
Dynamic Systems and Applications 24 (2015) 1-16

ASYMPTOTIC BEHAVIOR FOR A GENERAL CLASS OF

HOMOGENEOUS SECOND ORDER EVOLUTION EQUATIONS IN

A HILBERT SPACE

BEHZAD DJAFARI ROUHANI AND HADI KHATIBZADEH

Department of Mathematical Sciences, University of Texas at El Paso

500 W. University Ave., El Paso, TX 79968 USA

Department of Mathematics, University of Zanjan, Zanjan, Iran

ABSTRACT. We study the asymptotic behavior of solutions to the following general homogeneous

second order evolution equation, with suitable assumptions on p(t) and r(t),







p(t)u′′(t) + r(t)u′(t) ∈ Au(t) a.e. on R
+

u(0) = u0, sup
t≥0 |u(t)| < +∞

where A is a maximal monotone operator in a real Hilbert space, and present some applications. In

the homogeneous case, our results extend those given in [7, 10, 12].
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1. Introduction

Let H be a real Hilbert space with inner product (·, ·) and norm | · |. We denote

weak convergence in H by ⇀ and strong convergence by →. A (nonlinear) possibly

multivalued operator in H is a nonempty subset A of H×H . A is said to be monotone

if (y2 − y1, x2 − x1) ≥ 0 for all [xi, yi] ∈ A, i = 1, 2. A is maximal monotone if A is

monotone and R(I +A) = H , where I is the identity operator on H . Given a function

ϕ : H →]−∞, +∞], its subdifferential is defined as the multivalued operator ∂ϕ where

∂ϕ(x) = {w ∈ H | ϕ(x) − ϕ(y) ≤ (w, x − y), ∀y ∈ H}.

ϕ is called proper if there exists x ∈ H such that ϕ(x) < +∞. It is a well known result

that if ϕ is proper, convex and lower semicontinuous, then ∂ϕ is a maximal monotone

operator. We refer the reader to the books by Barbu [4], Brézis [5] and Morosanu

[17] for further details on the properties of monotone operators and subdifferentials

of convex functions in Hilbert spaces.
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In [22–23], Véron proved the existence of solutions satisfying u′, u′′ ∈ L2((0, +∞); H),

to the following second order evolution equation

(1)







p(t)u′′(t) + r(t)u′(t) ∈ Au(t) a.e. on R
+

u(0) = u0, supt≥0 |u(t)| < +∞,

where A is a maximal monotone operator, provided that the following conditions on

p(t) and r(t) hold:

(2) p ∈ W 2,∞(0, +∞), r ∈ W 1,∞(0, +∞)

(3) ∃α > 0, such that ∀t ≥ 0, p(t) ≥ α.

He showed also the uniqueness of the solution to (1) if moreover:

(4)

∫ ∞

0

e
−

R t

0
r(s)
p(s)

ds
dt = +∞

The existence and asymptotic behavior of solutions to (1) when p(t) ≡ 1 and r(t) ≡ 0

has been studied by Barbu [2–4], Morosanu [17–18], Mitidieri [15–16] and Poffald-

Reich [20-21], and by Bruck [6] for nonhomogeneous and periodic forcing case. The

authors [8–10] studied the asymptotic behavior of solutions to (1) when p(t) ≡ 1 and

r(t) ≡ c ≤ 0 for the nonhomogeneous case, without assuming neither A−1(0) 6= ∅
nor the maximality of the monotone operator A, extending previous results on the

asymptotic behavior of solutions to (1). In [7], when A = ∂ϕ where ϕ is a proper,

convex and lower semicontinuous function, we proved an ergodic theorem and a weak

convergence theorem for solutions to (1), by assuming (2), (3), (4) and that t2r(t)

is eventually bounded from below. Véron [24] showed that strong convergence may

not occur for p(t) ≡ 1 and r(t) ≡ 0, even when A = ∂ϕ. In [11], we proved the

strong convergence of solutions to (1) when p(t) ≡ 1 and r(t) ≡ c > 0, and in

[12], we considered (1), with p and r being time dependent, and proved the strong

convergence of solutions, and determined their rate of convergence. In this paper, we

consider (1) with rather general conditions on p(t) and r(t), and prove ergodic, weak,

as well as strong convergence theorems for solutions to (1), extending the previous

results mentioned above. The paper is divided into five sections. In section 2, we

prove an ergodic and a weak convergence theorem. In section 3, we investigate the

strong convergence of solutions. Section 4 is devoted to the subdifferential case, i.e.

when A = ∂ϕ. Finally, in section 5 we present some applications of our results to

optimization and partial differential equations. We note also that our results are

new even for the one dimensional case of ordinary differential equations (where of

course weak and strong convergence coincide), as shown e.g. by considering bounded

solutions to the following ordinary differential equation:
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3

2
u′′ +

2

t + 1
u′ = u3, u(0) = 1.

