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ABSTRACT. The existence of smallest positive eigenvalues is established for the linear differential

equations u(4) + λ1q(t)u = 0 and u(4) + λ2r(t)u = 0, 0 ≤ t ≤ 1, with each satisfying the boundary

conditions u(0) = u′(p) = u′′(1) = u′′′(1) = 0 where 1 −
√

3
3 ≤ p < 1. A comparison theorem

for smallest positive eigenvalues is then obtained. The existence of these smallest eigenvalues is

then applied to characterize extremal points of the differential equation u(4) + q(t)u = 0 satisfying

boundary conditions u(0) = u′(p) = u′′(b) = u′′′(b) = 0 where 1 −
√

3
3 ≤ p ≤ b ≤ 1. These results

are applied to show the existence of a positive solution to a nonlinear boundary value problem.
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1. Introduction

We begin this work by considering the eigenvalue problems

(1.1) u(4) + λ1q(t)u = 0, 0 ≤ t ≤ 1,

(1.2) u(4) + λ2r(t)u = 0, 0 ≤ t ≤ 1,

satisfying the boundary conditions

(1.3) u(0) = u′(p) = u′′(1) = u′′′(1) = 0,

where 1 −
√

3
3

≤ p < 1, and q(t) and r(t) are continuous nonnegative functions on

[0, 1], with neither q(t) nor r(t) vanishing identically on any nondegenerate compact

subinterval of [0, 1].

Using the theory of u0-positive operators with respect to a cone in a Banach space,

we establish the existence of smallest eigenvalues for (1.1), (1.3), and (1.2), (1.3), and

then compare these smallest eigenvalues after assuming a relationship between q(t)

and r(t).
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We will then consider first extremal points of the equation

(1.4) u(4) + q(t)u = 0, 0 ≤ t ≤ 1,

satisfying the boundary conditions

(1.5b) u(0) = u′(p) = u′′(b) = u′′′(b) = 0,

where p is fixed with 1−
√

3
3

≤ p ≤ b ≤ 1, and q(t) is a continuous nonnegative function

on [0, 1] that does not vanish identically on any nondegenerate compact subinterval

of [0, 1]. Throughout the paper, the reference to boundary conditions (1.5k), where

k ∈ [p, 1], signifies the boundary conditions u(0) = u′(p) = u′′(k) = u′′′(k) = 0.

We establish the existence of a largest interval, [0, b), such that on any subinter-

val [0, c] of [0, b), there exists only the trivial solution of (1.4), (1.5c). We accomplish

this by characterizing the first extremal point through the existence of a nontrivial

solution that lies in a cone by establishing the spectral radius of a compact operator.

The establishment of the spectral radius relies heavily on the existence of the small-

est eigenvalues of (1.1), (1.3), giving reason for why these two topics are presented

together. We then apply these results to show the existence of a positive solution of

a fourth order three point nonlinear boundary value problem.

The fourth order beam equation with various boundary conditions has been the

topic of study by many authors recently. For example, in [13], Graef, Kong, and Yang

studied the existence of positive solutions of the fourth order differential equation

u(4)(t) + g(t)f(u(t)), 0 ≤ t ≤ 1,

satisfying boundary conditions (1.3). Neugebauer [21] has studied the comparison of

smallest eigenvalues for a fourth order equation with different three point boundary

conditions. For more work done on the fourth order beam equation, see, for example,

[1, 3, 4, 24].

The technique for the comparison of these eigenvalues involve the application

of sign properties of the Green’s function, followed by the application of u0-positive

operators with respect to a cone in a Banach space. These applications are presented

in books by Krasnosel’skii [18] and by Krein and Rutman [19]. For a sample of recent

work done on the subject, see [5, 9, 10, 11, 15, 16, 21, 22].

When characterizing first extremal points, we will be defining a family of Banach

spaces, cones, and operators. Using the theory of Krein and Rutman [19], we show the

existence of a first extremal point is equivalent to properties of the spectral radius of

the operators and solutions of the boundary value problem existing in a cone. Using a

fixed point theorem, we are able to use these results to show the existence of positive

solutions to a nonlinear fourth order three point boundary value problem. For recent

work done on extremal points, see [7, 8, 12, 14].
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2. Existence and Comparison of Smallest Eigenvalues

We begin this section with some definitions and theorems that will be integral to

our analysis.

