ (k

∫ 1

0

G(s)|w(s)|ds)‖u1 − u2‖.

Note that k
∫ 1

0
G(s)|w(s)|ds < 1. Hence T is a contraction mapping. By the con-

traction mapping principle, T has a unique fixed point. Thus, BVP (1.1), (1.2) has a

unique solution.

If in addition, f(t, 0) ≡ 0 on [0, 1]. Then obviously u(t) ≡ 0 is a solution of

BVP (1.1), (1.2). By the uniqueness of solutions, BVP (1.1), (1.2) has no nontrivial

solutions. �
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[2] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differ-

ential equation, J. Math. Anal. Appl. 311 (2005), 495–505.

[3] A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with

integral boundary value conditions, J. Math. Anal. Appl. 389 (2012), 403–411

[4] L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value

problems, Math. Computer Modelling 32 (2000), 529–539.

[5] M. Feng, X. Zhang, and W. Ge, New existence results for higher-order nonlinear fractional

differential equation with integral boundary conditions, Bound. Value Probl. 2011, Art. ID

720702, 20 pp.

[6] C. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl.

Math. Lett. 23 (2010), 1050–1055.

[7] J. R. Graef and L. Kong, Existence results for nonlinear periodic boundary value problems,

Proc. Edinburgh Math. Soc. 52 (2009), 79–95.

[8] J. R. Graef, L. Kong, Q. Kong, and M. Wang, Fractional boundary value problems with integral

boundary conditions, Appl. Anal. 92 (2013), 2008–2020.

[9] J. R. Graef, L. Kong, Q. Kong, and M. Wang, Existence and uniqueness of solutions for

a fractional boundary value problem with Dirichlet boundary condition, Electron. J. Qual.

Theory Differ. Equ. 2013 No. 55, 11 pp.

[10] J. R. Graef, L. Kong, and H. Wang, Existence, multiplicity, and dependence on a parameter

for a periodic boundary value problem, J. Differential Equations 245 (2008), 1185–1197.



FRACTIONAL BOUNDARY VALUE PROBLEMS 697

[11] G. Infante, F. Minhós, and P. Pietramala, Non-negative solutions of systems of ODEs with

coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 12, 4952–

4960.

[12] D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet-type boundary

value problems of nonlinear fractional differential equations and its application, Nonlinear Anal.

72 (2010), 710–719.

[13] Q. Kong and M. Wang,Positive solutions of nonlinear fractional boundary value problems with

Dirichlet boundary conditions, Electron. J. Qual. Theory Differ. Equ. 2012, No. 17, 13 pp.

[14] Q. Kong and M. Wang, Positive solutions of even order periodic boundary value problems,

Rocky Montain J. Math. 41 (2011), 1907–1931.

[15] Q. Kong and M. Wang, Positive solutions of even order system periodic boundary value prob-

lems, Nonlinear Anal. 72 (2010), 1778–1791.

[16] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems,

Springer-Verlag, New York, 1986.