One can easily verify that the solution is given by u(t) = 1
t+1

, which converges to zero

as t → +∞, as predicted by our Theorem 2.4.

In the following, we recall some notations and definitions that we need in the

sequel.

Throughout the paper, we denote uh(t) := u(t + h), σT (u) := 1
T

∫ T

0
u(t)dt,

v(t, h) := u(t + h) − u(t), and M := Max{‖p‖W 2,∞, ‖r‖W 1,∞, supt≥0 |u(t)|}.
Definition 1.1. Given a bounded curve {u(t)} in H , the asymptotic center c of

{u(t)} is defined as follows (see [13]): for every x ∈ H , let ϕ(x) = lim
t→+∞

sup |u(t)−q|2.
Then ϕ is a continuous and strictly convex function on H , satisfying ϕ(x) → +∞
as |x| → +∞. Thus ϕ achieves its minimum on H at a unique point c, called the

asymptotic center of the curve {u(t)}.

2. Weak Convergence

In this section, we prove the almost weak convergence of solutions to (1), and

then deduce the weak convergence of u to a zero of A, without assuming A−1(0) 6= ∅.
In the homogeneous case, the following theorem extends [7, Theorem 2.3], as well as

[10, Lemma 3.4] and [8–9, Theorem 3.1]. We start with a lemma.

Lemma 2.1. Suppose that u(t) is a solution to (1). If q ∈ H satisfies the following

inequality:

(p(t)u′′(t) + r(t)u′(t), u(t) − q) ≥ 0,

then |u(t) − q| is nonincreasing or eventually increasing. Therefore, there exists

limt→+∞ |u(t) − q|.

Proof. It follows from the assumption that

p(t)
d2

dt2
|u(t) − q|2 + r(t)

d

dt
|u(t) − q|2 ≥ 0

Dividing both sides of the above inequality by p(t) and multiplying by e
R t

0
r(s)
p(s)

ds
, we

get:

(5)
d

dt

(

e
R t

0
r(s)
p(s)

ds d

dt
|u(t) − q|2

)

≥ 0.

We consider two cases.

If d
dt
|u(t) − q|2 ≤ 0 for each t > 0, then |u(t) − q| is nonincreasing. Otherwise,

there exists t0 > 0 such that d
dt
|u(t)− q|2|t=t0

> 0. Integrating (5) from t0 to t, we get

for each t ≥ t0,

e
R t

0
r(s)
p(s)

ds d

dt
|u(t) − q|2 ≥ 2e

R t0
0

r(s)
p(s)

ds(u′(t0), u(t0) − q) > 0
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Then
d

dt
|u(t) − q|2 ≥ 0, ∀t ≥ t0,

which shows that |u(t) − q| is eventually increasing. �

Corollary 2.2. If A−1(0) 6= ∅ and q ∈ A−1(0), then the conclusions of Lemma 2.1

hold.

Proof. If q ∈ A−1(0), then by the monotonicity of A, q satisfies the inequality in

Lemma 2.1. �

Theorem 2.3. Let u be a solution to (1). Assume that p, r satisfy the assumptions

(2) and (3). If either one of the following conditions hold:

i) r and p′ are monotone,

ii) r′(t) ≥ p′′(t),

iii) p′′(t) ≥ r′(t),

then σT (uh) := 1
T

∫ T

0
u(t+h)dt ⇀ c ∈ A−1(0) as T → +∞, uniformly for h ≥ 0.

Moreover, c is the asymptotic center of the curve (u(t))t≥0.

Proof. By the monotonicity of A, we have

(p(t)u′′(t)+r(t)u′(t), u(t)−u(s+h)) ≥ (p(s+h)u′′(s+h)+r(s+h)u′(s+h), u(t)−u(s+h))

Integrating from s = 0 to s = T and dividing by T , we get:

(p(t)u′′(t) + r(t)u′(t), u(t) − σT (uh)) ≥
1

T

∫ T

0

p(s + h)
d

ds
(u′(s + h), u(t) − u(s + h))ds

− 1

T

∫ T

0

r(s + h)

2

d

ds
|u(t) − u(s + h)|2ds =

1

T
p(T + h)(u(t) − u(T + h), u′(T + h))

− 1

T
p(h)(u′(h), u(t) − u(h)) +

p′(T + h)