Definition 2.1. Let B be a Banach space over R. A closed nonempty subset P of B

is said to be a cone provided

(i) αu + βv ∈ P, for all u, v ∈ P and all α, β ≥ 0, and

(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.2. A cone P is solid if the interior, P◦, of P, is nonempty. A cone P is

reproducing if B = P−P; i.e., given w ∈ B, there exist u, v ∈ P such that w = u−v.

Remark 2.3. Krasnosel’skii [18] showed that every solid cone is reproducing.

Definition 2.4. Let P be a cone in a real Banach space B. If u, v ∈ B, u ≤ v with

respect to P if v − u ∈ P. If both M, N : B → B are bounded linear operators,

M ≤ N with respect to P if Mu ≤ Nu for all u ∈ P.

Definition 2.5. A bounded linear operator M : B → B is u0-positive with respect

to P if there exists u0 ∈ P\{0} such that for each u ∈ P\{0}, there exist k1(u) > 0

and k2(u) > 0 such that k1u0 ≤ Mu ≤ k2u0 with respect to P.

The following two results are fundamental to our existence and comparison re-

sults for smallest eigenvalues and are attributed to Krasnosel’skii [18]. The proof of

Theorem 2.6 can be found in Krasnosel’skii’s book [18], and the proof of Theorem 2.7

is provided by Keener and Travis [17] as an extension of Krasonel’skii’s results.

Theorem 2.6. Let B be a real Banach space, and let P ⊂ B be a reproducing cone.

Let L : B → B be a compact, u0-positive, linear operator. Then L has an essentially

unique eigenvector in P, and the corresponding eigenvalue is simple, positive, and

larger than the absolute value of any other eigenvalue.

Theorem 2.7. Let B be a real Banach space and let P ⊂ B be a cone. Let both

M, N : B → B be bounded, linear operators and assume that at least one of the

operators is u0-positive. If M ≤ N , Mu1 ≥ λ1u1 for some u1 ∈ P and some λ1 > 0,

and Nu2 ≤ λ2u2 for some u2 ∈ P and some λ2 > 0, then λ1 ≤ λ2. Futhermore,

λ1 = λ2 implies u1 is a scalar multiple of u2.

To derive our comparison results, we will define integral operators whose kernels

are the Green’s function for −u(4) = 0 satisfying (1.3) and show these operators are
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u0-positive. This Green’s function is given by

G(t, s) =



























−t[p2

2
− ps] − t2s

2
+ t3

6
, 0 ≤ t, p ≤ s ≤ 1,

−t[p2

2
− ps − (p−s)2

2
] − t2s

2
+ t3

6
, 0 ≤ t ≤ s ≤ p ≤ 1,

−t[p2

2
− ps] − t2s

2
+ t3

6
− (t−s)3

6
, 0 ≤ p ≤ s ≤ t ≤ 1,

−t[p2

2
− ps − (p−s)

2
] − t2s

2
+ t3

6
− (t−s)3

6
, 0 ≤ s ≤ t, p ≤ 1.

Now, u(t) solves (1.1), (1.3) if and only if u(t) = λ1

∫ 1

0
G(t, s)q(s)u(s)ds, and u(t)

solves (1.2), (1.3) if and only if u(t) = λ2

∫ 1

0
G(t, s)r(s)u(s)ds.

It was shown in [13] that G(t, s) ≥ 0 on [0, 1] × [0, 1] and G(t, s) > 0 on (0, 1] ×

(0, 1).

Lemma 2.8. For 0 < s < 1, ∂
∂t

G(t, s)|t=0 > 0.

Proof. When t = 0, t ≤ s. Thus, we start by considering ∂
∂t

G(t, s)|t=0 for t ≤ s and

p ≤ s. Then

∂

∂t
G(t, s)

∣

∣

∣

∣

t=0

=
∂

∂t

[

−t

[

p2

2
− ps

]

−
t2s

2
+

t3

6

]
∣

∣

∣

∣

t=0

=

[

−

(

p2

2
− ps

)

− ts +
t2

2

]
∣

∣

∣

∣

t=0

= −
p2

2
+ ps

≥ −
p2

2
+ p2

=
p2

2

> 0,

for 0 < s < 1.

Next, we consider ∂
∂t

G(t, s)|t=0 > 0 for t ≤ s and p ≥ s. Then

∂

∂t
G(t, s)

∣

∣

∣

∣

t=0

=
∂

∂t

[

−t

[

p2

2
− ps −

(p − s)2

2

]

−
t2s

2
+

t3

6

]
∣

∣

∣

∣

t=0

=

[

−

(

p2

2
− ps −

(p − s)2

2

)

− ts +
t2

2

]
∣

∣

∣

∣

t=0

= −
p2

2
+ ps +

(p − s)2

2

≥ −
s2

2
+ s2

=
s2

2

> 0,

for 0 < s < 1. Thus, for t = 0 and 0 < s < 1, we have ∂
∂t

G(t, s) > 0.
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To apply Theorems 2.6 and 2.7, we need to define a Banach space B and a cone

P ⊂ B. Define the Banach space B by

B = {u ∈ C1[0, 1] | u(0) = 0},

with the norm

‖u‖ = sup
0≤t≤1

|u′(t)|.

Define the cone P to be

P = {u ∈ B | u(t) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ t ≤ 1,

|u(t)| = |u(t) − u(0)| =

∣

∣

∣

∣

∫ t

0

u′(s)ds

∣

∣

∣

∣

≤ ‖u‖t ≤ ‖u‖,

and so sup0≤t≤1 |u(t)| ≤ ‖u‖.

Lemma 2.9. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u(t) > 0 on (0, 1] and u′(0) > 0}.

Note Ω ⊂ P. We will show Ω ⊂ P◦. Let u ∈ Ω. Since u′(0) > 0, there exists

ǫ1 > 0 such that u′(0)− ǫ1 > 0, and so u′(0) > ǫ1. By the definition of the derivative,

u′(0) = limt→0+
u(t)−u(0)

t−0
> ǫ1, and so there exists an a ∈ (0, 1) such that for all

t ∈ (0, a), u(t)−u(0)
t−0

> ǫ1. It follows that for all t ∈ (0, a), u(t) > tǫ1. Also, since

u(t) > 0 on [a, 1], there exists ǫ2 > 0 such that u(t) − ǫ2 > 0 for all t ∈ [a, 1].

Let ǫ = min{ ǫ1
2
, ǫ2

2
}. Define Bǫ(u) := {v ∈ B | ‖u − v‖ < ǫ}. Let v ∈ Bǫ(u). So

|u′(0) − v′(0)| ≤ ‖u − v‖ < ǫ. Consequently, v′(0) > 0. Next, by the Mean Value

Theorem, for t ∈ (0, a), |u(t)− v(t)| ≤ t‖u− v‖. Thus |u(t)− v(t)| < tǫ for t ∈ (0, a).

Thus v(t) > u(t) − tǫ > tǫ1 − t ǫ1
2

= t ǫ1
2

> 0 for all t ∈ (0, a). Lastly, for all t ∈ [a, 1],

|u(t) − v(t)| ≤ ‖u − v‖ < ǫ. We obtain that v(t) > u(t) − ǫ > ǫ2 −
ǫ2
2

> ǫ2
2
, and so

v(t) > 0 on (0, 1]. Thus, v ∈ Ω, and so Bǫ(u) ⊂ Ω. Thus Ω ⊂ P◦.

Next, we define our linear operators M, N : B → B by

Mu(t) =

∫ 1

0

G(t, s)q(s)u(s)ds, 0 ≤ t ≤ 1,

and

Nu(t) =

∫ 1

0

G(t, s)r(s)u(s)ds, 0 ≤ t ≤ 1.

A standard application of the Arzelà-Ascoli theorem shows M and N are compact

operators.

Lemma 2.10. The bounded linear operators M and N are u0-positive with respect to

P.
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Proof. We will show that M : P\{0} → Ω ⊂ P◦. First, let u ∈ P. Since u(t) ≥ 0 on

[0, 1], G(t, s) ≥ 0 on [0, 1] × [0, 1], and q(t) ≥ 0 on [0, 1],

Mu(t) =

∫ 1

0

G(t, s)q(s)u(s)ds ≥ 0,

for 0 ≤ t ≤ 1. Thus Mu ∈ P and M : P → P.

Next, let u ∈ P\{0}. Consequently, there exists a nondegenerate compact subin-

terval [a, b] ⊂ (0, 1) such that u(t) > 0 and q(t) > 0 on [a, b]. Since G(t, s) > 0 on

(0, 1] × (0, 1),

Mu(t) =

∫ 1

0

G(t, s)q(s)u(s)ds ≥

∫ b

a

G(t, s)q(s)u(s)ds > 0,

for 0 < t ≤ 1. Also, ∂
∂t

G(t, s)|t=0 > 0 for 0 < s < 1, so

(Mu)′(0) =

∫ 1

0

∂

∂t
G(0, s)q(s)u(s)ds ≥

∫ b

a

∂

∂t
G(0, s)q(s)u(s)ds > 0.