2T
|u(t) − u(T + h)|2 − 1

2T
p′(h)|u(t) − u(h)|2

− 1

2T

∫ T

0

p′′(s + h)|u(t) − u(s + h)|2ds − r(T + h)

2T
|u(t) − u(T + h)|2

+
r(h)

2T
|u(t) − u(h)|2 +

1

2T

∫ T

0

r′(s + h)|u(t) − u(s + h)|2ds

(6)

Obviously, by (2) we have:

(7)
p′(T + h)

2T
|u(t) − u(T + h)|2 → 0

(8)
−r(T + h)

2T
|u(t) − u(T + h)|2 → 0
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as T → +∞. Also, clearly the second, fourth and seventh terms on the right hand

side tend to zero. The first term on the right hand side converges to zero because:

p(T + h)

T
|(u(t) − u(T + h), u′(T + h))| ≤ 2Mp(T + h)

T
|u′(h)|

+
2Mp(T + h)

T
|u′(T + h) − u′(h)|

=
2Mp(T + h)

T
|u′(h)| + 2Mp(T + h)

T
|
∫ T

0

u′′(s + h)ds|

≤ 2Mp(T + h)

T
|u′(h)| + 2Mp(T + h)√

T
‖u′′‖L2((0,+∞);H)

≤ 2Mp(T + h)

T
|u′(0)| + 4Mp(T + h)√

T
‖u′′‖L2((0,+∞);H) →T→+∞ 0,(9)

uniformly for h ≥ 0. Now assume that (i) holds. We will show that the fifth and

eighth terms on the right hand side are bigger than expressions tending to zero as

T → +∞. If p′′(t) ≤ 0, then:

(10) − 1

2T

∫ T

0

p′′(s + h)|u(t) − u(s + h)|2ds ≥ 0.

Otherwise, p′′(t) ≥ 0 and by (2) we have:

(11) − 1

2T

∫ T

0

p′′(s + h)|u(t) − u(s + h)|2ds ≥ 4M2 1

2T
(p′(h) − p′(T + h)) → 0

as T → +∞, uniformly for h ≥ 0. If r′(t) ≥ 0, then

(12)
1

2T

∫ T

0

r′(s + h)|u(t) − u(s + h)|2ds ≥ 0.

Otherwise, r′(t) ≤ 0 and we get:

(13)
1

2T

∫ T

0

r′(s + h)|u(t) − u(s + h)|2ds ≥ 4M2 1

2T
(r(T + h) − r(h)) → 0

as T → +∞, uniformly for h ≥ 0. Suppose q is a weak cluster point of σT (uh). Then

for any two sequences Tn and hn of positive real numbers such that Tn → +∞ and

σTn
(uhn

) ⇀ q, by replacing T by Tn and h by hn in (6)–(13), and letting n → +∞,

we get:

(14) (p(t)u′′(t) + r(t)u′(t), u(t) − q) ≥ 0
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If p(t) and r(t) satisfy condition (ii), then we get again (14) from (6)–(9). If p(t) and

r(t) satisfy condition (iii), then we have

− 1

2T

∫ T

0

p′′(s + h)|u(t) − u(s + h)|2ds +
1

2T

∫ T

0

r′(s + h)|u(t) − u(s + h)|2ds

=
1

2T

∫ T

0

(r′(s + h) − p′′(s + h))|u(t) − u(s + h)|2ds

≥ 4M2 1

2T

∫ T

0

(r′(s + h) − p′′(s + h))ds

=
4M2

2T
(r(T + h) − r(h) − p′(T + h) + p′(h)),

which converges to zero as T → +∞. Then we get again (14) from (6)–(9). Now

by Lemma 2.1, there exists limt→+∞ |u(t) − q|. If c is another weak cluster point of

σT (uh), then there exists limt→+∞(|u(t) − q|2 − |u(t) − c|2). This implies that there

exists limt→+∞(u(t), c − q), then there exists limT→+∞(σT (uh), c − q) uniformly for

h ≥ 0. It follows that (c, c − q) = (q, c − q). Therefore c = q, and hence σT (uh) ⇀ c

as T → +∞, uniformly for h ≥ 0, which shows the almost weak convergence of u(t)

to c as t → +∞. Now we prove that c ∈ A−1(0). Let y ∈ Ax. By the monotonicity

of A, we have:

(x−u(t), y) = (x−u(t), y−Au(t))+(x−u(t), Au(t)) ≥ (x−u(t), p(t)u′′(t)+r(t)u′(t))

Integrating from t = 0 to T , dividing by T , and letting T → +∞, by a similar proof

as above we get: (x − c, y) ≥ 0. Now the maximality of A implies that c ∈ A−1(0).