Hence, Mu ∈ Ω ⊂ P◦, and so M : P\{0} → P◦.

Now let u ∈ P\{0} and choose a u0 ∈ P◦. It follows Mu ∈ P◦. So there exists

a k1 > 0 sufficiently small so that Mu − k1u0 ∈ P◦ and a k2 > 0 sufficiently large so

that u0 −
1
k2

Mu ∈ P◦. This choice of k1, k2 insures that k1u0 ≤ Mu and 1
k2

Mu ≤ u0

with respect to P. Thus k1u0 ≤ Mu ≤ k2u0 with respect to P. So M is u0-positive.

A similar argument can be made to show N is u0-positive.

Remark 2.11. Let Λ be an eigenvalue of M with eigenvector u. Notice that

Λu = Mu =

∫ 1

0

G(t, s)q(s)u(s)ds,

if and only if

u(t) =
1

Λ

∫ 1

0

G(t, s)q(s)u(s)ds,

if and only if

−u(4)(t) =
1

Λ
q(t)u(t), 0 ≤ t ≤ 1,

with

u(0) = u′(p) = u′′(1) = u′′′(1) = 0.

Thus the eigenvalues of (1.1), (1.3) are reciprocals of eigenvalues of M , and conversely.

Similarly, eigenvalues of (1.2), (1.3) are reciprocals of eigenvalues N , and conversely.

Theorem 2.12. Let B, P, M , and N be defined as earlier. Then M (and, by

similar reasoning, N) has an eigenvalue that is simple, positive, and larger than the

absolute value of any other eigenvalue, with an essentially unique eigenvector that can

be chosen to be in P◦.
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Proof. Since M is u0-positive it has, from Theorem 2.6, an essentially unique eigen-

vector, namely u ∈ P, and eigenvalue Λ with the properties stated above. Since

u 6= 0, we have Mu ∈ Ω ⊂ P◦ and Λu = Mu. Therefore, u = 1
Λ
Mu = M( 1

Λ
u).

Notice that 1
Λ
u 6= 0 and so M( 1

Λ
u) ∈ P◦. It follows that u ∈ P◦, completing the

proof.

Theorem 2.13. Let B, P, M , and N be defined as earlier. Let q(t) ≤ r(t) on [0, 1].

Let Λ1 and Λ2 be the eigenvalues, defined in Theorem 2.12, associated with M and N ,

respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,

and Λ1 = Λ2 if and only if q(t) = r(t) on [0, 1].

Proof. Let q(t) ≤ r(t) on [0, 1]. Thus, for any u ∈ P and t ∈ [0, 1],

(Nu − Mu)(t) =

∫ 1

0

G(t, s)(r(s) − q(s))u(s)ds ≥ 0,

and so (Nu − Mu) ∈ P. Thus Mu ≤ Nu for all u ∈ P, implying that M ≤ N with

respect to P. So, by Theorem 2.7, Λ1 ≤ Λ2. If q(t) = r(t), then Λ1 = Λ2.

Suppose now that q(t) 6= r(t). Then there exists some subinterval [a, b] ⊂ [0, 1]

such that q(t) < r(t) for all t ∈ [a, b]. Through reasoning similar to the proof of

Lemma 2.10, we have N − M : P\{0} → Ω. Therefore, (N − M)u1 ∈ Ω ⊂ P◦ and

so there exists some ǫ > 0 such that (N −M)u1− ǫu1 ∈ P. Then ǫu1 ≤ (N −M)u1 =

Nu1−Mu1 with respect to P. We have Λ1u1 + ǫu1 = Mu1 + ǫu1 ≤ Nu1. This implies

that Nu ≥ (Λ1+ǫ)u1. Since N ≤ N and Nu2 = Λ2u2, Λ1+ǫ ≤ Λ2, thus Λ1 < Λ2.

By Remark 2.11, the following theorem is an immediate consequence of Theo-

rems 2.12 and 2.13.

Theorem 2.14. Assume the hypotheses of Theorem 2.13. Then there exist smallest

positive eigenvalues λ1 and λ2 of (1.1), (1.3) and (1.2), (1.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may be

chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if q(t) = r(t) for

0 ≤ t ≤ 1.

3. Characterization of Extremal Points

We will begin this section with a few key definitions and theorems for classifying

first extremal points of a boundary value problem.

Definition 3.1. We say that b0 is the first extremal point of the boundary value

problem (1.4), (1.5b) if b0 = inf{b > p | (1.4), (1.5b) has a nontrivial solution }.