Finally, we show that c is the asymptotic center of the curve u(t). Let x ∈ H , with

x 6= c. Then:

|u(t) − x|2 = |u(t) − c|2 + |x − c|2 + 2(u(t) − c, c − x).

Integrating from 0 to T , and dividing by T , then taking limsup when T → +∞, since

σT ⇀ c, we get:

lim sup
t→+∞

|u(t) − x|2 ≥ lim sup
t→+∞

|u(t) − c|2 + |x − c|2 > lim sup
t→+∞

|u(t) − c|2.

Hence c is the asymptotic center of u(t) as desired. The proof is now complete. �

Theorem 2.4. Let u be a solution to (1). If (2), (3) and the assumptions of Theo-

rem 2.3 are satisfied, then u(t) ⇀ c ∈ A−1(0) as t → +∞, where c is the asymptotic

center of the curve (u(t))t≥0.

Proof. Since u′ ∈ L2((0, +∞); H), then u is asymptotically regular (i.e. u(t + h) −
u(t) → 0, as t → +∞, ∀h ≥ 0). Now the result follows from Theorem 2.3 and

G. G. Lorentz’ Tauberian condition for almost convergence (see [14]). �

Remark 2.1. The conclusions of Theorems 2.3 and 2.4 still hold if the assumptions

(i), (ii) or (iii) in Theorem 2.3 are satisfied only for large enough t (i.e. for t ≥ t0).
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Remark 2.2. Since u′ and u′′ belong to L2((0, +∞); H), by using the demiclosedness

of A, and an argument similar to [19, Lemma 2.1], it can be easily shown that the

zero set of A is nonempty. However, the weak convergence of u(t) cannot be directly

derived from this fact, and we need the arguments in Theorems 2.3 and 2.4.

Example 2.1. Consider the following second order evolution equation:

(15)







(q(t)u′(t))′ ∈ Au(t) a.e. on R
+

u(0) = u0, supt≥0 |u(t)| < +∞

where A is a maximal monotone operator and q ∈ W 2,∞((0, +∞); H). Then (2) and

condition (ii) of Theorem 2.3 are satisfied. (3) is satisfied if q(t) ≥ α > 0, ∀t ≥ 0.

Then u(t) converges weakly to a zero of A as t → +∞. In this case, condition (4) is

equivalent to the following condition:

(16)

∫ ∞

0

1

q(t)
= +∞.

For example, q(t) = sin t + 2 satisfies all of the above conditions.

3. Strong Convergence

In this section, we extend our results in [12], and prove the strong convergence

of solutions to (1) to a zero of the maximal monotone operator A, with weaker as-

sumptions on the coefficients. Throughout this section, we assume (2) and (3).

Lemma 3.1. Let u be a solution to (1). Then lim inft→+∞ p(t) d
dt
|v(t, h)|2 ≤ 0 and

lim supt→+∞ r(t)|v(t, h)|2 ≤ 0, where v(t, h) = u(t + h) − u(t).

Proof. Assume by contradiction that lim inft→+∞ p(t) d
dt
|v(t, h)|2 ≥ c > 0. Since

0 < α ≤ p(t) ≤ M , integrating from t = s to T , we get:

|v(T, h)|2 − |v(s, h)|2 >
c

M
(T − s).

Letting T → +∞, we get a contradiction since u is bounded. On the other hand,

|r(t)‖v(t, h)|2 = |r(t)‖
∫ t+h

t

u′(s)ds|2 ≤ Mh

(
∫ t+h

t

|u′(s)|2ds

)

→ 0

as t → +∞, since u′ ∈ H1((0, +∞); H). �

Theorem 3.1. Let u(t) be a solution to (1). Assume that the following conditions

(i), (ii) and (iii) are satisfied:

(i)
∫ ∞
0

e
−

R s

0
r(τ)
2p(τ)

dτ
ds < +∞,

(ii) M1 :=
∫ ∞
0

[
∫ t

0
e
−

R t

s

r(τ)
p(τ)

dτ
R(s)ds]1/2dt < +∞

where R(s) := Max{0, supt≥s r′(t)}. Then u(t) → p ∈ H, as t → +∞.
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Proof. Take v(t) = u(t + h) − u(t). By the monotonicity of A and (1), we get:

p(t)(v′′(t), v(t)) + (p(t + h) − p(t))(u′′(t + h), v(t))

+ r(t)(v′(t), v(t)) + (r(t + h) − r(t))(u′(t + h), v(t)) ≥ 0

⇒ 1

2
p(t)

d2

dt2
|v(t)|2 + (p(t + h) − p(t))(u′′(t + h), v(t))