Definition 3.2. A bounded linear operator N : B → B is said to be positive with

respect to the cone P if N : P → P.
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We denote the spectral radius of N by r(N).

The following four theorems are crucial to our results. The first result can be

found in [20] and the other three can be found in [2] or [18]. Assume in each of the

following that P is a reproducing cone and N, N1, N2 : B → B are compact, linear,

and positive with respect to P.

Theorem 3.3. Let Nb, 0 ≤ b ≤ 1, be a family of compact, linear operators on a

Banach space such that the mapping b → Nb is continuous in the uniform topology.

Then the mapping b → r(Nb) is also continuous.

Theorem 3.4. Assume r(N) > 0. Then r(N) is an eigenvalue of N , and there is a

corresponding eigenvector in P.

Theorem 3.5. If N1 ≤ N2 with respect to P, then r(N1) ≤ r(N2).

Theorem 3.6. Suppose there exist γ > 0, u ∈ B, −u 6∈ P such that γu ≤ Nu with

respect to P. Then N has an eigenvector in P which corresponds to an eigenvalue λ

with λ ≥ γ.

Now, we will characterize extremal points of the boundary value problem (1.4),

(1.5b). We will assume throughout that the boundary value problem (1.1), (1.5p) has

only the trivial solution for λ ≤ 1. For nonexistence results relating to this boundary

value problem, we refer the reader to [13].

We define a Banach space B and cone P ⊂ B in order to apply the above theorems.

First, define the Banach space B to be

B = {u ∈ C1[0, 1] | u(0) = 0},

with norm

‖u‖ = sup
0≤t≤1

|u′(t)|.

Define the cone P ⊂ B as

P = {u ∈ B | u(t) ≥ 0 on [0, 1]}.

From Lemma 2.9, we know Ω = {u ∈ B | u(t) > 0 on (0, 1] and u′(0) > 0} ⊂ P◦, and

so P is reproducing.

Furthermore, for each b ∈ [p, 1], we define a family of Banach spaces Bb and cones

Pb ⊂ Bb. Define the Banach space Bb by

Bb = {u ∈ C1[0, b] | u(0) = 0},

with norm

‖u‖ = sup
0≤t≤b

|u′(t)|.



DIFFERENTIAL INCLUSIONS 707

Define the cone Pb ⊂ Bb as

Pb = {u ∈ Bb | u(t) ≥ 0 on [0, b]}.

The proof of Lemma 2.9 can be easily adapted to show that for all b ∈ [p, 1],

Ωb := {u ∈ Bb | u(t) > 0 on (0, b] and u′(t) > 0} ⊂ P◦
b .

Thus for each b ∈ [p, 1], Pb is reproducing.

Notice that for t ≥ s, ∂2

∂t2
G(t, s) = ∂3

∂t3
G(t, s) = 0. Thus, discounting the interval

of existence, G(t, s) is independent of the right endpoint chosen. So for each b ∈ [p, 1],

the Green’s function for −u(4) = 0, (1.5b) is given by

G(b; t, s) =



























−t[p2

2
− ps] − t2s

2
+ t3

6
, 0 ≤ t, p ≤ s ≤ b,

−t[p2

2
− ps − (p−s)2

2
] − t2s

2
+ t3

6
, 0 ≤ t ≤ s ≤ p ≤ b,

−t[p2

2
− ps] − t2s

2
+ t3

6
− (t−s)3

6
, 0 ≤ p ≤ s ≤ t ≤ b,

−t[p2

2
− ps − (p−s)

2
] − t2s

2
+ t3

6
− (t−s)3

6
, 0 ≤ s ≤ t, p ≤ b.

Notice for p ≤ b1 < b2, G(b1; t, s) = G(b2; t, s) for 0 ≤ t ≤ b1.

For each b ∈ [p, 1], define the family of linear operators Nb by

Nbu(t) =







∫ b

0
G(b; t, s)q(s)u(s)ds, 0 ≤ t ≤ b,

∫ b

0
G(b; b, s)q(s)u(s)ds + (t − b)

∫ b

0
∂
∂t

G(b; b, s)q(s)u(s), b ≤ t ≤ 1.

From how Nb is defined, Nbu ∈ C1[0, 1] for u ∈ C1[0, 1], and Nbu(0) = 0. This

yields Nb : B → B. Also, when Nb is restricted to Bb, Nb : Bb → Bb by Nbu(t) =
∫ b

0
G(b; t, s)q(s)u(s)ds, and so u(t) is a solution to (1.4), (1.5b) if and only if u(t) =

Nbu(t) =
∫ b

0
G(b; t, s)q(s)u(s)ds for t ∈ [0, b].

The proof of the following lemma is similar to the proof of Lemma 2.10 and is

therefore omitted.

Lemma 3.7. For all b ∈ [p, 1], the linear operator Nb is positive with respect to P

and Pb. Also, Nb : Pb\{0} → P◦
b .

The following lemma gives, after applying Theorem 3.3, that the mapping b →

r(Nb) is continuous.

Lemma 3.8. The map b → Nb is continuous in the uniform topology.

Proof. First, note from earlier that sup0≤t≤1 |u(t)| ≤ ‖u‖. Consider the function

f : [p, 1] → {Nb}, b ∈ [p, 1], defined by f(b) = Nb. Let p ≤ b1 < b2 ≤ 1. Let ǫ > 0.

Now

‖f(b2) − f(b1)‖ = ‖Nb2 − Nb1‖

= sup
‖u‖=1

‖Nb2u − Nb1u‖
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= sup
‖u‖=1

{ sup
t∈[0,1]

|(Nb2u)′(t) − (Nb1u)′(t)|}.

Since ∂
∂t

G(b; t, s) and q(t) are continuous functions in t for 0 ≤ t ≤ b, they are bounded

above for 0 ≤ t ≤ b. Choose K and Q such that | ∂
∂t

G(b; t, s)| ≤ K for all b ∈ [p, 1]

and |q(t)| ≤ Q for 0 ≤ t ≤ 1. Since G(b; t, s) ∈ C1[0, b] in t, there exists a δ > 0 with

δ < ǫ
2KQ

such that for |t2 − t1| < δ, | ∂
∂t

G(b; t2, s) −
∂
∂t

G(b; t1, s)| < ǫ
2KQ

.

Suppose 0 ≤ t ≤ b1. Then for |b2 − b1| < δ,

|(Nb2u)′(t) − (Nb1u)′(t)| =

∣

∣

∣

∣

∫ b2

0

∂

∂t
G(b2; t, s)q(s)u(s)ds

quad −

∫ b1

0

∂

∂t
G(b1; t, s)q(s)u(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b2

b1

∂

∂t
G(b2; t, s)q(s)u(s)ds

∣

∣

∣

∣

≤

∫ b2

b1

∣

∣

∣

∣

∂

∂t
G(b2; t, s)

∣

∣

∣

∣

|q(s)||u(s)|ds

≤

∫ b2

b1

KQds

≤ KQ|b2 − b1|

< KQ
ǫ

2KQ
< ǫ.

Now suppose b1 < t ≤ b2. Thus for |b2 − b1| < δ,

|(Nb2u)′(t) − (Nb1u)′(t)| =

∣

∣

∣

∣

∫ b2

0

∂

∂t
G(b2; t, s)q(s)u(s)ds

−

∫ b1

0

∂

∂t
G(b1; b1, s)q(s)u(s)ds

∣

∣

∣

∣

≤

∫ b2

b1

∣

∣

∣

∣

∂

∂t
G(b2; t, s)

∣

∣

∣

∣

|q(s)||u(s)|ds

+

∫ b1

0

∣

∣

∣

∣

∂

∂t
G(b1; t, s) −

∂

∂t
G(b1; b1, s)

∣

∣

∣

∣

|q(s)||u(s)|ds

<

∫ b2

b1

KQds +

∫ b1

0

ǫ

2Q
Qds

= KQ|b2 − b1| +
ǫ

2Q
Qb1

< KQ
ǫ

2KQ
+

ǫ

2Q
Q

= ǫ.
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Now suppose b2 < t ≤ 1. So for |b2 − b1| < δ,

|(Nb2u)′(t) − (Nb1u)′(t)| =

∣

∣

∣

∣

∫ b2

0

∂

∂t
G(b2; b2, s)q(s)u(s)ds

−

∫ b1

0

∂

∂t
G(b1; b1, s)q(s)u(s)ds

∣

∣

∣

∣

≤

∫ b2

b1

∣

∣

∣

∣

∂

∂t
G(b2; b2, s)

∣

∣

∣

∣

|q(s)||u(s)|ds

+

∫ b1

0

∣

∣

∣

∣

∂

∂t
G(b2; b2, s) −

∂

∂t
G(b2; b1, s)

∣

∣

∣

∣

|q(s)||u(s)|ds

<

∫ b2

b1

KQds +

∫ b1

0

ǫ

2Q
Qds

= KQ|b2 − b1| +
ǫ

2Q
Qb1

< KQ
ǫ

2KQ
+

ǫ

2Q
Q

= ǫ.