+
1

2
r(t)

d

dt
|v(t)|2 + (r(t + h) − r(t))(u′(t + h), v(t)) ≥ 0

Integrating by parts from s to t, we get:

1

2
p(t)

d

dt
|v(t)|2 − 1

2
p(s)

d

ds
|v(s)|2

− 1

2

∫ t

s

p′(τ)
d

dτ
|v(τ)|2dτ +

∫ t

s

(p(τ + h) − p(τ))(u′′(τ + h), v(τ))dτ

+
1

2
r(t)|v(t)|2 − 1

2
r(s)|v(s)|2

− 1

2

∫ t

s

r′(τ)|v(τ)|2dτ +

∫ t

s

(r(τ + h) − r(τ))(u′(τ + h), v(τ))dτ ≥ 0

By Lemma 3.1, there is a sequence tn → +∞ such that limn→+∞ p(tn)(v(tn),

v′(tn)) ≤ 0. Now replacing t by tn in the above inequality, and letting n → +∞, we

get:

1

2
p(s)

d

ds
|v(s)|2 +

1

2
r(s)|v(s)|2 ≤

− 1

2

∫ ∞

s

p′(τ)
d

dτ
|v(τ)|2dτ +

∫ ∞

s

(p(τ + h) − p(τ))(u′′(τ + h), v(τ))dτ

− 1

2

∫ ∞

s

r′(τ)|v(τ)|2dτ +

∫ ∞

s

(r(τ + h) − r(τ))(u′(τ + h), v(τ))dτ

Dividing by h2 and letting h → 0, by an application of Fatou’s Lemma, it follows

from the assumptions that:

(17) p(s)
d

ds
|u′(s)|2 + r(s)|u′(s)|2 ≤

∫ ∞

s

r′(τ)|u′(τ)|2dτ ≤ R(s)

∫ ∞

s

|u′(τ)|2dτ.

Then:

d

ds
|u′(s)|2e

R s

t0

r(τ)
p(τ)

dτ
+

r(s)

p(s)
|u′(s)|2e

R s

t0

r(τ)
p(τ)

dτ ≤ e
R s

t0

r(τ)
p(τ)

dτ

p(s)
R(s)

∫ ∞

s

|u′(τ)|2dτ.

Therefore:

d

ds
(|u′(s)|2e

R s

t0

r(τ)
p(τ)

dτ
) ≤ e

R s

t0

r(τ)
p(τ)

dτ

p(s)
R(s)

∫ ∞

s

|u′(τ)|2dτ.
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Integrating from t0 to t with respect to s, we get:

|u′(t)|2 ≤ |u′(t0)|2e−
R t

t0

r(τ)
p(τ)

dτ
+

e
−

R t

t0

r(τ)
p(τ)

dτ

α

∫ t

t0

(

e
R s

t0

r(τ)
p(τ)

dτ
R(s)

∫ ∞

s

|u′(τ)|2dτ

)

ds

= |u′(t0)|2e−
R t

t0

r(τ)
p(τ)

dτ
+

1

α

∫ t

t0

(

e
−

R t

s

r(τ)
p(τ)

dτ
R(s)

∫ ∞

s

|u′(τ)|2dτ

)

ds.

Therefore:

(18) |u′(t)| ≤ |u′(t0)|e−
R t

t0

r(τ)
2p(τ)

dτ
+

1√
α

[
∫ t

t0

(

e
−

R t

s

r(τ)
p(τ)

dτ
R(s)

∫ ∞

s

|u′(τ)|2dτ

)

ds

]

1
2

.

Hence:

|u(T ′) − u(T )| ≤
∫ T ′

T

|u′(t)|dt ≤ |u′(t0)|
∫ T ′

T

e
−

R t

t0

r(τ)
2p(τ)

dτ
dt

+
1√
α

∫ T ′

T

[
∫ t

t0

(

e
−

R t

s

r(τ)
p(τ)

dτ
R(s)

∫ ∞

s

|u′(τ)|2dτ

)

ds

]

1
2

dt.

Assume u(T ′
n) ⇀ p. Then we get:

|u(T ) − p| ≤ |u′(t0)|
∫ ∞

T

e
−

R t

t0

r(τ)
2p(τ)

dτ
dt

+
1√
α

∫ ∞

T

[
∫ t

t0

(

e
−

R t

s

r(τ)
p(τ)

dτ
R(s)

∫ ∞

s

|u′(τ)|2dτ

)

ds

]

1
2

dt.