Thus we have that sup‖u‖=1{supt∈[0,1] |(Nb2u)′(t) − (Nb1u)′(t)|} < ǫ for |b2 − b1| < δ.

Then ‖f(b2) − f(b1)‖ < ǫ for |b2 − b1| < δ, establishing that f is continuous.

Theorem 3.9. For p ≤ b ≤ 1, r(Nb) is strictly increasing as a function of b.

Proof. It was previously shown in Theorem 2.12 that if b = 1, there is a λ > 0 and

u ∈ Pb\{0} such that Nbu(t) = λu(t) for t ∈ [0, b]. Similarly, one can show that for b ∈

[p, 1), there is a λ > 0 and u ∈ Pb\{0} such that Nbu(t) = λu(t) for t ∈ [0, b]. Extend

this u to [b, 1] by λu(t) =
∫ b

0
G(b; b, s)q(s)u(s)ds + (t − b)

∫ b

0
∂
∂t

G(b; b, s)q(s)u(s)ds.

Then for t ∈ [0, 1], Nbu(t) = λu(t). Thus for p ≤ b ≤ 1, r(Nb) ≥ λ > 0.

Now let p ≤ b1 < b2 ≤ 1. Since r(Nb1) > 0, then by Theorem 3.4, there exists a

u0 ∈ Pb1\{0} such that Nb1u0 = r(Nb1)u0. Let u1 = Nb1u0 and u2 = Nb2u0. Then for

t ∈ (0, b1],

(u2 − u1)(t) =

∫ b2

b1

G(b2; t, s)q(s)u0(s)ds > 0.

Also,

(u2 − u1)
′(0) =

∫ b2

b1

∂

∂t
G(b2; 0, s)q(s)u0(s)ds > 0.

Thus the restriction of u2−u1 to [0, b1] belongs to Ωb1 , so there exists δ > 0 such that

u2 − u1 ≥ δu0 with respect to Pb1 . Since u2 ∈ P, it follows that u2 − u1 ≥ δu0 with

respect to P. Thus

u2 ≥ u1 + δu0 = r(Nb1)u0 + δu0 = (r(Nb1) + δ)u0

with respect to P. So Nb2u0 ≥ (r(Nb1) + δ)u0 with respect to P, and so by Theorem

3.6, r(Nb2) ≥ r(Nb1) + δ. Then r(Nb2) > r(Nb1) and r(Nb) is strictly increasing.



710 S. S. KING AND J. T. NEUGEBAUER

Theorem 3.10. The following are equivalent:

(i) b0 is the first extremal point of the boundary value problem corresponding to

(1.4), (1.5b);

(ii) there exists a nontrivial solution u of the boundary value problem (1.4), (1.5b0)

such that u ∈ Pb0;

(iii) r(Nb0) = 1.

Proof. First, we show (iii → ii). Assume r(Nb0) = 1. By Theorem 3.4, 1 is an

eigenvalue of Nb0 , so there exists a u ∈ Pb0 such that Nb0u = 1u. So u solves (1.4),

(1.5b0).

Next, we show (ii → i). Let u be a nontrivial solution to (1.4), (1.5b0) with

u ∈ Pb0 . Extend u to [b0, 1] by

u(t) =

∫ b0

0

G(b0; b0, s)q(s)u(s)ds + (t − b0)

∫ b0

0

∂

∂t
G(b0; b0, s)q(s)u(s)ds,

and so Nb0u(t) = u(t) for t ∈ [0, 1]. Therefore, 1 is an eigenvalue of Nb0 . Thus

r(Nb0) ≥ 1. If r(Nb0) = 1, then for all b ∈ [p, b0], r(Nb) < 1. Hence b0 is the first

extremal point of (1.4), (1.5b).

Now assume that r(Nb0) > 1. By Theorem 3.4, there exists a w ∈ Pb0\0 such

that Nb0w = r(Nb0)w. By Lemma 3.7, Nb0w ∈ Ωb0 . Therefore r(Nb0)w ∈ Ωb0 , and so

u − δw ∈ Pb0 for some δ > 0.

For t ∈ [b0, 1], extend w(t) by letting w(t) =
∫ b0

0
G(b0; b0, s)q(s)w(s)ds + (t −

b0)
∫ b0

0
∂
∂t

G(b0; b0, s)q(s)w(s)ds. Then u − δw ∈ P, and so u ≥ δw with respect to P.