Given ǫ > 0, choose t0 big enough such that:
∫ ∞

s
|u′(τ)|2dτ ≤ ǫ2, ∀s ≥ t0. Then we

have:

|u(t) − p| ≤ |u′(t0)|
∫ ∞

t

e
−

R s

t0

r(τ)
2p(τ)

dτ
ds +

M1ǫ√
α

.

Therefore lim supt→+∞ |u(t) − p| ≤ M1ǫ√
α

. Since ǫ > 0 is arbitrary, we conclude that

u(t) → p as t → +∞. �

Corollary 3.2. Let u(t) be a solution to (1). Assume that r(t) ≥ 0. In addition,

assume that (i) and the following stronger condition (ii) ′ is satisfied:

(ii) ′ M ′
1 :=

∫ +∞
0

e
R s

0
r(τ)
p(τ)

dτ
R(s)ds < +∞.

Then u(t) → p ∈ A−1(0) as t → +∞.

Proof. First of all, since: −
∫ t

s
r(τ)
p(τ)

dτ = −2
∫ t

0
r(τ)
2p(τ)

dτ +
∫ s

0
r(τ)
p(τ)

dτ , it is clear that (i)

and (ii) ′ imply (ii). Therefore by Theorem 3.1, u(t) → p ∈ H as t → +∞. Now

since r(t) ≥ 0, it follows from (i), (ii) ′ and (18) that |u′(t)| → 0 as t → +∞. Since

u′′ ∈ L2((0, +∞); H), there is a sequence tn → +∞ such that u′′(tn) → 0 as n → +∞.

Since p(t) and r(t) are bounded, the closedness of A implies that p ∈ A−1(0). �

Corollary 3.3 (12, Theorem 2.1). Let u(t) be a solution to (1). Assume that r′(t) ≤
0. If (i) holds, then u(t) → p ∈ A−1(0) as t → +∞.
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Proof. Since r′(t) ≤ 0, then (i) implies that r(t) ≥ 0, and R(s) = 0 so that (ii) ’ is

clearly satisfied. The conclusion follows now from Corollary 3.2. �

Example 3.1. Let p(t) ≡ 1, r(t) = 4
t+1

. Then the assumptions of Corollary 3.3

are satisfied; therefore u(t) → p ∈ A−1(0) as t → +∞. Moreover, the proof of

Theorem 3.1 shows that we have the following rate of convergence: |u(t)−p| = O( 1
t+1

).

Example 3.2. Let p(t) ≡ 1 and r(t) = 1 − e−t ≥ 0. Then r′(t) = e−t > 0 and

r′(t) → 0 as t → +∞. In this case, (i) and (ii) are satisfied, but (ii)’ does not hold.

Therefore, it follows from Theorem 3.1 that u(t) → p ∈ H , as t → +∞.

Open Problem 3.1. Say for p(t) ≡ 1, is it possible to get the strong convergence of

u(t) by assuming that lim supt→+∞ r′(t) ≤ 0, and is there any relationship between

this condition and condition (ii) in Theorem 3.1?

4. Subdifferential Case

In this section, we consider the evolution equation (1) when the monotone opera-

tor A is the subdifferential ∂ϕ of a proper, convex and lower semicontinuous function

ϕ : H →]−∞, +∞]. We prove a weak convergence theorem with suitable assumptions

on p(t) and r(t), as well as a strong convergence theorem with additional assumptions

on ϕ, extending our results in [7].

Proposition 4.1. Let u(t) be a solution to (1). Assume that (2) and (3) hold. If
∫ ∞
0

R(t)dt < +∞, then limt→+∞ ϕ(u(t)) exists.

Proof. By Lemma 2.1, (1) and (17), we have:

d

dt
ϕ(u(t)) = (∂ϕ(u(t)), u′(t)) = (p(t)u′′(t) + r(t)u′(t), u′(t))

=
1

2
p(t)

d

dt
|u′(t)|2 + r(t)|u′(t)|2

≤ 1

2

∫ ∞

t

r′(s)|u′(s)|2ds +
1

2
r(t)|u′(t)|2

≤ 1

2
R(t)

∫ ∞

t

|u′(s)|2ds +
1

2
r(t)|u′(t)|2.