Assume δ is maximal such that this inequality holds. Then u = Nb0u ≥ Nb0(δw) =

δNb0w = δr(Nb0)w. Since r(Nb0) > 1, δr(Nb0) > δ. However, u ≥ δr(Nb0)w, which

contradicts the maximality of δ. Thus r(Nb0) = 1.

Lastly, we show (i → iii). Assuming (i), there exists a u ∈ Pb0\{0} such that

u = Nb0u. Thus r(Nb0) ≥ 1. We claim r(Nb0) = 1. By way of contradiction, assume

r(Nb0) > 1. Following in the way of Remark 2.11, we can show that if Λ is an

eigenvalue of Np, then 1
Λ

is an eigenvalue of (1.1), (1.5p). By our assumption, (1.1),

(1.5p) has only the trivial solution for λ ≤ 1. Thus if (1.1), (1.5p) has a nontrivial

solution, Λ < 1. So r(Np) < 1. Since r(Nb) is continuous with respect to b, by the

Intermediate Value Theorem, there exists an α ∈ (p, b0) such that r(Nα) = 1. So there

exists a nontrivial solution v to (1.4), (1.5α) with v ∈ Pα\{0}, which is a contradiction

since b0 is the first extremal point of (1.4), (1.5α). Therefore r(Nb0) = 1.

4. Positive Solutions of the Nonlinear Problem

In this section, we consider the nonlinear boundary value problem

(4.1) u(4) + f(t, u) = 0, 0 ≤ t ≤ 1,



DIFFERENTIAL INCLUSIONS 711

satisfying boundary conditions (1.5b), where f(t, u) : [0, 1]×R → R is continuous and

f(t, 0) ≡ 0.

Assume q(t) ≡ ∂f

∂u
(t, u)

∣

∣

u=0
exists, is a nonnegative continuous function on [0, 1],

and does not vanish identically on any nondegenerate compact subinterval of [0, 1].

Then the variational equation along the zero solution of (4.1) is

(4.2) u(4) + q(t)u = 0.

For the existence of nontrivial solutions of the boundary value problem (4.1),

(1.5b), we apply the following fixed point theorem for nonlinear operator equations;

see Deimling [6] or Schmitt and Smith [23].

Lemma 4.1. Let B be a Banach space and P ⊂ B a reproducing cone. Let M : B → B

be a completely continuous, nonlinear operator such that M : P → P and M(0) = 0.

Let M be Fréchet differentiable at u = 0 whose Fréchet derivative N = M ′(0) has the

property:

(A) There exist w ∈ P and µ > 1 such that Nw = µw, and Nu = u implies that

u /∈ P. Further, there exists ρ > 0 such that, if u = (1/λ)Mu, u ∈ P and

‖u‖ = ρ, then λ ≤ 1.

Then, the equation u = Mu has a solution u ∈ P\{0}.

Theorem 4.2. Assume b0 is the first extremal point of (4.2), (1.5b). Assume also

the following condition holds:

(A’) There exists a ρ(b) > 0 such that, if u(t) is a nontrivial solution of u(4) +

(1/λ)f(t, u) = 0 satisfying (1.5b), and if u ∈ P, with ‖u‖ = ρ(b), then λ ≤ 1.

Then, for all b satisfying b0 < b ≤ 1, the boundary value problem (4.1), (1.5b) has a

solution u ∈ P\{0}.

Proof. For each b satisfying b0 < b ≤ 1, let Nb be defined as in the previous section

with respect to q(t) ≡ ∂f

∂u
(t, u)

∣

∣

u=0
. Define the linear operator Mb by

Mbu(x) =



















∫ b

0
G(t, s)q(s)f(s, u(s))ds, 0 ≤ t ≤ b,

∫ b

0
G(b, s)q(s)f(s, u(s))ds

+(t − b)
∫ b

0
∂
∂t

G(b, s)q(s)f(s, u(s))ds, b ≤ t ≤ 1.

Then Mb is Fréchet differentiable at u = 0 and M ′
b(0) = Nb.

From Theorem 3.9 and Theorem 3.10, it follows that r(Nb0) = 1 and r(Nb) > 1

for b > b0. Moreover, since b0 is the first extremal point of (4.2) corresponding to

(1.5b), it follows from Theorem 3.10 that, for b > b0, if Nbu = u and u is nontrivial,

then u /∈ P. Thus, (A’) and Lemma 4.1 imply there exists a u ∈ P\{0} such that

Mbu = u. So u is a nontrivial solution of (4.1), (1.5b), with u ∈ P\{0}.
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