Therefore:

ϕ(u(T ′)) − ϕ(u(T )) ≤ 1

2

∫ T ′

T

R(t)

∫ ∞

t

|u′(s)|2ds dt

+
1

2

∫ T ′

T

r(t)|u′(t)|2dt

≤ 1

2

(
∫ ∞

T

|u′(t)|2dt

)

[

∫ T ′

T

R(t)dt + M

]

This implies that: lim supt→+∞ ϕ(u(t)) ≤ ϕ(u(T )) + C
∫ ∞

T
|u′(s)|2ds, for some con-

stant C. Now since u′ ∈ L2((0, +∞); H), letting T → +∞, we get:
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lim supt→+∞ ϕ(u(t)) ≤ lim inft→+∞ ϕ(u(t)), which completes the proof of the propo-

sition. �

Remark 4.1. In Proposition 4.1, if r(t) ≤ 0 and r′(t) ≤ 0, then ϕ(u(t)) is nonin-

creasing.

Lemma 4.2. Suppose that u(t) is a solution to (1), and q ∈ H. Then

lim inft→+∞ t d
dt
|u(t) − q|2 ≤ 0.

Proof. Assume by contradiction that lim inft→+∞ t d
dt
|u(t) − q|2 > 0. Then There

exist t0 > 0 and c > 0 such that for each t > t0, we have t d
dt
|u(t) − q|2 ≥ c > 0.

Dividing both sides by t and then integrating from t = t0 to T , we get

|u(T ) − q|2 − |u(t0) − q|2 ≥ c(ln T − ln t0).

Since u(t) is bounded, we get a contradiction by letting T → +∞. �

Theorem 4.3. Let u(t) be a solution to (1). Suppose that the assumptions of Propo-

sition 4.1 are satisfied. Then u(t) converges weakly to some c ∈ A−1(0), as t → +∞.

Proof. By Remark 2.2, we know that A−1(0) 6= ∅. Let q ∈ A−1(0). By the subdif-

ferential inequality and (1), we get

ϕ(u(t)) − ϕ(q) ≤ (p(t)u′′(t) + r(t)u′(t), u(t) − q)

≤ 1

2
p(t)

d2

dt2
|u(t) − q|2 +

1

2
r(t)

d

dt
|u(t) − q|2(19)

Integrating from t = 0 to T , we get:

∫ T

0

(ϕ(u(t)) − ϕ(q))dt ≤ p(T )

2

d

dT
|u(T ) − q|2 − p(0)(u′(0), u(0) − q)

− 1

2

∫ T

0

p′(t)
d

dt
|u(t) − q|2 +

1

2

∫ T

0

r(t)
d

dt
|u(t) − q|2dt

By Lemma 2.1, |u(t) − q| is nonincreasing or eventually increasing. If |u(t) − q| is

nonincreasing, then

(20)

∫ T

0

(ϕ(u(t))− ϕ(q))dt ≤ −p(0)(u′(0), u(0)− q) + M(|u(0)− q|2 − |u(T )− q|2).

If |u(t) − q| is eventually increasing, then there exists t0 such that for each t ≥ t0,
d
dt
|u(t) − q| > 0. Integrating (19) from t = t0 to T , we get:

∫ T

t0

(ϕ(u(t)) − ϕ(q))dt ≤ p(T )

2

d

dT
|u(T ) − q|2 − p(t0)(u

′(t0), u(t0) − q)

− 1

2

∫ T

t0

p′(t)
d

dt
|u(t) − q|2 +

1

2

∫ T

t0

r(t)
d

dt
|u(t) − q|2dt
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Therefore:
∫ T

t0

(ϕ(u(t)) − ϕ(q))dt ≤ M

2

d

dT
|u(T ) − q|2 − p(t0)(u

′(t0), u(t0) − q)

+ M(|u(T ) − q|2 − |u(t0) − q|2).(21)

Taking lim inf of (20) and (21) as T → +∞, by Lemma 4.2, we get
∫ ∞

t0

(ϕ(u(t)) − ϕ(q))dt < +∞.

Therefore lim inft→+∞ ϕ(u(t)) ≤ ϕ(q). By Proposition 4.1, limt→+∞ ϕ(u(t)) = ϕ(q) =

Min{ϕ(z); z ∈ H}. If u(tn) ⇀ s as n → +∞, then

ϕ(s) ≤ lim inf
n→+∞

ϕ(u(tn)) = lim
t→+∞

ϕ(u(t)) = ϕ(q).

Hence s ∈ A−1(0), and therefore by Corollary 2.2, there exists limt→+∞ |u(t) − s|.
Now the proof is completed by a similar argument as in Theorem 2.3. �

Theorem 4.4. Let u(t) be a solution to (1). Suppose (2) and (3) hold, and that

r(t) ≤ 0 and r′(t) ≤ 0. Let ϕ : H →] − ∞, +∞] be a proper, convex and lower

semicontinuous function satisfying the following conditions: D(ϕ) = −D(ϕ), and

ϕ(x)−ϕ(0) ≥ a(|x|)(ϕ(−x)−ϕ(0)), ∀x ∈ D(ϕ), where a : R
+ → (0, 1) is a continuous

function. Then u(t) → q ∈ A−1(0) as t → +∞, which is a minimum point of ϕ.

Proof. By Remark 2.2, we know that A−1(0) 6= ∅, and therefore ϕ has a minimum

point. Without loss of generality, we may assume that ϕ(0) = 0 and 0 is a minimum

point of ϕ. For t ≤ s, by the assumptions, Proposition 4.1 and Remark 4.1, we get:

ϕ(u(t)) ≥ ϕ(u(s)) ≥ a(|u(s)|)ϕ(−u(s)) + (1 − a(|u(s)|))ϕ(0)

≥ ϕ(−a(|u(s)|)u(s)) ≥ ϕ(u(t)) + (∂ϕ(u(t)),−a(|u(s)|)u(s)− u(t))

= ϕ(u(t)) − (p(t)u′′(t) + r(t)u′(t), a(|u(s)|)u(s) + u(t)).

Therefore:

(p(t)u′′(t) + r(t)u′(t), a(|u(s)|)u(s) + u(t)) ≥ 0.

Let:

g(t) = (1 + a(|u(s)|))(|u(t)|2 − |u(s)|2) − a(|u(s)|)|u(t)− u(s)|2

then g′(t) = 2(u′(t), u(t) + a(|u(s)|)u(s)) and g′′(t) = 2(u′′(t), u(t) + a(|u(s)|)u(s)) +

2|u′(t)|2. Hence p(t)g′′(t) + r(t)g′(t) ≥ 0. Now the same argument as in Lemma 2.1,

with |u(t) − q|2 replaced by g(t), shows that g(t) is either nonincreasing or eventu-

ally increasing. Since r(t) ≤ 0, condition (1.3) in [7] is satisfied. Therefore by [7,

Lemma 2.2], we conclude that g(t) is nonincreasing. Then g(t) ≥ g(s) = 0 for t ≤ s.

It follows that:

|u(t) − u(s)|2 ≤ 1 + a(|u(s)|)
a(|u(s)|) (|u(t)|2 − |u(s)|2) <

2

a(|u(s)|)(|u(t)|2 − |u(s)|2), ∀s ≥ t
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By Corollary 2.2, there exists lims→+∞ |u(s)|. If |u(s)| → 0 as s → +∞, then u(s) → 0

and this yields the theorem. Otherwise, if |u(s)| → r > 0, from the continuity of a, we

have lims→+∞ a(|u(s)|) = a(lims→+∞ |u(s)|) = a(r) > 0. Therefore {u(t)} is a cauchy

sequence in H , hence u(t) → q as t → +∞, and q ∈ A−1(0) by Theorem 4.3. �

5. Applications

1. When A = ∂ϕ, where ϕ is a proper, convex and lower semicontinuous function

satisfying the assumptions of Theorem 4.4, the solution to (1) converges strongly to

a zero of the maximal monotone operator A which is a minimum point of ϕ.

2. Let H = L2(Ω), where Ω ⊆ R
n is a bounded domain with smooth boundary

Γ. Let j : R → (−∞, +∞] be a proper , convex and lower semicontinuous function,

and β = ∂j. We assume for simplicity that 0 ∈ β(0). Define

Au = −∆u = −
n

∑

i=1

∂2u

∂x2
i

with

D(A) =

{

u ∈ H2(Ω) ,
−∂u

∂η
(x) ∈ β(u(x)), a.e. on Γ

}

where (∂u
∂η

(x)) is the outward normal derivative to Γ at x ∈ Γ. It is known that

A = ∂φ, where φ : L2(Ω) → (−∞ , +∞] is the functional:

φ(u) =







1
2

∫

Ω
|∇u|2dx +

∫

Γ
β(u(x))dσ, if u ∈ H1(Ω) and β(u) ∈ L1(Γ)

+∞, otherwise.

Now consider the following equation:






























p(t)∂2u
∂t2

(t, x) + r(t)∂u
∂t

(t, x) +
∑

i
∂2u
∂x2

i

(t, x) = 0 a.e. on R
+ × Ω

−∂u
∂η

(t, x) ∈ βu(t, x) a.e. on R
+ × Γ

u(0, x) = u0(x) a.e. on Ω

supt≥0 |u(t, x)|L2(Ω) < +∞

where p(t), and r(t) satisfy the assumptions of Theorems 2.4 or 4.3. Then Theo-

rems 2.4 and 4.3 imply the weak convergence of u(t, .) to a minimizer of φ.
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